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Abstract

Overlapping genes are two protein-coding sequences sharing a significant part of the same DNA locus in different reading
frames. Although in recent times an increasing number of examples have been found in bacteria the underlying
mechanisms of their evolution are unknown. In this work we explore how selective pressure in a protein-coding sequence
influences its overlapping genes in alternative reading frames. We model evolution using a time-continuous Markov process
and derive the corresponding model for the remaining frames to quantify selection pressure and genetic noise. Our findings
lead to the presumption that, once information is embedded in the reverse reading frame 22 (relative to the mother gene
in +1) purifying selection in the protein-coding reading frame automatically protects the sequences in both frames. We also
found that this coincides with the fact that the genetic noise measured using the conditional entropy is minimal in frame
22 under selection in the coding frame.
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Introduction

Overlapping genes are protein coding genes sharing the same

DNA locus in different reading frames. As DNA consists of two

strands and each amino acid is encoded by non-overlapping

triplets (codons), up to six reading frames are possible at a given

locus. Overlapping genes are a well known and accepted

phenomenon in viruses, however this effect was explained from

space limitations of the capsid volume [1]. Until lately most

authors denied the existence of overlapping genes in bacterial

genomes, consequently bacterial genome annotation programs

excluded overlapping candidates in alternative reading frames

deliberately [2–5]. Although an experimental verification of two

protein-coding genes in the same DNA locus is extremely

challenging, over the last years an increasing number of non

trivially overlapping genes in prokayotes have been found [6–10].

This paper is concerned with the question how selection

pressure in the protein-coding frame influences alternative reading

frames. Is it possible to protect by selection two protein-coding

sequences simultaneously? We explore this question using a

stochastic model for the evolution of the protein-coding reading

frame and predict the consequent behaviour in the alternative

reading frames.

Sequence evolution can be described on nucleotide level [11–

14], amino acid level, e.g. Dayhoff and Schwartz [15], or on codon

level. Here we chose the latter approach using a time-continuous

Markov process as suggested by Goldman and Yang [16] and

Muse and Gaut [17]. We apply the model of Yang and Nielsen

[18] which is based on [16]. An extended model was already used

by Sabath et al. [19] to study the evolution of a random protein-

coding sequence. In contrast to our approach, Sabath investigated

the selection intensities of overlapping genes assuming that each

gene of the overlapping pair faces selection independently.

Several studies analyzed selection intensities in virus genomes

within overlapping gene regions investigating how nonsynon-

ymous and synonymous mutations influence two reading frames

simultaneously showing that a high rate of nonsynonymous

mutations in one reading frame falls onto synonymous substitu-

tions in an alternative frame at the same time, e.g. [20–22].

Our investigation reveals that selection pressure in the protein-

coding reading frame +1 is correlated to the reverse reading frame

22, where in fact many examples of overlapping genes found so

far are located e.g., [9,10]. Precisely there is a strong coupling of

the nonsynonymous to synonymous substitutions rate ratios in

these frames. In another approach following Yockey [23], we

quantify the genetic noise using the conditional entropy and the

mutual information as a measure of sequence similarity. The

results obtained coincides with the former observations.

The outline of the paper is as follows: In Section Methods we

introduce the evolutionary framework and the calculation of

selection pressure. The biological and information theoretic

measures are presented in Section Results, together with an

application of the model to a bacterial genome and evidence on

the robustness of our approach. Finally we discuss the results in the

last section.

Methods

Framework of Evolutionary Model
This section introduces the evolutionary framework and the

notations used. We denote a discrete random variable with X and

their corresponding probability mass function with pX (x), where x
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is the concrete realization of X. Throughout the paper the

nucleotide alphabet is denoted with N = {A, C, G, T} and the

codon alphabet is denoted with C= {A, C, G, T}3.

In the following we consider the well known Goldman and

Yang model [16] in a simplified version as it was introduced by

[18], where the following definitions can be found. (For more

details on the derivation of the model see [24].) The model

assumes a stationary codon distribution and independence of the

evolving codon sites. The evolution of protein-coding DNA

sequences is modelled by a time-continous Markov process

described by the substitution rate matrix Q = {qxy}, where qxy is

the rate from codon x to codon y with x?y

qxy(py, k,v)~

0 if x and y differ at more than one position

py if x and y differ by a synonymous transversion

kpy if x and y differ by a synonymous transition

vpy if x and y differ by a non{synonymous transversion

kvpy if x and y differ by a non{synonymous transition

8>>>>>>>><
>>>>>>>>:

,
ð1Þ

where k is the transition/transversion rate, v is the nonsynon-

ymous/synonymous rate ratio and py is the equilibrium frequency

of codon y. Note that py [ C61~fC \(TAG,TGA,TAA)g as

transitions to stop codons are not allowed inside functional

proteins. The row sums of the rate matrix Q = {qxy} have to be

zero, which determines the main diagonal of the matrix. Further

the rate matrix is multiplied by a scaling factor to normalize the

expected number of nucleotide substitutions per codon to one.

With every time-continuous Markov process, a discrete time

Markov chain can be associated. This leads to a discrete evolution

matrix P(t)~PY DX (t) with conditional probabilities that describes

a transition of an input X [ C61 to an output Y [ C61 for a fixed t.
The evolutionary transition probability matrix is determined by

P(t)~fpxyg~eQ t,

where pxy is the probability that input codon x becomes y after time

t. Note that

pP(t)~p and pQ~0

holds, where row vector p is the stationary codon distribution.

We call (X ,Y ,PY DX ) an evolutionary channel referring to the

communication theoretic term [25]. Note that the rate matrix Q is

also a channel matrix. Further the parameters of the rate matrix t,
v and k are arbitrary but fixed.

Given a rate matrix for the protein-coding reading frame, we

are interested in computing the resulting rate and evolutionary

channel matrices in the other reading frames. We define the

protein-coding reading frame as +1 and denote the shifted and

reverse complement reading frames as non-coding reading frames

f = {21, 62, 63}. If we refer to a special reading frame, we use

the index f. The setup we consider is as follows: In the protein-

coding reading frame we assume that codons x [ C61 with codon

usage p+1 from a bacterial organism are transmitted independently

over the evolutionary channel P(t, k, v, p) to the output y. This is

called a discrete memoryless channel. For convenience we write

Pz1
Y DX instead of Pz1

Y DX (t,k,v,p). Each codon in frame +1 consists of

three random variables cj~(X
( j)
1 ,X

( j)
2 ,X

( j)
3 ) with realizations

x
( j)
k [ N~fA,C,G,Tg and evolves to codon ~ccj~(Y

( j)
1 ,

Y
( j)
2 ,Y

( j)
3 ) with y

( j)
k [ N . In frame +1 we observe the scheme

presented in Figure 1. Given Pz1
Y DX and p+1 we want to determine

the evolution matrix per reading frame P
f
Y DX , f [ f{1,+2,+3g.

We solve this task directly via the rate matrix per reading frame Qf

given the rate matrix Q+1 and p+1 such that we are independent of

the evolution time. For the alternative reading frames we combine

two independent time-continuous Markov chains to the corre-

sponding di-codon matrix in frame +1 by

Qz1
di-codon~ Qz1

6IQzIQ6Qz1
� �

,

where fl is the Kronecker product and IQ is the identity matrix

with the same dimension as the rate matrix [26]. The rates of the

di-codon transitions are now combined to compute the rate

matrices in the other frames. Without loss a generality, we

consider frame +2 (black parts in Figure 1).

Qz2(y1
2y1

3y2
1 Dx

1
2x1

3x2
1)~Qz2(~yyD~xx)

~

P
x1

1
,x2

2
,x2

3
[ N
P

y1
1

,y2
2

,y2
3
[ N pz1

di-codon(x1
1~xxx2

2x2
3):Qz1

di-codon(y1
1~yyy2

2y2
3Dx

1
1~xxx2

2x2
3)

P
x1

1
,x2

2
,x2

3
[ N pz1

di-codon(x1
1~xxx2

2x2
3)

,

where pz1
di-codon(cjci)~pz1(cj):p

z1(ci) V ci,cj [ C61. The rate

matrices of the other frames can be determined accordingly. Note

that Qf is a 64664 matrix for f = {62, 63} and a 61661 matrix

for f = {61}. Given the rate matrix Q f of a time-continuous

Markov chain the corresponding stationary distribution p f in each

reading frame as well as the transition matrix P
f
Y DX for time t can

be easily determined.

Selection pressure during evolution
An important parameter describing the selection pressure on the

protein level is the ratio of nonsynonymous dN to synonymous dS

substitution rates, denoted with v~
dN

dS

, see e.g., [16]. Three basic

scenarios are distinguished e.g., [27]: Purifying selection when v,

1, adaptive selection for v.1 and neutral mutation if v = 1. To

determine the nonsynonymous/synonymous rate ratio v in each

reading frame, we apply the procedure presented in [18] and [24],

that is based on the transition probability matrix PY DX , but can be

easily adapted to the rate matrix Q.

Assume we determined, the rate matrix Qf in each frame

f [ f+1,+2,+3g as presented in Framework of Evolutionary
Model as well as the stationary distributions pf. The proportion of

synonymous substitutions is the sum over all codon pairs x and y
(x?y) that code for the same amino acid

rf
S~

X
x=y,aax~aay

pf qf
xy,

where aax is the amino acid encoded by codon x. The proportion

of nonsynonymous substitutions is calculated accordingly by

r
f
N~

X
x=y,aax=aay

pf qf
xy:

The transition/tranversion rate k is the same in all reading

frames. We assume that it is known from reading frame +1. To

(1)
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determine the proportion of synonymous sites, we calculate a new

rate matrix following Eq. (1) for a fixed v = 1.0,

r
1,f
S ~

X
x=y,aax~aay

pf qxy(pf ,k,1:0):

The proportion of nonsynonymous sites is calculated accord-

ingly and denoted with r
1, f
N . The number of synonymous

substitutions per synonymous site is

d
f
S~

tr
f
S

3r
1, f
S

:

The number of nonsynonymous substitutions per nonsynon-

ymous site d
f
N is calculated accordingly. This results in

vf ~
d

f
N

d
f

S

~
r

f
N
:r1, f

S

r
1, f
N
:r f

S

,

where the time as well as scaling factors of the rate matrices cancel

out.

Results

Throughout the paper, we use the model genome Escherichia
coli O157:H7 EDL933 (Accession number NC_002655, abbrevi-

ation EHEC), with a GC content of 50.4% and a length of

5528445 base pairs. In File S1 Model verification we present some

simulation results to validate the calculations of the equilibrium

frequencies per reading frame p f.

To investigate the influence of selection pressure during

evolution we chose two different input scenarios: The transition/

transversion rates are k = 1.0 or k = 5.0 at time t = 1.0 and the

nonsynonymous/synonymous rate ratio v takes values between

[0, 3]. The calculation of the nonsynonymous/synonymous rate

ratio v f for f [ f+1,+2,+3g reveals the following results.

Purifying selection refers to a selection against nonsynonymous

substitutions on the DNA level, which protects the sequence. In

Figure 2, we see that a protection of the coding frame +1 with v,

1, also protects the sequence in frame 22, the other alternative

frames face adaptive selection. The opposite is observed for v.1,

where new information can be induced in frames +1 and 22,

whereas the other frames are slightly below the neutral mutation

line. The behaviour of v f is consistent for both scenarios. Note,

there are numerous methods to determine the synonymous to

nonsynonymous rate ratio. The File S1 Selection pressure shows a

comparison of our approach with an alternative method.

Quantifying noise during evolution
In this part, we deal with the following question: An amino acid

is transmitted over the evolutionary channel, how long is this

information conserved in the different reading frames?

Evolution of a sequence can be considered as a communication

process over time. In his book [23] proposed to use the conditional

entropy to measure the amount of genetic information that can be

transmitted over a noisy channel (based on [25]). We define the

amino acid alphabet A~G(C61), where G is the genetic code,

which results in a cardinality of DAD~20. The codon evolution

matrix per frame P
f
Y DX can be summarized to determine the

amino acid evolution matrix P
f ,A
Y DX , based on the stationary

distribution p f. The stop codon probabilities are removed in all

frames. The conditional entropy between two random variables X
and Y over alphabets X ,Y is defined as, e.g., in [28]:

Figure 1. Transition Scheme. Scheme of transitions in sequence
direction on forward strand and in time direction.
doi:10.1371/journal.pone.0108768.g001

Figure 2. Selection Pressure. Estimation of nonsynonymous/synonymous rate ratio v f for different parameter settings. In the left panel k = 1.0,
t = 1.0 and on the right panel we set k = 5.0, t = 1.0. Protection of protein-coding frame +1 for v,1 is directly coupled with a protection of reading
frame 22.
doi:10.1371/journal.pone.0108768.g002
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H(Y DX )~{
X
x [ X

pX (x)
X
y [ Y

PY DX (yDx) log2 PY DX (yDx),

where PY DX (yDx) is the conditional probability.

The conditional entropy between two randomly chosen amino

acids X and Y in frame f conditioned on X = a with a [ A is

accordingly

H
f
t (Y DX~a)~{

X
y [ A

P
f ,A
Y DX (yDa) log2 P

f ,A
Y DX (yDa),

where P
f ,A
Y DX is the amino acid substitution matrix per reading frame. If

we know that a specific amino acid was transmitted, how much of this

knowledge is lost after time t? As the comparison of 20 values over

time is inconvenient, we apply uniform weighting according to the

amino acids pf ,A, which results in

H
f
t (Y DX )~

X
x [ A

pf ,A(x)H
f
t (Y DX~x): ð2Þ

Note that Eq. (2) is bounded by

H
f
t (Y DX )ƒH

f
t (Y )ƒ log2 (20)~4:32½bit�,

where the entropy (or uncertainty) H
f
t (Y )~{

P
y [ A pf ,A(y)

log2pf ,A(y) is maximal for a uniformly distributed random variable Y.

Yockey [23] additionally suggests the application of the mutual

information as a measure of similarity between sequences. The

mutual information between amino acid X and Y per frame f is

defined as, e.g., in [28]:

I
f
t (X ; Y )~Ht(Y ){Ht(Y DX ): ð3Þ

Note, that the channel capacity, which is the maximal mutual

information for all input distributions, can be determined

numerically using the Blahut-Arimoto algorithm. But as there is

no direct interpretation in our framework and the results match

those of the mutual information, we abandoned the presentation.

Results at the example of EHEC. We chose two different

input scenarios: Set v = 0.3 to model purifying selection and

v = 3.0 to model adaptive selection. The transition/transversion

rate is fixed to k = 1.0 and the time t is changed during simulation.

The same parameter setting was already used in [27]. We apply

the conditional entropy introduced in Eq. (2) to answer the

question how long the information which amino acid was

transmitted is conserved in the different reading frames. The

results are presented in Figure 3.

Evolution means loss of information over time or from a

complementary point of view, an increase of uncertainty. To

quantify this information loss, we determine the time needed to

loose half of the information. As the conditional entropy in

bounded by log2(20), we determine for each frame t1=
2

such that

H
f
t1=

2

(Y DX )~
log2 (20)

2
:

The results are summarized in Table 1.

Figure 3. Information Loss. Conditional entropy for uniform input distribution over amino acids for different values of v and k = 1.0. On the left
v = 0.3, the protein-coding frame as well as frame 22 are protected, which results in a slower information loss than for the other reading frames. On
the right v = 3.0, we see the opposite scenario. At the black dotted line, half of the information is lost.
doi:10.1371/journal.pone.0108768.g003

Table 1. Time for each frame where the conditional entropy is log2
(20)=

2
.

v +1 +2 +3 21 22 23

0.3 1.0 0.7 0.7 0.7 0.9 0.7

3.0 0.6 0.8 0.8 0.8 0.7 0.8

doi:10.1371/journal.pone.0108768.t001
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In accordance with the results of v f in Figure 2 we interpret

Figure 3 and Table 1 as follows. Protected frames with v,1, store

information longer than the unprotected frames with v.1. When

frame +1 is protected, then the 22 frame is protected automat-

ically, therefore those frames show a slower increasing uncertainty

than the alternative frames.

Now, the mutual information I
f
t (X ; Y ) per reading frame

f [ f+1,+2,+3g is investigated applying Eq. (3). The mutual

information measures the similarity between X and Y, which is

directly connected to the amount of information that can be

transmitted over the channel [23]. We observe for the first

scenario, where v = 0.3, presented in the left panel of Figure 4

that most information can be transmitted in reading frame +1

followed by reading frame 22. In general the proportion of

information, that can be transmitted over the evolutionary channel

decreases over time, but this information loss is faster in the

frames, where v f.1. In the right panel of Figure 4, where

v = 3.0, we see that the mutual information is smallest, for the

frames +1 and 22 which is also in accordance with Figure 2. This

observation is confirmed in the File S1 Conditional entropy and
mutual information for different values of v.

Robustness of method. The question arises, how robust our

method is, if we choose another codon substitution matrix. As we

are able to determine the mutual information and the conditional

entropy per reading frame, given only the evolution matrix in the

coding reading frame Pz1
Y DX and the stationary distribution of

EHEC p+1 it is also possible to substitute the channel matrix Pz1
Y DX .

In 2005 [29] published an empirical codon substitution matrix

(PECM) obtained from an alignment of vertebrate DNA, which can

also be applied to bacteria. Given a transition matrix we present in

File S1 Robustness of results a method to estimate the transition

matrices per reading frame based on the channel matrix Pz1
Y DX . For

our investigations, the different time points t presented in Figure 5

are obtained by Pt
ECM ,t [ Z. The results confirm our findings, that

most information can be transmitted in +1, followed by 22. That

makes sense, as the matrix is based on genes with purifying

selection, otherwise they would not have survived over time.

Figure 4. Sequence Similarity. Mutual information for uniform input distribution over amino acids for different values of v and k = 1.0. On the left
v = 0.3, the amount of information transmitted over the channel is largest for the protected frames +1 and 22. On the right v = 3.0, where those
frames are not protected, the opposite holds.
doi:10.1371/journal.pone.0108768.g004

Figure 5. Empirical Substitution Matrix. Estimation of conditional entropy (left panel) and mutual information (right panel) for empirical codon
substitution matrix PECM. A slower information loss for reading frames 22 is observed due to a protection of the protein-coding reading frame +1.
doi:10.1371/journal.pone.0108768.g005
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Summary

In this paper we introduced a model to determine the codon

evolution in different reading frames based on the protein-coding

reading frame +1. The model is used to predict the selection

pressure within different reading frames and reveals that a

protection of the protein-coding reading frame also preserves the

reverse reading frame 22. For the case of adaptive selection both

frames are free to evolve. The remaining alternative frames show

the reverse relation, i.e. they give preference to nonsynonymous

substitutions while reading frame +1 is protected and are

preserved when +1 is exposed to adaptive selection. These findings

are further confirmed by the presented results on the conditional

entropy. Namely, if v,1, the genetic noise is minimal in frames +
1 and 22, also the sequence similarity measured by the mutual

information is largest. Conversely for v.1, where the genetic

noise of +1 and 22 is largest and the sequence similarity

accordingly smallest.

Discussion and Conclusion

At a first glance, understanding the evolution of overlapping

protein-coding regions is extremely challenging, because one DNA

segment codes for two proteins which are translated in different

reading frames simultaneously, such that a mutation affects both

proteins [30,31]. Biologist investigate evolutionary adaption of

proteins for years now, assuming that adaption requires more

nucleotide mutations at positions that change an amino acid than

at positions that preserve a site [32]. The parameter of choice that

measures the substitution rate at those sites is v~
dN

dS

and is

therefore used as an indicator of selective pressure within genes.

Meanwhile a large field emerged, investigating the evolutionary

constraints within overlapping and non overlapping reading

frames [30,33–36]. There exist empirical analyses describing, that

a loss of a stop codon within a protein-coding gene by deletion,

mutation or frame-shift, causes an elongation to the next stop

codon, whereby an overlapping pair originates [37,38]. Other

studies suggest, that the loss of a start codon is responsible for the

development of an overlap [39–41]. From this point of view, a

random formation can not be ruled out.

Our point of interest is slightly different, assuming we are given

a protein-coding reading frame that evolves over time, we are

interested in the evolutionary constraints implied within alterna-

tive reading frames. A biological interpretation of our findings is

that during adaption many mutations occur that change amino

acids in reading frames +1 and 22 simultaneously. Once a protein

in reading frame +1 is fixed and adaptive selection is replaced by

purifying selection, this process stops and the amount of

synonymous substitutions increases, again in both reading frames.

Note that we make no statement that both reading frames are

already translated into proteins, since function of a sequence could

also evolve later. As a matter of fact, over time the divergence of a

sequence always increases even if it is protected, but we showed

that this change happens slower in case of purifying selection for

both, the +1 and 22 reading frame. No matter, how or if an

overlapping gene pair evolved, our observations indicate the

special role of the 22 reading frame. Interestingly, two recently

experimentally verified examples of overlapping gene pairs in

bacteria yaaW/htga by [10] and dmdR1/adm by [9] are in frame

22. We showed that it is possible to protect this frame by simply

controlling the selection pressure within the protein-coding

reading frame. This can be attributed to a property of the genetic

code, as the most important codon positions are the first and

second which fall onto the second respectively first position in the

22 frame. But this could also mean that a conserved sequence in

22 might be solely an artefact, providing not necessarily evidence

for functionality.

Finally note that it is challenging to embed information in the

overlapping reading frame 22, when the protein-coding reading

frame +1 has a fixed amino acid sequence. Assume two amino

acids A1,A2 [ A�, where A* is A plus a stop label, should be

encoded in the coding reading frame. Obviously each amino acid

corresponds to an individual number of codons, hence it is possible

to encode a certain number of different amino acids in the

alternative reading frames without changing A1 and A2. The

average taken over all possible pairs A1, A2 are shown in Table 2;

it turns out that the degree of freedom is smallest in 22. It is worth

noting that in general it is possible to embed information even in

protein-coding sequences, see for example [42].

Supporting Information

File S1 Additional Data and Figures. Contains further

information to verify the model predictions by comparison with

simulation, another method to determine the selection pressure,

different investigations on the conditional entropy and mutual

information as well as a method to show the robustness of results.

(PDF)
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