
Estimation of allele-specific fitness effects across
human protein-coding sequences and implications
for disease

Yi-Fei Huang1 and Adam Siepel
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA

A central challenge in human genomics is to understand the cellular, evolutionary, and clinical significance of genetic var-

iants. Here, we introduce a unified population-genetic and machine-learning model, called Linear Allele-Specific Selection
InferencE (LASSIE), for estimating the fitness effects of all observed and potential single-nucleotide variants, based on poly-

morphism data and predictive genomic features. We applied LASSIE to 51 high-coverage genome sequences annotated with

33 genomic features and constructed a map of allele-specific selection coefficients across all protein-coding sequences in the

human genome. This map is generally consistent with previous inferences of the bulk distribution of fitness effects but re-

veals pervasive weak negative selection against synonymous mutations. In addition, the estimated selection coefficients are

highly predictive of inherited pathogenic variants and cancer driver mutations, outperforming state-of-the-art variant pri-

oritization methods. By contrasting our estimated model with ultrahigh coverage ExAC exome-sequencing data, we identi-

fied 1118 genes under unusually strong negative selection, which tend to be exclusively expressed in the central nervous

system or associated with autism spectrum disorder, as well as 773 genes under unusually weak selection, which tend to

be associated with metabolism. This combination of classical population genetic theory with modern machine-learning

and large-scale genomic data is a powerful paradigm for the study of both human evolution and disease.

[Supplemental material is available for this article.]

Innovations in DNA sequencing and genotyping have enabled the
discovery of millions of genetic variants in human populations,
with new variants continuing to be discovered at a rapid pace
(The 1000 Genomes Project Consortium 2015; The UK10K
Consortium 2015; Lek et al. 2016; Mallick et al. 2016). The great
majority of these variants, however, are likely to have no impact
on cellular function or human phenotypes, including disease,
and many others are probably of only minor importance. The
task of identifying which genetic variants are functionally impor-
tant remains a major rate-limiting step in human genetics, with
implications for both basic research and clinical practice.

Numerous computational strategies have been developed for
the identification of functional variants, both to prioritize variants
for experimental follow-up and to address broader issues such as
the genetic architecture of disease or the fraction of human nucle-
otides that are functionally important (Cooper et al. 2005; Siepel
et al. 2005; Pollard et al. 2010; Finucane et al. 2015; Gulko et al.
2015; Eilbeck et al. 2017). These computational predictors general-
ly leverage genomic features correlated with function, such as se-
quence conservation (Ng and Henikoff 2003; Siepel et al. 2005;
Cooper et al. 2010; Pollard et al. 2010; Lindblad-Toh et al. 2011),
protein structure (Dehouck et al. 2009; Kellogg et al. 2011;
Worth et al. 2011), chromatin accessibility (Lee et al. 2015;
Kelley et al. 2016), and protein–DNA interactions (Alipanahi
et al. 2015; Zhou and Troyanskaya 2015). Recently, it has been
shown that predictive power can be boosted by consideringmulti-
ple features together, typically using supervised machine-learning

models such as logistic regression, random forests, or support vec-
tor machines (Adzhubei et al. 2010; Shihab et al. 2013; Ritchie
et al. 2014; Schwarz et al. 2014; Jagadeesh et al. 2016). These mod-
els detect complex patterns associated with known pathogenic
variants and use them to predict the effects of unannotated vari-
ants, often with good accuracy.

Nevertheless, the existing supervised machine-learning pre-
dictors suffer from some important limitations. For example, their
predictions are typically hard to interpret, because they reflect
some measure of similarity to a training set of known pathogenic
variants based on a complex statistical model rather than a model
formulated in terms of biological principles. In addition, the
“known” disease variants used for training are generally unrepre-
sentative of all pathogenic variants—e.g., by being enriched for
coding regions, splice sites, and well-studied genes (Ritchie et al.
2014; Grimm et al. 2015)—which results in training biases and
poor generalization. A related problem is that the reported predic-
tion power for thesemethods is typically overoptimistic, because it
is based on held-out training data that have the same biases
(Grimm et al. 2015). In general, these methods effectively serve
as predictors of variants like those in the training set, rather than of
all functional variants of interest.

An alternative strategy is to identify genetic variants that are
subject to purifying (negative) selection. This approach depends
on the assumption that functional and disease-associated variants
are likely to reduce evolutionary fitness, which clearly does not
hold in all cases. Nevertheless, this approach has the important ad-
vantages of mitigating the bias from training data and allowing for
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more interpretable, evolution-based models. This evolution-based
strategy has now been used explicitly or implicitly by many state-
of-the-art variant prioritization methods, including LINSIGHT,
fitCons, CADD, and FunSeq2 (Sadri et al. 2011; Fu et al. 2014;
Kircher et al. 2014; Gulko et al. 2015; Huang et al. 2017; di Iulio
et al. 2018; Gulko and Siepel 2019). Among these methods,
LINSIGHT and fitCons are based on explicit evolutionary models
and can be used to obtainmaximum-likelihood estimates of inter-
pretable quantities, such as the per-nucleotide probability that
new mutations will have fitness consequences. These methods
performwell in the prioritization of disease and regulatory variants
and also provide evolutionary insights (Gulko et al. 2015; Huang
et al. 2017), but they have some important limitations. For exam-
ple, LINSIGHT and fitCons assume that all alternative alleles at
each nucleotide have equal effects on fitness (Gronau et al. 2013;
Gulko et al. 2015; Huang et al. 2017; Gulko and Siepel 2019) and
do not provide estimates of true selection coefficients, which argu-
ably provide the most precisely interpretable description of fitness
effects.

A separate thread in the population genetics literature has
addressed the problem of estimating the bulk distribution of fit-
ness effects (DFE) from a designated collection of genomic regions,
such as all coding sequences. Methods for addressing this problem
typically calculate the probability of a summary of polymorphism
data, such as the site frequency spectrum (SFS), given an explicit
parameterization of selection coefficients using diffusion approxi-
mations of the Wright-Fisher model (Williamson et al. 2005;
Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007; Boyko
et al. 2008; Kousathanas and Keightley 2013; Racimo and
Schraiber 2014; Kim et al. 2017). These methods generally also
make use of an explicit model of demographic history, because
of the confounding effect of demography on the SFS (Nielsen,
2005; Keightley and Eyre-Walker 2007; Boyko et al. 2008). These
DFE inferencemethods allow for the inference of true selection co-
efficients, but they are unable to pinpoint the fitness effects of in-
dividual variants owing to the intrinsic sparsity of polymorphisms.

In this article, we present a unified model that combines ele-
ments of machine-learning methods for variant prediction and
diffusion-approximation methods for DFE inference to enable es-
timation of allele-specific selection coefficients at every nucleotide
in a genomic region of interest. We have implemented our model
in a computer program, called Linear Allele-Specific Selection
InferencE (LASSIE), and applied it to all protein-coding sequenc-
es in the human genome, using publicly available human poly-
morphism data and more than two dozen predictive genomic
features. Importantly, LASSIE provides estimated selection coeffi-
cients not only for segregating polymorphisms but for all potential
mutations at the sites of interest. We show that these estimated
values are informative in various ways about human evolution
and disease.

Results

LASSIE uses a unified machine-learning and population genetic

model to estimate allele-specific selection coefficients

The key idea behind the LASSIE model is that, while polymor-
phisms are too sparse to allowdirect estimationof allele-specific se-
lection coefficients, there is a strong correlative relationship
between genomic features and fitness effects that can be exploited
to enable such estimation. The general idea is similar to that be-
hind fitCons (Gulko et al. 2015; Gulko and Siepel 2019) and

LINSIGHT (Huang et al. 2017), but in this case a richer machine-
learning model accommodates allele-specific effects and a diffu-
sion-based likelihood function allows for the estimation of true se-
lection coefficients.

The LASSIE model consists of two components (Fig. 1). First,
for the population genetic component of the model, we use a
generative probabilistic model for the site frequency spectrum,
adopting the Poisson Random Field (PRF) framework for direct
likelihood calculations (Sawyer and Hartl 1992; Williamson et al.
2005; Evans et al. 2007). Second, we account for predictive geno-
mic features using a neural network. The output of this network
is not a class assignment, as in typical supervised-learning applica-
tions, but instead is a set of parameters that feed into the PRF
model for likelihood calculations. Thus, the overall model is a gen-
erative model for the data, fitted in an unsupervised manner by
maximization of the likelihood, but it conditions on a potentially
large, complex, and informative set of genomic features using a
neural network. This conditioning allows for pooling of data across
genomic sites and improved shrinkage estimators for allele-specific
selection coefficients.

Population genomic data is described using a PRF-based mixture

model

For reasons of efficiency, selection is accommodated using a three-
component mixture model rather than a continuous distribution
of selection coefficients. The mixture components capture the av-
erage effects of strong negative selection, weak negative selection,
and neutral drift, respectively. The use of a mixture model allows
the full PRF model to be fitted to the data in a preprocessing
step, so that only the site-specific probabilities of themixture com-
ponents (themixture coefficients) need to be estimated in the con-
text of the neural network (see below).

To account for the confounding influence of demography on
the SFS, we first fitted a simple demographic model to a collection
of putatively neutrally evolving nucleotide sites flanking protein-
coding exons. We focused on the 51 high-coverage Yoruba sam-
ples from the 1000 Genomes Project, because this population ap-
pears to be well described by a pure “expansion” model, without
population bottlenecks or introgression events (Williamson et al.
2005; Boyko et al. 2008; Racimo and Schraiber 2014). We assumed
a three-epoch model with a constant effective population size in
each epoch, and we estimated the timings andmagnitudes of pop-
ulation expansions by maximum likelihood (Methods). The esti-
mated model posits that the Yoruba population experienced a
moderate expansion about 6000 generations ago, followed by a
more dramatic expansion about 600 generations ago (Fig. 1B).
Despite its simplicity, this demographic model provides an excel-
lent fit to the observed SFS (Supplemental Fig. S1A).

We then fitted amixture model to genome-wide protein-cod-
ing sequence data, estimating the threemixture coefficients aswell
as the selection coefficients for the weak and strong negative selec-
tion components but keeping the neutral model fixed. This analy-
sis indicates that ∼10% of potential coding mutations in the
human exome are under weak negative selection with a represen-
tative selection coefficient of s=−1.30×10−4, and about 51% of
codingmutations are under strong negative selection with a repre-
sentative selection coefficient of s=−5.86×10−4 (Fig. 1B). We
found that this mixture model fit the exome-wide SFS well
(Supplemental Fig. S1B). A version of themodel with an additional
negative selection mixture component did not improve the fit to
the data, and a version with positive selection predicted only
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1.8% of mutations with s> 0, so we chose to stay with the simpler
three-component model.

Genomic features are incorporated using a mixture density

network model

Wemodeled the relationship between genomic features and allele-
specific probabilities of selection components using a mixture
density network model (Bishop 1994). This model transforms
the genomic features associated with each allele to site- and al-
lele-specific mixture coefficients (Fig. 1C). These mixture coeffi-
cients, in turn, are used to compute the probability of the
exome-wide data under the PRF mixture model. Thus, the edge
weights in the neural network function as the free parameters of

a generativemodel for population genomic data conditional on ge-
nomic features.

Hypothesizing that genomic features typically used in vari-
ant prioritization would also be informative in this context, we
collected 33 diverse features for every potential derived mutation
in the human exome, including protein conservation scores,
nucleotide conservation scores, protein structural features, RNA-
seq signals, and categories indicating changes in the encoded
protein (nonsynonymous, nonsense, stop-gained) (Fig. 1A; see
Supplemental Table S1 for a complete list of features). Following
a common practice in the molecular evolution literature, we de-
fined a nonsynonymous mutation as a point mutation causing
the change of one amino acid residue for another one in a
protein-coding gene. According to this definition, we use the

Figure 1. Overview of LASSIE. (A) For each potential protein-coding mutation, we collected 33 genomic features likely to be informative about natural
selection, including variant categories, protein and nucleotide conservation scores, and RNA-seq signals (Supplemental Table S1). (B) A three-epoch de-
mographic model was fitted to the site-frequency spectrum (SFS) for putatively neutral exon-flanking sequences for 51 high-coverage Yoruba genomes
sequences (Ni: effective population size in epoch i+1; ti: generations in epoch i+1). A mixture model for neutral evolution (s=0), weak negative (s=
−1.30×10−4), and strong negative (s=−5.86 ×10−4) selection was then fitted to the SFS for coding sequences (CDS) (seeMethods). (C ) A mixture density
networkmodel defines the probabilities of the three components of themixturemodel (Pneutral,Pweak,Pstrong) for each possiblemutation at each nucleotide
site, conditional on the local genomic features. These probabilities allow the likelihood of the polymorphism data to be computed under the Poisson
Random Field (PRF) model, using diffusion approximation methods. The parameters of the network are estimated by maximum likelihood, by treating
the (negative) log likelihood as a loss function for the neural network. After training, the weights for the threemixture components define a coarse-grained
distribution of fitness effects for all potential mutations at each site. This distribution is summarized by a single expected value of |s| for each mutation.
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terms “nonsynonymous” and “mis-
sense” interchangeably throughout this
work.We then fitted themixture density
model to the exome-wide data by maxi-
mum likelihood, keeping the selection
coefficients fixed at their previously esti-
mated values (see Methods). The features
most strongly predictive of selection in-
cluded stop-gain and missense muta-
tions, several measures of phylogenetic
conservation, and several features de-
scribing structural properties of amino
acid substitutions such as whether the
affected residue is buried or exposed,
or whether the substitution is predicted
to stabilize or destabilize folding
(Supplemental Fig. S2). For ease of inter-
pretation, we summarized the probabili-
ties of neutrality, weak negative, and
strong negative selection for each candi-
date mutation by the absolute value of
the expected selection coefficient, |s|.

Notice that our general framework
allows for a variety of network architec-
tures, ranging from many-layered net-
works to the simple case of no hidden
layers. The use of hidden layers provides
the potential to capture nonlinear rela-
tionships between genomic features and
selection coefficients but at the cost of
larger numbers of free parameters and
increased risk of overfitting. In our tests,
we found that a linear model actually fit
the data better than a nonlinear one
(Supplemental Table S2), so we have
adopted this simple “linear” architecture
for LASSIE.

The estimated selection coefficients are consistent with known

evolutionary patterns but suggest pervasive weak selection against

synonymous mutations

The selection coefficients estimated by LASSIE are highly variable
across potential mutations (see Fig. 2A,B). As expected, LASSIE as-
signs larger values of |s| to nonsynonymous and nonsense muta-
tions than to synonymous mutations. Because synonymous
mutations tend to occur at third codon positions, the spatial distri-
bution of allele-specific selection coefficients exhibits a general
three-nucleotide periodic pattern in coding regions. Inspection
of individual genes reveals that LASSIE frequently distinguishes
known pathogenic variants (shown in red, with relatively large es-
timates of |s|, in Fig. 2A,B) from benign variants (shown in blue,
with smaller estimates of |s|, although in some cases, the differenc-
es are not obvious on this scale).

Overall, the distribution of |s| recapitulates well-known pat-
terns of constraint on coding sequences. For example, LASSIE pre-
dicts that most nonsense mutations are under strong negative
selection (Fig. 2C). In contrast, nonsynonymous mutations show
a bimodal distribution of selection coefficients, with modes corre-
sponding to strong and weak negative selection (Fig. 2C). While
coarse-grained and truncated at our estimate for strong negative se-
lection (see Discussion), this distribution is reasonably consistent

with the bulk distribution inferred in a non-site- and allele-specific
manner in previous studies; for example, we estimate that an ex-
pected 45% of nonsynonymous mutations are under neutral or
weak negative selection (|s|≤1.3 ×10−4 in our formulation) in com-
parison to estimates of ∼30% with |s|≤1.0 ×10−4 in Boyko et al.
(2008). In agreement with previous analyses based on codon sub-
stitution models (Zhang and Yang 2015), we also find that nonsy-
nonymous mutations in highly expressed genes are under
significantly stronger negative selection than nonsynonymous
mutations in genes expressed at lower levels (Fig. 2D).

The distribution of |s| for synonymous mutations suggests
that only an expected 70.5%of suchmutations are effectively neu-
tral, whereas 25.9% are under weak negative selection and 3.6%
are under strong negative selection (Fig. 2C). Weak negative selec-
tion on synonymous mutations is significantly elevated in highly
expressed genes, multi-exon genes, and SRSF1 and SRSF7 binding
sites (Supplemental Fig. S3), suggesting that roles in mRNA splic-
ing contribute to it, perhaps among other features. While some
overestimation in |s| may occur due to selection from linked sites,
several lines of evidence suggest that this effect is modest (see
Discussion). This finding of a substantial influence fromweak neg-
ative selection on synonymous substitutions is consistent with
studies showing reduced substitution rates or reduced nucleotide
diversity at synonymous sites relative to pseudogenes or introns
(Bustamante et al. 2002; Chamary et al. 2006; Comeron 2006;
Kondrashov et al. 2006; Eory et al. 2010; Rasmussen et al. 2014)

Figure 2. Distributions of selection coefficients estimated by LASSIE. (A) Variant-specific selection co-
efficients |s| estimated for all potential mutations in a 60-bp region in the CP gene. Nonreference alleles
are distinguished by color and drawn with height proportional to |s|. The y-axis indicates cumulative |s|.
The three nonsynonymous variants indicated at the top in red (c.2953A >G, c.2962G>A, and c.2991T >
G) are associatedwithMendelian diseases, and the synonymous variant indicated in blue (c.2991T >C) is
benign. (B) Estimates of |s| for all potential mutations in a 72-bp region in the BRCA1 gene. The two non-
synonymous variants indicated at the top in red (c.5053A >G and c.5054C>T) are pathogenic, and the
two nonsynonymous variants indicated in blue (c.4991T >C and c.5044G>A) are benign. (C)
Distributions of estimated selection coefficients |s| for nonsense, nonsynonymous, and synonymous mu-
tations. (D) Distributions of |s| for nonsynonymous mutations in genes expressed at low, medium, and
high levels, based on tertiles of RNA-seq read counts from Roadmap Epigenomics data (Roadmap
Epigenomics Consortium et al. 2015), showing a positive correlation between expression level and |s|
(Spearman’s rank correlation coefficient ρ=0.338; P<10−15, two-tailed t-test).
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and suggests that thewidespread practice
of using such mutations as a proxy
for neutral evolution (Chamary et al.
2006; Yang 2006) might result in biases
in some downstream analyses (see
Discussion).

The estimated selection coefficients are

predictive of mutations associated with

Mendelian diseases and cancer

While LASSIE was designed as an evolu-
tionary measure, it may also be useful in
the prediction of mutations associated
with disease, assuming such mutations
tend to be under selection (Ng and
Henikoff 2003; Cooper et al. 2010; Fu
et al. 2014; Kircher et al. 2014; Huang
et al. 2017). To evaluate the method in
this setting, we measured its power in
the prediction of known Mendelian dis-
ease variants, comparing it with the pop-
ular variant prioritization methods
PolyPhen-2 (Adzhubei et al. 2010), SIFT
(Ng and Henikoff 2003), Eigen (Ionita-
Laza et al. 2016), CADD (Kircher et al.
2014), and phyloP (Pollard et al. 2010).
In this experiment, we used pathogenic
and benign variants from theClinVar da-
tabase (Landrum et al. 2014) as positive
and negative examples, respectively.
Despite no use of disease data for training
(see Discussion), LASSIE performed
well on this benchmark (Fig. 3A; see
also Supplemental Fig. S4), displaying
slightly greater values of the area under
the receiver operating characteristic
curve (AUC) statistic (AUC=0.879) than
even the best previously publishedmeth-
ods, such as Eigen (AUC=0.867) and
PolyPhen-2 (AUC=0.845).

As a second, largely orthogonal, test
of predictive power for clinically relevant
variants, we evaluated LASSIE’s perfor-
mance in the prioritization of nonsynon-
ymous cancer-driver mutations. Cancer-
driver mutations in germline cells may
significantly increase the risk of early-on-
set malignant tumors and, therefore, are
likely to be under strong purifying selec-
tion in human populations. To test this
hypothesis, we obtained a set of nonsy-
nonymous mutations overlapping with
mutational hotspots recurrently ob-
served across patients in 243 cancer
genes (Chang et al. 2016), which should
be enriched for cancer drivers. We randomly sampled a matched
number of singleton nonsynonymous somatic mutations in the
same genes to represent putative passenger mutations. LASSIE
showed reasonable accuracy in this task (AUC=0.743), again per-
forming better than all other methods tested, although the overall
power was modest for all predictors (Fig. 3B). Nevertheless, the se-

lection coefficients estimated by LASSIE are significantly predic-
tive of cancer-driver mutations and could potentially be
combined with other features to improve predictive power.

To examine disease relevance at higher resolution, we com-
pared our estimates of |s| with a recent saturation genome editing
(SGE) study of 13 exons of the BRCA1 gene (Findlay et al. 2018).

Figure 3. Performance in predicting disease-associated nonsynonymous variants. Performance is
quantified using the area under the receiver operating characteristic curve (AUC) statistic. Results for
LASSIE are compared with those for Eigen (Ionita-Laza et al. 2016), PolyPhen-2 (Adzhubei et al. 2010),
CADD (Kircher et al. 2014), SIFT (Ng and Henikoff 2003), and phyloP (Pollard et al. 2010). (A)
Performance for pathogenic variants from ClinVar (Landrum et al. 2014). (B) Performance for cancer-
driver mutations fromChang et al. (2016). (C) Distributions of estimated |s| for variants in BRCA1 predict-
ed to be “functional” (FUNC; i.e., nondisruptive), “intermediate” (INT), or “nonfunctional” (NONFUNC;
i.e., disruptive) by saturation genome editing (Findlay et al. 2018). Colored dots indicate those variants
also having expert-reviewed status in ClinVar (CLINREVSTAT= reviewed by expert panel). (D)
Performance for rare (MAF <1%) GWAS hits. (E) Performance for common (MAF>5%) GWAS hits, show-
ing that all methods have limited power.
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This study assigned nearly every possible single nucleotide variant
(SNV) in these exons a “function score” indicating its effect on cell
growth in an optimized HAP1 cell line, and then classified each
SNV as “nonfunctional” (i.e., disruptive to growth), “functional”
(nondisruptive), or “intermediate.” We found that “nonfunction-
al” variants had mostly high estimates of |s|, “functional” variants
were enriched for medium and low estimates of |s|, and “interme-
diate” variants had intermediate estimates of |s| (Fig. 3C).
Moreover, the 20 “pathogenic” variants from ClinVar that have
been reviewed by experts almost all were both classified by SGE
as “nonfunctional” and had close to the maximum possible esti-
mate of |s|, whereas the 12 expert-reviewed “benign” variants
from ClinVar were almost all “functional” and tended to have
low to moderate estimates of |s| (Fig. 3C). Indeed, a threshold of
|s| = 0.0005 (dotted line) would almost perfectly distinguish be-
tween the pathogenic and benign variants in ClinVar, with only
three misclassifications (see Supplemental Fig. S5 for ROC curves).
Nevertheless, many “functional” variants appear to be under fairly
strong selection and some “nonfunctional” variants under fairly
weak selection, indicating that there are fundamental limits to
the use of natural selection as an indicator for disease (see
Discussion).

LASSIE and other methods have reasonable accuracy for rare but

not common GWAS variants

Because rare genetic variants are most likely to be under negative
selection, we hypothesized that evolution-based methods would
be more predictive of rare than common variants associated with
complex traits. To evaluate this hypothesis, we tested several
methods separately on rare (MAF<1%) and common (MAF>5%)
nonsynonymous variants from the genome-wide association
study (GWAS) catalog (MacArthur et al. 2017), using matched var-
iants from the 1000 Genomes Project as negative controls
(Methods). In agreement with our hypothesis, most predictors
were significantly more powerful in the prediction of rare GWAS
variants than of common variants (Fig. 3D,E). Furthermore,
LASSIE was among themost accuratemethods in the prioritization
of both rare and common GWAS variants.

Brain-specific and autism spectrum disorder-related genes are

under unusually strong selection

LASSIE’s assumption of a single shared relationship, across all
genes, between predictive genomic features and |s|, may fail for cer-
tain subsets of genes.We searched for groups of genes that system-
atically deviate from the average relationship, using rare variants
from60,706 exomes in the ExACdata set to obtain high-resolution
information about strong negative selection (Lek et al. 2016;
Samocha et al. 2017). To characterize the “null” distribution for
the observed number of nonsynonymous variants per gene, we
used a previously estimated context-dependent mutation rate
map (Francioli et al. 2015) to describe site-specific mutation rates.
This model predicted numbers of rare synonymous variants that
were generally well correlated with the observed data (Supplemen-
tal Fig. S6). We then combined these site-specific mutation rates
with the probabilities of strong negative selection under LASSIE
to obtain an expected rate of rare nonsynonymous variants per
each gene. Finally, we computed P-values for the observed num-
bers of rare (MAF<0.001) nonsynomous variants per gene with re-
spect to these expected rates under a Poisson-Binomial model (see
Methods).We refer to the genes having significantly fewer variants
than expected as being under enhanced selection and the genes with

significantly more variants than expected as being under relaxed
selection.

Among 11,602 autosomal genes examined, we identified
1118 genes and 773 genes as being under significantly enhanced
or relaxed selection, respectively (FDR rate < 0.001) (Fig. 4A; Sup-
plemental Data Set S1). We found that the genes under enhanced
(strong negative) selection were more likely to be exclusively ex-
pressed in the central nervous system (CNS) or associated with au-
tism spectrum disorder (Fig. 4B; Abrahams et al. 2013; Uhlen et al.
2015). These genes were also enriched in Gene Ontology terms
and pathways associated with the CNS (Supplemental Tables S3,
S4; Mi et al. 2017). The genes under relaxed selection, in contrast,
tended to be exclusively expressed in liver or skeletal muscle (Fig.
4B) and to be involved in fundamental metabolic pathways (Sup-
plemental Tables S5, S6). These trends held after accounting for
differences in gene length across gene categories (Supplemental
Fig. S7; Supplemental Tables S7–S10).

Discussion

In this article, we have introduced LASSIE, the first computational
method for estimating allele-specific selection coefficients at indi-
vidual nucleotides across the human genome. LASSIE unifies ideas
from the literature on variant prioritization and the literature on
the bulk distribution of fitness effects. Like most methods for
DFE inference, LASSIE is based on a generative model for allele fre-
quencies, which can be fitted to the data by maximum likelihood
without the need for labeled training data. At the same time, the
LASSIE model is explicitly conditioned on a rich set of genomic
features similar to those considered by variant prioritizationmeth-
ods. Using a flexible neural-network design, LASSIE pools poly-
morphism data across sites having similar genomic features to
obtain improved estimates of selection coefficients. We have
used LASSIE to generate a map of |s| for all possible single nucleo-
tide variants in human protein-coding genes (available as a UCSC
Genome Browser track: http://compgen.cshl.edu/LASSIE/), based
on 51 high-coverage Yoruba genomes and 33 predictive genomic
features.

For reasons of efficiency, we chose to approximate the full
DFE using a mixture model, with components corresponding to
neutral drift, weak negative, and strong negative selection. This
strategy allows the model to be rapidly fitted to genome-wide
data but results in a rather coarse-grained estimate of the DFE. In
our formulation, this approach ignores positive selection, which
we have previously shown is difficult to detect in this setting
(Gulko et al. 2015). This strategy is also limited in its ability to
make distinctions among large values of |s|, because estimates are
effectively truncated at the value for the “strong”mixture compo-
nent, |s| = 5.9 × 10−4. As a result, LASSIE appears to substantially
underestimate |s| for nonsensemutations, for which the true value
may be as much as two orders of magnitude larger (Cassa et al.
2017). A related problem is that our analysis is based on only 51 ge-
nome sequences, whereas more precise estimates will depend on
much larger data sets (Cassa et al. 2017 considered >60,000
exomes). In principle, our framework could be extended to infer
full continuous distributions of s from larger data sets, but such
an extension would require a number of technical improvements,
including relaxation of the infinite-sites assumption underlying
our model for the site frequency spectrum, accurately accounting
for the effects of very recent explosive population growth (Keinan
and Clark 2012; Lek et al. 2016), and further improvements to
computational efficiency.
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We estimate that about 30% of synonymous mutations are
under negative selection. Selection on synonymous mutations ap-
pears to be almost exclusively weak, rather than strong, suggesting
a limited impact on disease. Nevertheless, weak selection will tend
to prohibit the fixation of synonymous alleles and will reduce syn-
onymous substitution rates. Indeed, at a selection coefficient of s=
−1.3 ×10−4 (our estimate for the corresponding mixture compo-
nent), nearly all selected synonymousmutationswould eventually
be lost, rather than fixed, causing the observed synonymous sub-
stitution rate to be reduced by almost 30% relative to the neutral
rate. This projection is consistent with a number of previous anal-
yses of humanand othermammalian data (Bustamante et al. 2002;
Chamary et al. 2006; Comeron 2006; Kondrashov et al. 2006; Eory
et al. 2010; Rasmussen et al. 2014), which have observed reduc-
tions of ∼20%–40% in substitution rates or nucleotide diversity
at synonymous sites. While it is possible that some overestimation
in |s| occurs due to selection from linked sites (background selec-
tion or hitchhiking), this effect appears to bemodest based on sev-
eral lines of evidence. In particular, the putatively neutrally
evolving sequences that serve as controls are predominantly quite
close (<5 kb) to exon boundaries (Supplemental Fig. S8), suggest-
ing that they are fairly well matched in terms of selection from
linked sites. Accordingly, the SFS for the subset of fourfold degen-
erate (4D) synonymous sites closest (<2 kb) to “neutral” sites does
not differ from that for all 4D sites (Supplemental Fig. S9), indicat-
ing that the use of a more stringent definition of the neutral back-
ground would have little effect on the analysis. In addition, we
observe only a weak dependency between recombination rate
(Hinch et al. 2011) and estimated |s| at synonymous sites
(Spearman’s ρ=−0.056), in contrast with the expectation under
a strong bias from selection at linked sites. Finally, the SFS at segre-
gating 4D sites reveals a pronounced skew toward low-frequency
minor alleles, consistent with a direct influence from negative se-
lection (Supplemental Fig. S10). Overall, it appears that negative
selection on synonymous mutations is considerably more com-
mon than once believed, even in humans, with important impli-
cations for the widespread practice of using synonymous sites
to estimate the neutral substitution rate. Therefore, we suggest
further investigation to see if and how the prevalence of weak

negative selection on synonymousmuta-
tions could affect downstream evolution-
ary analyses.

The value of evolutionary methods
for disease prediction ultimately depends
on the degree to which natural selection
correlates with disease risk. While many
disease-associated variants show signa-
tures of selection, it stands to reason
that some will not, for example, because
they are associated with late-onset dis-
eases or diseases whose prevalence is
strongly associated with features of mod-
ern life. Conversely, many potential vari-
ants that show signatures of selectionwill
not relate to disease; for example, because
they are strongly deleterious at embryon-
ic or even prefertilization (e.g., in sperm
competition) stages and never appear in
patients; because they are deleterious
only in the presence of a no-longer-exist-
ing genetic background; or because they
reduce fitness without disrupting normal

health (as through sexual selection). Nevertheless, the relationship
between natural selection and Mendelian disease is sufficiently
strong that evolutionary methods are fairly effective at identifying
pathological variants in databases such as ClinVar, with LASSIE
performing as well or better, in our experiments, than any other
available computational method—including well-established
methods such as PolyPhen-2 and SIFT. LASSIE also significantly
outperformed other methods in the prioritization of nonsynony-
mous cancer-driver mutations, despite not being designed for the
unique features of somatic evolution.

We found that recently published measures of the functional
impact of point mutations in BRCA1 based on saturation genome
editing (Findlay et al. 2018) correlated fairly well with LASSIE’s
measure of natural selection, both across all mutations and for
the subset in ClinVar (Fig. 3C). Nevertheless, an expected 44% of
variants considered “functional” (i.e., nondisrupting) by SGE
were estimated by LASSIE to be under strong negative selection,
and 9% of “nonfunctional”mutations were estimated to be under
only weak selection. These discordances could, in part, reflect the
influence of natural selection in other cell types or conditions or
limitations of the assay as a measure of disease importance. In
any case, they suggest—based on this one gene, cell type, and func-
tional assay—that, while there is a strong positive correlation be-
tween signatures of natural selection and disease impact, there
are nevertheless many exceptions to this general correspondence.

While evolutionary methods clearly have value in predicting
Mendelian disease variants, it is less clear that they will be useful
for identifying causal variants for complex diseases or other com-
plex traits, many of which segregate at high frequencies, making
them unlikely to be under detectable negative selection. Indeed,
we found that none of the variant prioritizationmethodswe tested
performed well in common variant prediction (Fig. 3E). However,
LASSIE and other evolution-based methods performed much bet-
ter for rare variants associated with complex traits (Fig. 3D), pre-
sumably because rare variants tend to have larger effect sizes and
experience stronger negative selection. Indeed, recent studies
have shown that the effect sizes of GWAS variants are negatively
correlated with allele frequencies and allele ages (Gazal et al.
2017; Zeng et al. 2018). Together, these observations suggest

Figure 4. Genes under “enhanced” or “relaxed” selection relative to the exome-wide LASSIE model.
(A) Number of potential missense mutations per gene (x-axis) versus fold-change of the observed num-
ber of rare missense mutations relative to the number expected under a Poisson-Binomial null model
based on LASSIE (y-axis) (seeMethods). Each dot represents a single protein-coding gene. Dots for genes
showing significantly more rare variants than expected (“relaxed”; n =773) are colored red, whereas
those for genes showing significantly fewer rare variants than expected are colored blue (“enhanced”;
n=1118). (B) Groups of genes enriched for enhanced or relaxed selection. Dots represent odds ratios
of enrichment, with bars indicating 95% confidence intervals. Genes under enhanced selection tend
to be exclusively expressed in the central nervous system or associated with autism spectrum disorder.
In contrast, genes under relaxed selection tend to be exclusively expressed in liver and skeletal muscle.
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that evolution-based methods may have an underappreciated po-
tential for the identification of rare variants associated with com-
plex traits.

We were able to obtain reasonable estimates of allele-specific
selection coefficients by pooling data across many genes, thereby
“shrinking” estimates toward their average values given the geno-
mic features. As in all such shrinkage strategies, however, the de-
creased variance in the estimates comes at the cost of increased
bias, which will be most evident for genes that are atypical in
some way. We attempted to turn this limitation into a strength
by using it to reveal classes of genes that showed unusually small
or large numbers of variants relative to the LASSIE predictions, cor-
responding to “enhanced” or “relaxed” strong negative selection.
We found that genes under “enhanced” selection are enriched
for brain-specific expression and an association with autism spec-
trumdisorder (ASD). This observation is consistent with a reported
enrichment for likely gene-disrupting de novo mutations in ASD-
affected probands relative to unaffected siblings, suggesting the
existence of ∼400 ASD-associated genes under particularly strong
selection (Iossifov et al. 2012, 2014; O’Roak et al. 2012; Sanders
et al. 2012). Separately, conventional variant-effect predictors
have been reported to performpoorly for neurodevelopmental dis-
eases, while gene-level estimates of natural selection—such as pLI
and RVIS—perform considerably better (Petrovski et al. 2013;
Samocha et al. 2014, 2017), perhaps because the relevant genes
are not extraordinarily conserved across species but are under
very strong selection in humans.Our findings help to put these ob-
servations in an evolutionary context and suggest that extensions
of ourmethods thatunifyvariant- andgene-levelmeasures of selec-
tion could be particularly useful for neurodevelopmental diseases.

Methods

Genomic features

For predictive genomic features, we used predefined variant cate-
gories indicating the impact of eachmutation on the encoded pro-
tein, sequence conservation scores, protein structural features,
splicing scores, and RNA-seq signals (Supplemental Table S1).
The variant categories were defined by three indicator variables
for whether or not a variant was nonsynonymous, nonsense
(stop-gained), or stop-lost in dbNSFP (Liu et al. 2013). The conser-
vation scores included scores derived from both protein and mul-
tispecies genomic alignments. The protein sequence conservation
scores included SIFT (Ng and Henikoff 2003), LRT (Chun and
Fay 2009), Mutation Assessor (Reva et al. 2011), PROVEAN (Choi
et al. 2012), SLR (Massingham and Goldman 2005), Grantham
(Grantham 1974), PSIC scores from PolyPhen-2 (Adzhubei et al.
2010), and HMMEntropy scores from SNVBox (Wong et al.
2011). The nucleotide sequence conservation scores included
phyloP scores (Pollard et al. 2010) derived from vertebrate, mam-
malian, and primate whole-genome alignments from the UCSC
Genome Browser (Casper et al. 2018). The protein structural fea-
tures were obtained from SNVBox and included predicted second-
ary structures and contributions to protein stability, B-factors, and
relative solvent accessibilities (Wong et al. 2011).We also obtained
splicing scores and RNA-seq signals from the noncommercial ver-
sion of SPIDEX and the Roadmap Epigenomics Project, respective-
ly (Roadmap Epigenomics Consortium et al. 2015; Xiong et al.
2015). All features were based on the hg19 (GRCH37) assembly
of the human genome. It is worth noting that 99.92% of the cod-
ing exons analyzed in this work can be perfectly and uniquely
mapped to the hg38 (GRCh38) assembly with liftOver (Hinrichs

et al. 2006). Therefore, we expected that utilizing the hg38 instead
of the hg19 assembly would not significantly change the results
and conclusions.

Prior to their addition to the mixture density network (be-
low), continuous features were standardized by subtracting the
mean and dividing by the standard deviation. Binary features
were not standardized.

Polymorphism data

Weobtained 51high-coverage Yoruba genome sequences from the
1000 Genomes Project (The 1000 Genomes Project Consortium
2015). To reduce technical errors due to alignment and genotype
calling, we applied several filters similar to those used in Gronau
et al. (2013) and Arbiza et al. (2013). These filters eliminated mul-
ti-allelic nucleotide sites, simple repeats, transposons, and recent
segmental duplicates. Following the same references, we masked
all CpG dinucleotides present in either the reference genome or al-
ternative alleles. We also obtained the distributions of ancestral al-
leles in the human-chimp most recent common ancestor from
these same previous studies. In this case, we integrated over these
distributions when inferring the global demographic model and
mixture model for selection but then conditioned on the most
likely ancestral allele in themixture density network for simplicity
and efficiency.

Demographic model and exome-wide distribution of selection

coefficients

To obtain sites largely free from selection, we began with the puta-
tively neutral regions defined for INSIGHT (Arbiza et al. 2013;
Gronau et al. 2013). Briefly these regions are defined by excluding
all coding exons, conserved noncoding elements, and their close
flanking regions.We intersected these regions with the 2-kb flank-
ing regions of all coding exons in the Consensus CDS database
(Pruitt et al. 2009) to obtain a subset of putatively neutral sites
proximal to coding exons and therefore approximately matched
to them in terms of influence from selection from linked sites.
We fitted a three-epoch demographic model to the site-frequency
spectrum in these exon-proximal “neutral” regions, using Poisson
Random Field theory for inference (see Supplemental Methods for
details).

We then estimated the bulk distribution of selection coeffi-
cients in coding regions under a three-component mixture model,
with components for neutral evolution (s0 = 0), weak negative se-
lection (s1 < 0), and strong negative selection (s2 < s1). This model
is defined by the selection coefficients {s0, s1, s2} and three corre-
sponding mixture coefficients, {w0, w1, w2}, where wi represents
the probability that each mutation belongs to component i of
the model. The free parameters {s1, s2, w0, w1, w2} were estimated
by maximum likelihood, subject to the constraints that w0 +w1 +
w2 = 1, {w0, w1, w2}≥0, with s0 = 0 held fixed (Supplemental
Methods).

Training the mixture density model

We trained themixture density network for inference of allele-spe-
cific selection coefficients using minibatch gradient descent. Data
for Chromosome 1 was used for testing, data for Chromosome 2
was used for validation, and data from the remaining chromo-
somes was used for training (the numbers of sites in these three
sets were approximately in the ratio 1.3:1:10), excluding the sex
chromosomes (X and Y) due to their atypical patterns of mutation
and selection, as in previous work. The batch-size was set to 100
nucleotides, and the training data were shuffled prior to process-
ing. After each epoch of training, we evaluated the model on the
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validation set (Chromosome 2) and stopped training if the loss
(negative log likelihood) did not decrease after five successive ep-
ochs (early stopping). Finally, we selected the set of parameters es-
timated in the epoch with the lowest validation loss. To validate
that our parameter estimates were robust, we re-estimated all pa-
rameters separately from even- and odd-numbered chromosomes,
and we found these independent estimates to be highly similar
(Pearson’s r=0.967) (Supplemental Fig. S11).

After training, we assigned each potential codingmutation its
expected selection coefficient s under the site- and allele-specific
distribution defined by the mixture density network, that is, with

s = Pneutral s0 + Pweak s1 + Pstrong s2 = Pweak s1 + Pstrong s2 (1)

(see Fig. 1C). By construction, s≤0, so we generally summarize
these estimates using |s|, which can be interpreted as a measure
of the strength of negative selection. Despite that Chromosome
X was excluded from the training set, we did generate predictions
for this chromosome because it contains many disease variants.

Note thatweused a single demographicmodel for all sites, de-
spite that selection from linked sites (background selection or
hitchhiking) might result in local reductions in nucleotide diver-
sity, and therefore, in the apparent effective population size.
Similarly, our model assumes a constant mutation rate, despite
evidence for variability across the genome. The deficiency of these
modeling assumptions, however, is mitigated by the fact that the
method effectively averages across many sites dispersed across
the genome when estimating selection coefficients. We expect
that this averaging property will allow point estimates of |s| to
remain fairly accurate despite the failure to explicitly model geno-
mic variability in “nuisance” parameters that affect nucleotide
diversity.

Comparison with other variant prioritization methods

For comparison with LASSIE, we downloaded precomputed CADD
(v1.3) (Kircher et al. 2014), PolyPhen-2 (v2.2.2) (Adzhubei et al.
2010), SIFT (released in August 2011) (Ng and Henikoff 2003),
Eigen (v1.0) (Ionita-Laza et al. 2016), and mammalian phyloP
(phyloP46way) (Pollard et al. 2010) scores from their source web-
sites. For all comparisons, we only included variants that were
scored by allmethods.We visualized the receiver operating charac-
teristic (ROC) curves and calculated the areas under the receiver
operating characteristic curve using the ROCR package in R (Sing
et al. 2005; R Core Team 2018).

For the evaluation ofMendelian disease variants, we obtained
pathogenic and benign variants from the ClinVar website
(Landrumet al. 2014) inMarch 2017. Variants annotated as “path-
ogenic” or “likely pathogenic” were considered “true” disease var-
iants, whereas those annotated as “benign” or “likely benign”
were employed as negative controls (ClinVar release in March
2017) (Landrum et al. 2014). Several of the evaluated methods
utilized common SNPs or known pathogenic variants in training,
which could result in overestimation of their performance. There-
fore, we removed all ClinVar variants also in the 1000 Genomes
Project (phase 3) (The 1000 Genomes Project Consortium 2015)
or the training set of PolyPhen-2. The numbers of positive andneg-
ative control variants were balanced by random sampling without
replacement. Because true pathological variants are sparse, this
matching scheme will tend to result in an overestimate of the
true absolute AUC, but our focus in this article is on the relative
performance of the different predictors.

For the evaluation of cancer-driver mutations, we obtained
pancancer somatic mutations and hotspots of nonsynonymous
mutations from Chang et al. (2016). We defined cancer genes
to be protein-coding genes containing at least one mutational

hotspot, cancer-drivermutations to be somatic mutations overlap-
ping mutational hotspots, and passenger mutations to be sin-
gleton mutations within cancer genes but not overlapping
mutational hotspots. As above, we filtered out all somatic muta-
tions overlapping 1000 Genomes Project variants or the training
set of PolyPhen-2 and matched the numbers of cancer-driver mu-
tations and passenger mutations by random sampling without
replacement.

For the evaluation of nonsynonymous variants associated
with complex traits or diseases, we obtained GWAS variants from
the GWAS Catalog (downloaded in November 2017) (MacArthur
et al. 2017) and identified subsets of rare variants (MAF<0.01)
and common variants (MAF>0.05). We used nonsynonymous
variants from the 1000 Genomes Project as negative controls.
After observing that the GWAS variants tended to have higher
MAFs than these controls, we matched the distributions of MAFs
for the two sets and then randomly sampled negative examples
matched in both number and MAF to the GWAS variants, repeat-
ing the sampling 100 times to quantify uncertainty.

Identification of genes under enhanced or relaxed selection

Our model for the expected rates of ultrarare (MAF<0.001) vari-
ants in the ExAC data (Lek et al. 2016) depended critically on an
accurate mutation model. Our mutation model was based on pre-
computed context-dependent mutation rates from the web site of
the Genome of the Netherlands (The Genome of the Netherlands
Consortium 2014; Francioli et al. 2015). Because of differences in
sample size, we expected that the local mutation rates in the
ExAC data would be proportional, but not equal, to the rates esti-
mated from the Genome of the Netherlands data. Therefore, to re-
calibrate the local mutation rates, we fitted a simple logistic
regression model for the entire genome based on the numbers of
ultrarare synonymous variants in the ExAC data set, assuming
that the impact of natural selection on these variants should be
minimal. (Note that our finding that few synonymous mutations
are under strong negative selection [Fig. 2B] supports this assump-
tion.) Specifically, the logistic regression assumes

log
pi

1− pi

( )
= a log (di)+ b log (mi)+ c, (2)

where pi denotes the probability of observing a rare synonymous
mutation i, di is the sequencing coverage at the corresponding po-
sition (which varies considerably in the ExAC data), and µi is the
corresponding mutation rate estimated by the Genome of the
Netherlands. We validated the mutational model by comparing
the observed number of synonymousmutationswith the expected
number predicted by the mutational model for each gene. We re-
moved short genes (with <200 potential synonymous mutations)
and genes for which the mutational model seemed to be misspeci-
fied (FDR rate≤0.2) from further consideration.

Based on this recalibrated mutation model, we defined a null
model for the number of nonsynonymousmutations per gene giv-
en the site- and allele-specific selection coefficients estimated by
LASSIE. First, we calculated qi, the expected probability of observ-
ing a nonsynonymous mutation i, as

qi = h(w2,i)pi, (3)

where pi is the probability of mutation i under the neutral muta-
tional model,w2,i is the probability that mutation i is under strong
selection as estimated by LASSIE, and h(·) is a mapping from the
probabilities of strong selection to relative rates of the nonsynon-
ymousmutation in the ExAC data. To estimate h(·), we grouped all
potential nonsynonymous mutations into 1000 equal-width bins

Huang and Siepel

1318 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245522.118/-/DC1


based on w2,i and then estimated h(·) for each selection bin by
calculating the ratio of the observed to the expected numbers of
nonsynonymous mutations. We then calculated qi for each non-
synonymous mutation i and used qi to parameterize a Poisson-
Binomial distribution describing the null distribution of the
number of nonsynonymous mutations for each gene. The proba-
bility mass function of the Poisson-Binomial model for a single
gene is given by

P(K = k) =
∑
O[Fk

∏
i[O

qi
∏
i�O

(1− qi), (4)

where k is the observed number of nonsynonymous mutations in
the gene, and Fk is the set of all possible arrangements of k nonsy-
nonymous mutations. Genes under enhanced or relaxed selec-
tions were identified by two separate one-tail tests based on this
Poisson-Binomial distribution.

Gene enrichment analysis

The enrichment analysis of tissue-specific expressionwas based on
annotated tissue-specific genes from the Human Protein Atlas
(Uhlen et al. 2015). Only tissues havingmore than 50 tissue-specif-
ic genes were included. The analysis of autism spectrum disorder
was based on ASD-related genes from the SFARI Gene database
(Abrahams et al. 2013). In both cases, significant enrichments
were determined using Fisher’s exact test. For the analysis of func-
tional categories, we used PANTHER to investigate the enrichment
of both Gene Ontology Slim categories and Reactome pathways
(Mi et al. 2017; Fabregat et al. 2018). To avoid gene length as a con-
founding factor, we also repeated the enrichment analyses after
matching the number of potential mutations between the fore-
ground and background gene sets with the MatchIt package (Ho
et al. 2011).

Software availability

The source code for LASSIE is available in Supplemental Code S1
and on GitHub under the simplified BSD license (http://github
.com/CshlSiepelLab/LASSIE/). The LASSIE scores are available as
a UCSC Genome Browser track at http://compgen.cshl.edu/
LASSIE/.
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