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Abstract

Intracellular spatial heterogeneity is frequently observed in bacteria, where the chromosome

occupies part of the cell’s volume and a circuit’s DNA often localizes within the cell. How this

heterogeneity affects core processes and genetic circuits is still poorly understood. In fact,

commonly used ordinary differential equation (ODE) models of genetic circuits assume a

well-mixed ensemble of molecules and, as such, do not capture spatial aspects. Reaction-

diffusion partial differential equation (PDE) models have been only occasionally used since

they are difficult to integrate and do not provide mechanistic understanding of the effects of

spatial heterogeneity. In this paper, we derive a reduced ODE model that captures spatial

effects, yet has the same dimension as commonly used well-mixed models. In particular,

the only difference with respect to a well-mixed ODE model is that the association rate con-

stant of binding reactions is multiplied by a coefficient, which we refer to as the binding cor-

rection factor (BCF). The BCF depends on the size of interacting molecules and on their

location when fixed in space and it is equal to unity in a well-mixed ODE model. The BCF

can be used to investigate how spatial heterogeneity affects the behavior of core processes

and genetic circuits. Specifically, our reduced model indicates that transcription and its regu-

lation are more effective for genes located at the cell poles than for genes located on the

chromosome. The extent of these effects depends on the value of the BCF, which we found

to be close to unity. For translation, the value of the BCF is always greater than unity, it

increases with mRNA size, and, with biologically relevant parameters, is substantially larger

than unity. Our model has broad validity, has the same dimension as a well-mixed model,

yet it incorporates spatial heterogeneity. This simple-to-use model can be used to both ana-

lyze and design genetic circuits while accounting for spatial intracellular effects.

Author summary

A general and simple modeling framework to determine how spatial heterogeneity modu-

lates the dynamics of gene networks is currently lacking. To this end, we provide a simple-

to-use ordinary differential equation (ODE) model that can be used to both analyze and

design genetic circuits while accounting for spatial intracellular effects. We apply our

model to several core biological processes and determine that transcription and its
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regulation are more effective for genes located at the cell poles than for genes located on

the chromosome and this difference increases with regulator size. For translation, we pre-

dict the effective binding between ribosomes and mRNA is higher than that predicted by

a well-mixed model, and it increases with mRNA size. We provide examples where spatial

effects are significant and should be considered but also where a traditional well-mixed

model suffices despite severe spatial heterogeneity. Finally, we illustrate how the operation

of well-known genetic circuits is impacted by spatial effects.

Introduction

Deterministic models of gene circuits typically assume a well-mixed ensemble of species inside

the cell [1, 2]. This assumption allows one to describe genetic circuit dynamics through a set of

ODEs, for which a number of established analysis tools are available [1]. However, it is well

known that spatial heterogeneity is prevalent inside bacterial cells [3–8]. Depending on the ori-

gin of replication, plasmids tend to localize within bacterial cells [9–11]. Furthermore, chro-

mosome genes (endogenous and synthetically integrated ones [12]) are distributed in the cell

according to the chromosome complex spatial structure. In bacterial cells, any molecule freely

diffusing through the chromosome (e.g., mRNA, ribosome, and protease) experiences what

are known as excluded volume effects, which capture the tendency of species to be ejected from

the nucleoid due to the space occupied by the dense DNA mesh [13]. These excluded volume

effects for ribosomes and RNAP in bacteria have been observed experimentally [14].

Despite the strong evidence in support of spatial heterogeneity within bacterial cells, a con-

venient modeling framework that captures the spatio-temporal organization of molecules

inside the cell is largely lacking. As a consequence, how spatial effects modulate genetic circuit

dynamics remains also poorly understood. Partial differential equation (PDE) models have

been employed on an ad hoc basis to numerically capture intracellular spatial dynamics for

specific case studies [15–17]. Although a general PDE model of a gene regulatory network

(GRN) can be constructed, it is difficult to analyze and impractical for design [18]. Recently,

the method of matched asymptotic expansions was used to simplify the PDEs to a set of ODEs

to analyze ribosome-mRNA interactions [19]. Similarly, [20] used a compartmentalized model

to capture spatial heterogeneity in sRNA-mRNA interactions. However, these results have not

been generalized, relied on simulation, and specific parameter values.

In this paper, we provide a general framework to model spatial heterogeneity through an

ODE that has the same structure and hence dimensionality as a well-mixed ODE model. To

this end, we first introduce a PDE model that captures spatial dynamics. Next, we exploit

the time scale separation between molecule diffusion and biochemical reactions to derive a

reduced order ODE model of the space averaged dynamics. This model accounts for spatial

heterogeneity by multiplying the association rate constant of binding reactions by a factor

that depends on the size of freely diffusing species and on the location of spatially fixed species.

We call this factor the binding correction factor (BCF). Thus, this reduced model has the same

dimensionality as traditional well-mixed models, yet it captures spatial effects.

We demonstrate the effects of spatial heterogeneity in genetic circuit behavior by modeling

and analyzing several core biological processes. We show that the transcription rate of a gene

and the affinity at which transcription factors bind to it, is lower (higher) when the gene is

located near mid-cell (cell poles) with respect to the well-mixed model. We show that com-

pared to a well-mixed model, translation rate is always higher and increases with mRNA size.

Finally, we consider a genetic clock, a circuit that produces sustained oscillations. We show
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that for a parameter range where a well-mixed model predicts sustained oscillations, a model

that accounts for spatial heterogeneity of DNA may not show oscillations. All of these phe-

nomena can be recapitulated by our reduced ODE model.

Materials and methods

We use mathematical models to investigate the effects of spatial heterogeneity, specifically

DNA localization and excluded volume effects, on genetic circuit behavior. The first part of

this section introduces the mathematical model used, a set of nonlinear PDEs. Model reduc-

tion is performed on the resulting PDEs to obtain the reduced ODE model that we use to pre-

dict how molecule size and location affect genetic circuit’s behavior. The numerical method

used to simulate the PDEs in this study is discussed in S1 Text: Section 6.

Reaction-diffusion model

A reaction-diffusion model describes the concentration of a species at a given time and loca-

tion in the cell. We focus on enzymatic-like reactions since they can be used to capture most

core processes in the cell. We specialize the model to the cases where the reacting species both

freely diffuse or where one freely diffuses while the other one is fixed. For example, mRNA

and ribosomes are both freely diffusing, while for RNA polymerase and DNA, one is freely dif-

fusing and the other one is fixed.

Enzymatic-like reactions that model core biological processes. Let S be a substrate

being shared by n enzymes Ei, to form product Pi where i = 1,. . ., n. The rate at which Ei and S

are produced is given by αi and αs, respectively. The decay rates of Ei and S are given by γi and

γs, respectively. Here, we assume that Ei and S can be degraded even in complex form, that is,

the complex is not protecting them from degradation. Finally, all species are diluted as the cell

divides at a rate μ. The biochemical reactions corresponding to this process are given by:

; � !
ai Ei� !

giþm
;; ; � !

as S � !
gsþm
;; ci � !

gi S; ci � !
gs Ei;

ci� !
m
;; Ei þ SÐ

ai

di
ci� !

ki Pi þ Ei þ S;
ð1Þ

where ci is the complex formed when Ei binds to S, ai is the association rate constant, di is the

dissociation rate constant, and κi is the catalytic rate constant of product formation. These

enzymatic-like reactions capture many core biological processes such as genes transcribed by

RNA polymerase, mRNA translated by ribosomes, or proteins degraded by a common prote-

ase [1]. Notice that they differ from the classical enzymatic reactions since the substrate is not

converted into product [1].

E. coli actively regulates its geometry to achieve a near-perfect cylindrical shape [21]. Thus,

we model the cell as a cylinder of length 2L and radius Rc. This geometry is shown in Fig 1A.

We assume angular and radial homogeneity ((Rc/L)2� 1) such that the concentration of a spe-

cies varies only axially (the spatial x direction). Symmetry relative to mid-cell is assumed and

hence only half of the cell is considered, that is, x 2 [0, L], where x = 0 is at mid-cell and x = L
is at the cell poles. Furthermore, we assume a constant cross-sectional area along the axial

direction.

In [14] it was shown that polysomes were excluded from the dense chromosomal DNA

mesh onto the cell poles. These phenomena is generalized for any species that freely diffuses

within the DNA mesh and is referred to as “excluded volume effects”. Leveraging the diffusion

modeling framework from [13], we now specify the model to capture excluded volume effects.

Let v(x) 2 (0, 1] be the volume fraction (dimensionless) available to a species to diffuse within

the chromosome (Fig 1B). As derived in [13] and discussed in S1 Text: Section 2, the available
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volume profile v(x) of a species with a radius of gyration r, takes the form

vðxÞ ¼ e� ðr=r�Þ2 r̂ðxÞ; ðr�Þ2 ¼
Vp

2kpLp
; ð2Þ

where r̂ðxÞ is the normalized local density of chromosome DNA length such that

2

L

R L
0
r̂ðxÞdx ¼ 1, Lp is the total length of chromosome DNA, Vp the volume where the DNA

polymer is confined, such that Lp/Vp is the total DNA length per volume, and κ is an empiri-

cally determined correction factor (see [13] and S1 Text: Section 2). The quantity (r�)2 is

inversely proportional to the total DNA length per volume. For all simulations in the main text

of this study, we model the normalized chromosome density as

r̂ðxÞ ¼
1

1þ e20ðx=L� 1=2Þ
;

as experimentally determined in [13]. This model for r̂ðxÞ is monotonically decreasing (i.e,

the chromosome is more dense near mid-cell than at the cell poles as shown in Fig 1B). There-

fore by (2), the available volume profile is higher near mid-cell than at the cell poles (i.e., v(0)

< v(L)) as shown in Fig 1B and furthermore, the discrepancy between v(0) and v(L) increases

with r/r�. We note that the specific expressions of r̂ðxÞ and r/r� do not affect the model reduc-

tion result of this paper. The main results in this paper are presented for a constant cell length

L and chromosome DNA density r̂ðxÞ, however in S1 Text: Section 9 we relax these assump-

tions and allow these quantities to vary in time as the cell divides.

For any given species with concentration per unit length given by y(t, x), free to diffuse,

with available volume v(x), an expression for the flux term, derived in [13] is given by:

Jðx; yÞ ¼ D �
@yðt; xÞ
@x

vðxÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
towards low concentration

þ yðt; xÞ
@vðxÞ
@x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

towards high available volume

0

B
B
@

1

C
C
A ¼ � v

2ðxÞ
d
dx

yðt; xÞ
vðxÞ

� �

; ð3Þ

where D is the diffusion coefficient. The flux is driven by two mechanisms: the first is concen-

tration gradient, which pushes molecules from high to low concentrations and the second

Fig 1. Intracellular spatial geometry. (A) We model the cell as a cylinder of radius Rc and length 2L. The distance between the end of

the chromosome and the cell poles is Δx. (B) The spatial profiles for the normalized local density of DNA length r̂ðxÞ and the fraction of

available volume v(x) of a freely diffusing species with radius of gyration r within the chromosomal mesh. These two quantities are

related by vðxÞ ¼ e� ðr=r�Þ2 r̂ðxÞ , where r� is a length scale dependent on the averaged chromosome density in the cell given by (2). The

chromosome density is assumed to be monotonically decreasing from mid-cell to the cell poles (as in [13]), thus the available volume

profile are monotonically increasing.

https://doi.org/10.1371/journal.pcbi.1008159.g001
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drives molecules to regions with a higher volume fraction. This second term is referred to as

the excluded volume effect [13]. From (3), if

�
�
�
@yðt;xÞ
@x vðxÞ

�
�
� <

�
�
�yðt; xÞ @vðxÞ

@x

�
�
� and

@yðt;xÞ
@x

@vðxÞ
@x > 0, then

the net flux is from low to high concentration, which is the case when species are repelled from

the chromosome to high concentration areas in the cell poles. As we will show, this mechanism

dictates intracellular heterogeneity in the limit of fast diffusion.

For species S, we denote by S(t, x) its concentration per unit length at time t at location x
(similarly for Ei and ci). Assuming sufficently high molecular counts, the reaction-diffusion

dynamics corresponding to (1) describing the rate of change of the species concentrations at

position x, are given by [22]:

@Eiðt; xÞ
@t

¼ �
d
dx

J x; Eið Þ½ � � aiEiðt; xÞSðt; xÞ þ ðgs þ di þ kiÞciðt; xÞ

þaiðt; xÞ � ðgi þ mÞEiðt; xÞ;

@ciðt; xÞ
@t

¼ �
d
dx

J x; cið Þ½ � þ aiEiðt; xÞSðt; xÞ � ðgi þ gs þ di þ ki þ mÞciðt; xÞ;

@Sðt; xÞ
@t

¼ �
d
dx

J x; Sð Þ½ � þ
Xn

j¼1

� ajEjðt; xÞSðt; xÞ þ ðgj þ dj þ kjÞcjðt; xÞ
h i

þasðt; xÞ � ðgs þ mÞSðt; xÞ;

ð4Þ

where J(x, �) is the flux per unit area per unit time, within the cell. If the species is freely dif-

fusing J(x, �) is given by (3), otherwise if the species is spatially fixed, then J(x, �) = 0 for all

x 2 [0, L]. The boundary conditions associated with freely diffusing species of (4) are zero

flux at the cell poles and cell center due to the assumed left-right symmetry, which corre-

sponds to:

Jð0; �Þ ¼ JðL; �Þ ¼ 0: ð5Þ

Notice that none of the parameters in (4) appearing in (1) depend explicitly on time and

space except for the production terms αi(t, x) and αs(t, x). The explicit time dependence of

the production terms allows us to capture how genes can be activated or repressed externally

with a time varying signal [23]. The explicit dependence of the production terms on x allows

us to capture where the species is produced within the cell (e.g., DNA in the chromosome or

DNA in pole localized plasmid genes).

Dimensionless model: Depending on the parameter regimes, the dynamics of (4) can dis-

play time scale separation. For example, diffusion occurs in the order of mili-seconds com-

pared to minutes for dilution due to cell-growth and mRNA degradation [2]. Therefore, we

are interested in determining the behavior of (4) in the limit of fast diffusion. We thus rewrite

(4) in dimensionless form to make time scale separation explicit. We nondimensionalize the

system variables using dilution (1/μ) as the characteristic time scale, the length of the cell (L)

as the characteristic length, and μ/a1 as the characteristic concentration per length scale:

t� ¼ tm; y� ¼ y a1

m
; x� ¼ x

L ; where y denotes concentration per unit length and the superscript

“�” is used on the dimensionless variable. Concentrations are nondimensionalized through a1

because this parameter contains a concentration scale, it is fixed in time, and it is assumed to
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be nonzero. The dimensionless form of (4) is given by

@E�i ðt
�; x�Þ

@t�
¼ �

d
dx�

J�ðx�; E�i Þ
� �

þ
1

Zi
� E�i ðt

�; x�ÞS�ðt�; x�Þ
a�i
~di

þ c�i ðt
�; x�Þ

" #

þ a�i ðt
�; x�Þ � ðg�i þ 1ÞðE�i ðt

�; x�Þ þ c�i ðt
�; x�ÞÞ;

@c�i ðt
�; x�Þ
@t�

¼ �
d
dx�

J�ðx�; c�i Þ
� �

þ
1

Zi
E�i ðt

�; x�ÞS�ðt�; x�Þ
a�i
~di

� c�i ðt
�; x�Þ

" #

;

@S�ðt�; x�Þ
@t�

¼ �
d
dx�

J�ðx�; S�Þ½ � þ
Xn

j¼1

1

Zj
� E�j ðt

�; x�ÞS�ðt�; x�Þ
a�j
~dj

þ c�j ðt
�; x�Þ

" #

þ a�s ðt
�; x�Þ � ðg�s þ 1ÞðS�ðt�; x�Þ þ

Xn

j¼1

c�j ðt
�; x�ÞÞ;

ð6Þ

where a�i ¼ ai=a1, g�s ¼ gs=m, g�i ¼ gi=m, d�i ¼ di=m, k�i ¼ ki=m, a�i ¼ aia1=m
2, a�s ¼ asa1=m

2,

~di ¼ g
�
i þ g

�
s þ d�i þ k

�
i þ 1, Zi ¼ 1=~di, and J� = Ja1/(μ2 L). For a freely diffusing species with

diffusion coefficient D, the dimensionless parameter that determines the relative speed of dif-

fusion is denoted by � = μL2/D and fast diffusion corresponds to �� 1. Likewise, ηi in (4)

determines the relative speed of the binding dynamics, where ηi� 1 implies these reactions

are fast. From hereon, unless otherwise specified, we work with variables in their dimension-

less form and drop the star superscript for simplifying notation.

Space averaged concentrations: Concentrations per cell are usually the quantities mea-

sured experimentally [24] and are the primary quantities of interest. We now derive the space

averaged dynamics corresponding to (6), which describe the dynamics of concentrations per

half of the cell. We define �EiðtÞ, �SðtÞ, and �ciðtÞ to be the space averaged enzyme, substrate, and
complex concentrations, respectively, and are given by

�EiðtÞ ¼
Z 1

0

Eiðt; xÞdx; �ciðtÞ ¼
Z 1

0

ciðt; xÞdx; �SðtÞ ¼
Z 1

0

Sðt; xÞdx;

also giving the concentrations per half of the cell. The dynamics governing these space aver-

aged variables are derived by integrating (6) in space and applying the boundary conditions

(5) and are given by:

d�EiðtÞ
dt
¼ �a iðtÞ �

1

Zi

�EiðtÞ�SðtÞ
aiyiðtÞ

~di

� �ciðtÞ

" #

� ðgi þ 1Þð�EiðtÞ þ �ciðtÞÞ;

d�ciðtÞ
dt
¼

1

Zi

�EiðtÞ�SðtÞ
aiyiðtÞ

~di

� �ciðtÞ

" #

;

d�SðtÞ
dt
¼ �asðtÞ �

Xn

j¼1

1

Zj

�EjðtÞ�SðtÞ
ajyjðtÞ

~dj

� �cjðtÞ

" #

� ðgs þ 1Þð�SðtÞ þ
Xn

j¼1

�cjðtÞÞ;

ð7Þ

where overbars denote spatially averaged variables and

yiðtÞ ¼
R 1

0
Eiðt; xÞSðt; xÞdx

½
R 1

0
Eiðt; xÞdx�½

R 1

0
Sðt; xÞdx�

: ð8Þ

Therefore, to calculate the space averaged concentrations, one could integrate the outputs of

the full PDE (6) directly or use (7) along with (8), as illustrated in Fig 2. Notice that calculating
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θi in (8) requires solving the full PDE system (6) because of its dependence on the product

Ei(t, x)S(t, x). Therefore, in general, there is no obvious benefit in working with (7). In this

paper, we provide a method to compute a guaranteed approximation of θi without solving the

PDEs (6).

Well-mixed model: Next, we define what we have been informally referring to as the “well-

mixed” model [25]. A standard well-mixed model is derived starting from (1) assuming mass

action kinetics, that molecular counts are sufficiently large, and that the intracellular environ-

ment is spatially homogeneous (well-mixed) [1]. We let �Ewmi ðtÞ, �SwmðtÞ and �cwmi ðtÞ, denote the

well-mixed concentrations of Ei, S, and ci, respectively, and their dynamics are given by

d�Ewmi ðtÞ
dt

¼ �a iðtÞ �
1

Zi

�Ewmi ðtÞ�S
wmðtÞ

ai

~di

� �cwmi ðtÞ

" #

� ðgi þ 1Þð�Ewmi ðtÞ þ �cwmi ðtÞÞ;

d�cwmi ðtÞ
dt

¼
1

Zi

�Ewmi ðtÞ�S
wmðtÞ

ai

~di

� �cwmi ðtÞ

" #

;

d�SwmðtÞ
dt

¼ �asðtÞ �
Xn

j¼1

1

Zj

�Ewmj ðtÞ�S
wmðtÞ

aj

~dj

� �cwmj ðtÞ

" #

� ðgs þ 1Þð�SwmðtÞ þ
Xn

j¼1

�cwmj ðtÞÞ:

ð9Þ

Comparing (7) and (9), motivates us to define a0iðtÞ ¼ aiyiðtÞ, which can be regarded as the

effective association rate constant between Ei and S in (7). We refer to θi(t) as the binding cor-
rection factor (BCF). The dynamics of the space averaged concentrations (7) coincide with

those of the well-mixed model (9) when θi(t) = 1 (thus a0iðtÞ ¼ ai) for all time and for all i = 1,

. . ., n. From (8) notice that Ei(t, x) and S(t, x) being spatially constant for all time is not neces-

sary for θi(t) = 1 for all time. For example, if S(t, x) is spatially constant while Ei(t, x) has an

arbitrary spatial profile (or vice-versa), then θi(t) = 1. Thus, the space averaged concentrations

can coincide with those of a well-mixed model despite severe spatial heterogeneity. In this

Fig 2. Methods to calculate space averaged concentrations. (A) The time and space dependent solutions of the full PDE (6) are

integrated spatially to yield concentrations per half of the cell. Alternatively, space averaged concentrations can be calculated using the

space average dynamics (7) with the BCF (θi(t) (8)) as a time varying parameter. (B) The dynamics of the space averaged concentration is

given by the well mixed model (9) when θi(t) = 1 for all time and for all i = 1, . . ., n.

https://doi.org/10.1371/journal.pcbi.1008159.g002
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work, we provide a constant approximation of θi(t) denoted by y
�

i , which depends on spatial

variables such as molecule size and gene location. Under the fast diffusion approximation, we

show that y
�

i is close to θi(t). The space averaged dynamics (7) with θi(t) replaced by y
�

i , thus

provides a reduced ODE model that captures spatial information without having to solve (6).

We will compare how solutions to (7) with (8) calculated from the full PDE (6) or with y
�

i com-

pare to each other and to the solutions of the well-mixed model (9).

Three diffusion cases to capture core biological processes. To use model (6) to describe

key biological processes, we consider three cases. In Case I, Ei for all i = 1, . . ., n and S are all

freely diffusing within the cell. In Case II, Ei is spatially fixed for all i = 1, . . ., n (J(x, Ei) = 0 for

all x 2 [0, 1] and for all i = 1, . . ., n) and S is freely diffusing. In Case III, Ei is freely diffusing

for all i = 1, . . ., n and S is spatially fixed (J(x, S) = 0 for all x 2 [0, 1]). Case I may represent

mRNA molecules (Ei) competing for ribosomes (S), all freely diffusing in the cell. Case II cap-

tures genes (Ei), which are spatially fixed and are transcribed by RNA polymerase (S), which

freely diffuses. Case III models transcription factors (Ei), which freely diffuse regulating the

same spatially fixed gene (S).

The flux dynamics, the boundary conditions, and a core biological process example for

each case are summarized in Table 1. When a species is spatially fixed, the flux is zero through

the whole domain, that is, J(x, �) = 0 for all x 2 [0, 1]. The available volume profiles for the

enzyme, complex, and substrate are denoted by vEi
ðxÞ, vci

ðxÞ, and vS(x), respectively. The avail-

able volume profile for the complex vci
ðxÞ, represents the probability that the complex has

enough free volume to hop into the DNA mesh at position x and it equals the product of the

probability of the two independent events of the enzyme and the substrate hopping into the

DNA mesh [13], thus

vci
ðxÞ ¼ vEi

ðxÞvSðxÞ: ð10Þ

Table 1. The flux dynamics and the boundary conditions corresponding to (6) for each case of interest along with a core process example. Here vE,i(x), vS(x), and vc,
i(x), are the available volume profiles of Ei, S, and ci, respectively. The parameters DEi

, Dci
, and Ds, are the enzyme, complex, and substrate diffusion coefficients, respec-

tively, � is a dimensionless parameter that captures the speed of diffusion (with respect to dilution). A species being spatially fixed translates to the flux being zero through-

out the whole spatial domain. In Case II, for i = 1, . . ., n, x�i 2 ð0; 1Þ denotes the location of the fixed species Ei. In Case III, x�s 2 ð0; 1Þ denotes the location of the fixed

species S.

Case I Case II Case III

All species diffuse Substrate diffuse and enzymes fixed Enzymes diffuse and substrate fixed

Dimensionless Flux
Jðx; EiÞ ¼ �

1

�
wEi

v2

Ei

d
dx

Ei

vEi

" #

Jðx; SÞ ¼ �
1

�
v2

S

d
dx

S
vs

� �

Jðx; ciÞ ¼ �
1

�
wci

v2

ci

d
dx

ci
vci

" #

Jðx; EiÞ ¼ 0

Jðx; SÞ ¼ �
1

�
v2

s
d
dx

S
vs

� �

Jðx; ciÞ ¼ 0

Jðx; EiÞ ¼ �
1

�
v2

Ei

d
dx

Ei

vEi

" #

Jðx; SÞ ¼ 0

Jðx; ciÞ ¼ 0

Boundary conditions Jð0;EiÞ ¼ Jð1;EiÞ ¼ 0

Jð0; ciÞ ¼ Jð1; ciÞ ¼ 0

Jð0; SÞ ¼ Jð1; SÞ ¼ 0

J(0, S) = J(1, S) = 0 J(0, Ei) = J(1, Ei) = 0

� (μL2)/Ds (μL2)/Ds ðmL2Þ=DE1

Dimensionless diffusion wEi
¼ DEi

=Ds; wci
¼ Dci

=Ds N/A N/A

Core process mRNAs binding ribosomes RNAP binding several genes Transcription factors binding promoter

Location of fixed species N/A x�i x�s

https://doi.org/10.1371/journal.pcbi.1008159.t001
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Furthermore, we define the normalized available volume profiles as

v̂Ei
ðxÞ ¼

vEi
ðxÞ

R 1

0
vEi
ðxÞdx

; v̂ci
ðxÞ ¼

vci
ðxÞ

R 1

0
vci
ðxÞdx

; v̂SðxÞ ¼
vSðxÞ

R 1

0
vSðxÞdx

: ð11Þ

Results

Time scale separation

In this section, we provide a time independent approximation of the BCF (8) in the limit of

fast diffusion, which depends solely on the size of diffusing species, chromosome density pro-

file (r̂ðxÞ and r�), and the spatial localization of non-diffusing species. With this approxima-

tion, we can compute space averaged solutions in (7) without solving the PDEs in (6).

Reduced space averaged dynamics when diffusion is fast and fixed species are local-

ized. For Case II and Case III of Table 1, in which one of the reacting species is fixed, we

assume that the fixed species is spatially localized to a small space, that is, we have the situation

depicted in Fig 3 (see S1 Text: Assumption 3 for the mathematical definition). Practically, for

Case II, spatial localization at x�i requires that the production rate αi(t, x) of the fixed species is

smaller than some small threshold δ when x is outside the interval ½x�i � d; x
�
i þ d� for all time

and that the space averaged production rate is �a iðtÞ independent of δ (similarly for Case III, x�s ,

and αs(t, x)). From a biological perspective, having the space averaged production rate inde-

pendent of δ is consistent with the fact that the total amount of DNA in the cell is independent

of where the DNA is concentrated. Note that δ is a parameter that controls the amount of

Fig 3. Graphical representation of localization of fixed species. The production rate αi(t, x) is assumed to be localized at x�i if

aiðt; xÞ � d;8x =2 ½x�i � d; x�i þ d�. We assume that the space averaged production �a iðtÞ ¼
R 1

0
aiðt; xÞdx is independent of δ.

https://doi.org/10.1371/journal.pcbi.1008159.g003
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localization, such that δ� 1 implies the production of spatially fixed species being localized to

a small region. Let � be as in Table 1 that appears in (6), the following definition will provide

the candidate reduced model that approximates (7) well when �� 1 and δ� 1. Recall that � is

a dimensionless parameter that captures the speed of diffusion (with respect to dilution).

Let x�i and x�s be the location of the fixed species for Case II and Case III, respectively (see

Table 1). For i = 1, . . ., n, we define the reduced space-averaged dynamics as

d�̂EiðtÞ
dt
¼ �a iðtÞ �

1

Zi

�̂EiðtÞ�̂SðtÞ
~aiy

�

i
~di

� �̂c iðtÞ

" #

� ðgi þ 1Þð�̂EiðtÞ þ �̂c iðtÞÞ;

d�̂c iðtÞ
dt
¼

1

Zi

�̂EiðtÞ�̂SðtÞ
~aiy

�

i
~di

� �̂c iðtÞ

" #

;

d�SðtÞ
dt
¼ �asðtÞ �

Xn

j¼1

1

Zj

�̂EjðtÞ�̂SðtÞ
~ajy

�

j

~dj

� �̂c iðtÞ

" #

� ðgs þ 1Þð�̂SðtÞ þ
Xn

j¼1

�̂c jðtÞÞ;

ð12Þ

y
�

i ¼

R 1

0
v̂Ei
ðxÞv̂SðxÞdx for Case I

v̂Sðx�i Þ for Case II

v̂Ei
ðx�s Þ for Case III

;

8
>>>><

>>>>:

ð13Þ

where �̂Eið0Þ ¼
�Eið0Þ,

�̂Sð0Þ ¼ �Sð0Þ, �̂c ið0Þ ¼ �cið0Þ, as given by (7), and v̂Ei
ðxÞ, v̂ci

ðxÞ, and v̂SðxÞ
are given by (11). Then, we have the following main result of this paper (see S1 Text: Theorem

3 for a formal statement with the proof).

Result 1. Consider system (6) and let z(t, x) = [E1(t, x), . . ., En(t, x), c1(t, x), . . ., cn(t, x), S(t, x)]T

with �zðtÞ ¼
R 1

0
zðt; xÞdx: Consider system (12) and let �̂z ðtÞ ¼ ½�̂E 1ðtÞ; . . . ; �̂EnðtÞ; �̂c 1ðtÞ; . . . ; �̂cnðtÞ;

�̂SðtÞ�T: Then, for all t� 0 and �, δ sufficiently small

k�zðtÞ � �̂z ðtÞk ¼

(Oð�Þ for Case I

Oð�Þ þOðdÞ for Case II; III
: ð14Þ

By virtue of this result, we can use the simple and convenient ODE model in Eq (12) to

describe the space-averaged dynamics of the PDE system (6). In particular, from (12) it

appears that spatial effects are lumped into the BCF approximation y
�

i . Therefore, in order to

determine how spatial heterogeneity affects system dynamics, it is sufficient to analyze how

dynamics is affected by parameter y
�

i and how the expression of y
�

i is, in turn, affected by spa-

tial localization and molecule size (see (13) and (2)).

Remark 1. As discussed in S1 Text: Section 1, as �! 0+, the spatial profile of diffusing mole-

cules approaches that of their available volume profile after a fast transient, that is,

Eiðt; xÞ � �EiðtÞv̂E;iðxÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Case I and Case III

; ciðt; xÞ � �ciðtÞv̂c;iðxÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Case I

; Sðt; xÞ � �SðtÞv̂SðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Case I and Case II

;

for the other spatially fixed species we have that their concentrations are localized in a manner

as their production terms.

The consequence of Remark 1 is that knowledge of the space averaged dynamics from sys-

tem (12) also leads to knowledge of the spacial profiles of the species within the cell. This
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information is used to propose a method to estimate the BCF from experimental data (See S1

Text: Section 7).

Remark 2. The approximation result holds for �� 1, that is, diffusion is much faster than

any other time scales in (6). However, in S1 Text: Section 1.4, we motivate why the approxima-

tion should still hold (for which the relationship (10) is key) if Zi=� ¼ Oð1Þ (binding and

unbinding between Ei and S occurs at a similar timescale as diffusion), and confirmed via

numerical simulations for the upcoming biological examples.

The BCF y
�

i in (13) is temporally constant and thus the reduced model has the same

dimensionality as the well-mixed model (9), yet captures the role of spatial heterogeneity in

the interactions between cellular species. Therefore, y
�

i is a practical and accurate approxima-

tion of the BCF when �� 1 (sufficient for Case I) and δ� 1 (needed for Cases II-III).

Dependence of the BCF on species size and localization. When diffusion is fast and the

expression of spatially fixed species is localized, the BCF is well approximated by y
�

i given in

(13). Substituting (2) into (13) and denoting the radius of gyration of Ei and S by re,i and rs,
respectively, we can rewrite y

�

i as

y
�

i ¼

R 1

0
e
�

r2e;iþr
2
s

ðr�Þ2
r̂ðxÞ

dx
½
R 1

0
e� ðre;i=r�Þ2 r̂ðxÞdx�½

R 1

0
e� ðrs=r�Þ2 r̂ðxÞdx�

for Case I

e� ðrs=r�Þ2 r̂ðx�i Þ
R 1

0
e� ðrs=r�Þ2 r̂ðxÞdx

for Case II

e� ðre;i=r�Þ2 r̂ðx�s Þ
R 1

0
e� ðre;i=r�Þ2 r̂ðxÞdx

for Case III

:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð15Þ

From (15), we observe that y
�

i , depends on the spatial localization of spatially fixed species (i.e,.

x�i and x�s ), the radius of gyration of diffusing species, r� (2), and the nominalized local density

of DNA length r̂ðxÞ.
Using (15), we graphically illustrate the dependence of y

�

i on rE,i, rs, r�, x�i and x�s in Fig 4. By

analyzing Fig 4, we observe the following:

Fig 4. The BCF in the limit of fast diffusion and localization of spatially fixed species. Approximation of the BCF denoted by y
�

i (15)

is provided for Case I and for Case II/Case III. (A) For Case I, where Ei and S both freely diffuse, θi� 1 and increases when both the size

of Ei (rE,i) and S (rs) are sufficiently large (with respect to r�). (B) For Case II and III, where one of the species diffuses (size ry) and the

other is fixed at x = x�, y�i is different from unity when the radii of the diffusion species is sufficiently large. We observe that y
�

i < 1 for x�
� 0.4 and appears to approach zero near x� = 0 for large ry/r�. Similarly, for x� � 0.65, y

�

i > 1. Between 0.4� x� � 0.65 there exists a

region that y
�

i ¼ 1 for all ry/r�.

https://doi.org/10.1371/journal.pcbi.1008159.g004
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Case I: the BCF is always greater than or equal to that of the well-mixed model (9) (where

y
�

i ¼ 1 for all i) and this discrepancy increases with the size of Ei and S. Intuitively, as the

size of Ei and S increases, they are pushed out of the chromosome and co-localize near the

cell poles, thus they are confined to a smaller volume to interact and hence their effective

binding strength increases. If only one of the species is large (with respect to r�), while the

other one is small, then the large species will be ejected from the chromosome and thus will

not be homogeneously distributed throughout the cell, however y
�

i � 1, and thus a well-

mixed model is valid despite this spatial heterogeneity.

Case II and III: where one of the species diffuses (size ry) and the other is fixed at x = x�, the

BFC is different from unity when ry is sufficiently large. We observe that y
�

i < 1 for x� � 0.4

and appears to approach zero near x� = 0 for large ry/r�. Similarly, for x� � 0.65, y
�

i > 1.

This occurs because as the size of the diffusing species increases, the species is ejected from

the chromosome onto the cell poles and therefore it is more likely to interact with species

fixed at the cell-poles than those near mid-cell. Between 0.4� x� � 0.65 there exists a region

where y
�

i ¼ 1 for all ry/r�. This provides additional evidence that a well-mixed model may

be appropriate despite severe intracellular heterogeneity.

When r̂ðxÞ is assumed to be a step function, the upper bound for y
�

i is 1/Δx for Case I-III,

as derived in S1 Text: Section 2, where Δx is the distance between the end of the chromosome

and the cell poles as shown in Fig 1. Furthermore, the lower bound for Case I was unity and

for Case II-III it was zero.

The value of the BCF provides a measure to determine the extent to which spatial effects

modulate the biomolecular dynamics. Therefore, an experimental method to estimate the

BCF is desirable. In S1 Text: Section 7, we propose such a method that only requires knowl-

edge of Δx and of the value of concentration of freely diffusing species inside and outside the

nucleoid.

In S1 Text: Section 9, we consider how the BCF can vary temporally as the cell divides and

the chromosome density shifts from being concentrated primarily near mid-cell to quarter-

cell. We demonstrate that the BCF can vary by over 50% in time for the case where one spe-

cies is stationary and localized near mid-cell. Furthermore, in S1 Text: Section 10, we show

how the BCF is affected when we consider exclusion effects from the DNA of a pole localized

high copy plasmid. We show that for the case where both reactant freely diffuse, the BCF

decreases as the amount of plasmid DNA increases. For the case where one reactant is spa-

tially fixed and the other freely diffuses, we show that the BCF decreases for a species local-

ized at the cell poles and increases for a species localized near quarter-cell, as the amount of

plasmid DNA increases.

Application to core processes and genetic circuits

In this section we apply the results of the time scale separation analysis to determine the effects

of intracellular heterogeneity on core processes, such as transcription and translation, and on

genetic circuit behavior.

Application of the reduced ODE model to transcription and translation. In this sec-

tion, we investigate how and the extent to which intracellular heterogeneity affects the core

biological processes of transcription and translation, which are responsible for protein produc-

tion. We model a gene (D) being transcribed by RNAP (S) to form a DNA-RNAP complex

(cs) to produce mRNA (m). The mRNA is then translated by ribosomes (R) to form mRNA-
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ribosome complex (cm) which produces protein P. The chemical reactions are given by

Dþ SÐ
as

ds
cs� !

ks mþ Sþ D
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

transcription; Case II

; mþ RÐ
am

dm
cm� !

km Pþ Rþm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

translation; Case I

; P � !
m
;;

cs � !
m
;; ; � !

as S � !
m
;; m � !

gþm
;; cm � !

g
R cm � !

m
; ; � !

ar R � !
m
;;

ð16Þ

where as and ds are the association and dissociation rate constants, respectively, between

RNAP and the gene D, κs is the catalytic rate constant of formation of mRNA m, am and dm

are the association and dissociation rate constants, respectively, between ribosomes and

mRNA, κm is the catalytic rate constant of formation of protein P, αs is the production rate

of RNAP, αr is the ribosome production rate, μ is the cell growth rate constant (set to unity in

our nondimensionalization), and γ is the mRNA degradation rate constant. The transcription

reaction is in the form of Case II (Table 1) since the gene does not freely diffuse and the RNAP

freely diffuses. The translation process falls under Case I, since both mRNA and ribosomes

freely diffuse. We assume that the total concentration of D is conserved, so that DT(x) = D(t, x)

+ cs(t, x) and that DT(x) is localized at x = x�. From (12), the dimensionless reduced space aver-

aged dynamics corresponding to (16) are given by

d�csðtÞ
dt

¼ asy
�

s
�DðtÞ�SðtÞ � ðds þ ks þ 1Þ�csðtÞ;

d�SðtÞ
dt

¼ �asðtÞ � asy
�

s
�DðtÞ�SðtÞ þ ðks þ dsÞ�cðtÞ � �SðtÞ;

d �mðtÞ
dt

¼ ks�csðtÞ � amy
�

R
�RðtÞ �mðtÞ þ ðdm þ kmÞ�cðtÞ � ðgþ 1Þ �mðtÞ

d�cmðtÞ
dt

¼ amy
�

R
�RðtÞ �mðtÞ � ðdm þ km þ 1þ gÞ�cðtÞ;

d�RðtÞ
dt

¼ �arðtÞ � amy
�

R
�RðtÞ �mðtÞ þ ðgþ dm þ kmÞ�cmðtÞ � �RðtÞ;

d�PðtÞ
dt

¼ km�cmðtÞ � �PðtÞ:

ð17Þ

Concentration variables are nondimensionalized with respect to the total steady state space

averaged RNAP (�STð1Þ ¼ �asð1Þ=m), since this quantity is a readily available in the literature.

Letting rs, rm, and rR, be the radius of gyration of RNAP, mRNA, and ribosomes, respectively,

we compute the BCF’s via (13) and (2),

y
�

s ¼ v̂sðx�Þ ¼
e� ðrs=r�Þ2 r̂ðx�Þ

R 1

0
e� ðrs=r�Þ2 r̂ðxÞdx

;

y
�

R ¼

Z 1

0

v̂mðxÞv̂RðxÞdx ¼
R 1

0
e
�

r2mþr
2
R

ðr�Þ2
r̂ðxÞ

dx
½
R 1

0
e� ðrm=r�Þ2 r̂ðxÞdx�½

R 1

0
e� ðrR=r�Þ2 r̂ðxÞdx�

;

ð18Þ

where v̂sðxÞ ¼
vsðxÞR 1

0
vsðxÞdx

, v̂mðxÞ ¼
vmðxÞR 1

0
vmðxÞdx

, v̂RðxÞ ¼
vRðxÞR 1

0
vRðxÞdx

, and v̂cðxÞ ¼
vcðxÞR 1

0
vcðxÞdx

are the normal-

ized available volume profiles of RNAP, mRNA, ribosomes, and of the mRNA-ribosome com-

plex, respectively. Recall that the quantity (r�)2 is inversely proportional to the total DNA

length per volume. We now consider the steady state behavior of system (17) by equating

the time derivatives to zero. Specifically, we are interested in how the steady state levels of
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produced mRNA and protein are affected by y
�

s and y
�

r and, hence, how they depend on spatial

quantities such as rs/r�rm/r�, rR/r�, and x�.
Total mRNA steady state level: We are interested in investigating the role of spatial effects

on the binding between RNAP and the DNA and thus on mRNA production. Here we analyze

the steady state total mRNA levels ( �mT ¼ �m þ �cm) of (17) rather than the free amount of

mRNA (m), since �mT is independent of y
�

R as shown by

�mT ¼ ks�cs=ðgþ 1Þwith �cs ¼
�DT

�Sy�S=Ks

1þ �Sy�S=Ks
; ð19Þ

where �DT ¼
R 1

0
DTðxÞdx, Ks = ds/as, KR = dm/am. If y

�

S ¼ 1 in (19), then the predicted total

mRNA steady state level will be identical to that of a well-mixed model (as in (9)). From (18)

and Fig 4B, if the RNAP radius of gyration is sufficiently large with respect to r� then y
�

S may

be different from unity (depending on x�), in which case spatial effects arise. If the DNA is

localized near mid-cell (x� � 0), then it implies that y
�

S < 1 from Fig 4B and, as a consequence,

a decreased steady state total mRNA level will result. Furthermore, for very large values of rs/r�

and x� � 0 we have that y
�

S ! 0 and the total mRNA steady state levels will approach zero.

Similarly, if the DNA is localized near the cell-poles (x� � 1), then it implies that y
�

S > 1 from

Fig 4B and, as a consequence, an increased steady state total mRNA level. This phenomenon

occurs because as the excluded volume effects of RNAP are amplified (large rs/r�), RNAP will

localize primarily in the cell poles and hence transcribe pole-localized DNA more efficiently

than DNA near mid-cell (or any region where the local chromosome density is high). When

designing genetic circuits, a plasmid backbone is chosen to provide a certain DNA copy num-

ber, however the backbone also determines where in the cell the plasmid localizes [9–11].

Therefore, based on our results, localization also affects steady state total mRNA level. If

instead of introducing the DNA via a plasmid, the DNA is integrated directly into the chromo-

some, then the location of integration site should be a parameter to consider.

Fig 5A shows the behavior of the steady state total mRNA level as a function of rs/r� and of

the location of the transcribed gene, when compared to the level predicted by the well mixed

model. Simulations confirm that total mRNA levels are higher for pole localized genes than

those near mid-cell and that the discrepancy increases with the size of RNAP relative to r�. The

agreement between the full PDE model (S1 Text: Equation 34) and the reduced ODE model

(17) provides numerical validation of the model reduction results (explicitly shown in S1 Text:

Fig D). In S1 Text: Fig B, the transient response corresponding to Fig 5, for which the full-PDE

and reduced models agree. Furthermore, in S1 Text: Fig B, we also verify that as the size of

RNAP increases, it is indeed ejected from the chromosome and adopts its available volume

profile (Remark 1). Furthermore, in S1 Text: Fig C, we demonstrate that these results hold

independent of the binding and unbinding speed between RNAP and DNA (Remark 2). In S1

Text: Section 8, we propose an experimental method to test the hypothesis that mid-cell genes

are transcribed less effectively than pole localized genes.

In [26], it was estimated that rs = 6.5±0.1 nm, which implies that rs/r� � 0.3. From Fig 4B,

this implies that y
�

s � 1:06 when the DNA is at the cell poles and y
�

s � 0:94 when the DNA is

near mid-cell, thus the we expect the binding strength between RNAP and the DNA to deviate

by 6% from that of a well-mixed model. From (19), if Sy�S=Ks << 1, then �mT ¼
y�Sks

�DT�S
Ksðgþ1Þ

; thus in

this regime the mRNA concentration is proportional to y
�

S. So we expect at most a 6% differ-

ence in steady state mRNA concentration with respect to what is predicted by a well-mixed

model.
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Protein steady state level: The steady state protein levels of (17) are given by

�P ¼ km�cm; with �cmðtÞ ¼ �mT

�R=KRy
�

R

1þ �R=KRy
�

R

: ð20Þ

From (19) and (20), if y
�

S ¼ 1 and y
�

R ¼ 1, then protein steady state level will be identical to

that of a well-mixed model. From (18) and Fig 4A, we conclude that y
�

R � 1 and increases with

rs/r� and rm/r�. Increasing rs/r� and rm/r� implies that the ribosomes and mRNA are further

excluded from the chromosome onto the cell poles. Once localized at the cell-poles, the mRNA

and ribosomes are more likely to bind. Fig 5B shows the behavior of the steady state protein

levels as a function of rm and rR, when compared to the level predicted by the well mixed-

model for the full PDE model (S1 Text: Equation 34). Simulations confirm that protein levels

with respect to a well-mixed model increases when both the mRNA and ribosome size are suf-

ficiently large. In S1 Text: Fig F, we show that the reduced ODE model (17) is within 2% of the

full PDE model (S1 Text: Equation 34) for the result in Fig 5B. In S1 Text: Fig E, we show the

transient response corresponding to Fig 5, for which the full-PDE and reduced model agree.

Furthermore, in S1 Text: Fig E, we verify that as the size of ribosome and mRNA increase,

they are ejected from the chromosome and and become distributed according to their available

volume profile (Remark 1). Finally, in S1 Text: Figs G and F, we demonstrate that these

results hold independent of the binding and unbinding speed between ribosomes and mRNA

(Remark 2).

Fig 5. Spatial heterogeneity effects on steady state total mRNA and protein levels. (A) The space averaged total mRNA ( �mT)

concentration predicted by the full PDE model (S1 Text: Equation 34) and the reduced ODE model (17) normalized by that of the well-

mixed model ( �mT;well� mixed) as the size of the RNAP (rs) varies with respect to r�. With respect to the well-mixed model, the amount of

mRNA decreases (increases) when the DNA is localized near mid-cell (cell poles). (B) The space averaged protein concentration (�P)

predicted by the full PDE model (S1 Text: Equation 34) normalized by that of the well-mixed model (�Pwell� mixed) as the size of the of

mRNA (rm) and ribosome (rR) varies with respect to r�. The amount of protein increases when both the mRNA and ribosome size

increases. We set rs/r� = 1 × 10−3, such that θS� 1 and thus the result is independent of the spatial location where the gene is expressed.

We refer to the well-mixed model as (17) with (18) given by y
�

S ¼ 1 and y
�

R ¼ 1. The parameter values and full simulation details are

provided in S1 Text: Section 3.

https://doi.org/10.1371/journal.pcbi.1008159.g005
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It is well known that most mRNA-ribosome complexes exists in configurations with multi-

ple ribosomes bounded (polysomes) [27, 28]. To capture the prevalence of these polysomes,

we model the translation process accounting for the fact that one mRNA can be bound to mul-

tiple ribosomes. We first model the mRNA binding simultaneously to Nr − 1 ribosomes to

form the cl complex, to which another ribosome binds to to form the fully loaded ct complex.

The leading ribosome with a complete peptide is released from ct at a rate κt to yield protein P.

This is described by the following set of biochemical reactions:

mþ ðNr � 1ÞRÐ
al

dl
cl

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ribosome loading

; cl þ R;Ð
at

dt
ct � !

kt Pþ Rþ cl|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
peptide release

:
ð21Þ

While the ribosome loading reaction in (21) is not in the form of the chemical reactions (1),

which assume bimolecular reactions, we can nevertheless apply our results as follows (see S1

Text: Section 3.1 for details). Specifically, ribosome and mRNA profiles will still approach their

available volume profiles (Remark 1), that is, Rðt; xÞ � �RðtÞv̂rðxÞ, mðt; xÞ � �mðtÞv̂mðxÞ, and

clðt; xÞ � �clðtÞv̂cl
ðxÞ where vcl

ðxÞ ¼ vNr � 1
r ðxÞvmðxÞ (recall (10)) and v̂cl

ðxÞ ¼ vcl
ðxÞ=½

R 1

0
vcl

dx�.
This is verified through simulations in S1 Text: Fig I. By virtue of the reactants in (21) mirror-

ing their available volume profiles and (8), we can approximate the BCF of the loading y
�

l and

translation y
�

t reactions in (21), given as

y
�

l ¼

R 1

0
vmðxÞv

Nr � 1

R ðxÞdx
½
R 1

0
vmðxÞdx�½

R 1

0
vRðxÞdx�

Nr � 1
¼

R 1

0
e
�

r2mþð
ffiffiffiffiffiffi
Nr � 1
p

rRÞ
2

ðr�Þ2
r̂ðxÞ

dx
½
R 1

0
e� ðrm=r�Þ2 r̂ðxÞdx�½

R 1

0
e� ðrR=r�Þ2 r̂ðxÞdx�Nr � 1

:

y
�

t ¼

R 1

0
vcl
ðxÞvRðxÞdx

½
R 1

0
vcl
ðxÞdx�½

R 1

0
vRðxÞdx�

¼

R 1

0
e
�

r2mþð
ffiffiffi
Nr
p

rRÞ
2

ðr�Þ2
r̂ðxÞ

dx
R 1

0
e
�

r2mþð
ffiffiffiffiffiffi
Nr � 1
p

rRÞ
2

ðr�Þ2
r̂ðxÞ

dx
� �

½
R 1

0
e� ðrR=r�Þ2 r̂ðxÞdx�

:

In S1 Text: Fig I, we show computationally that y
�

l and y
�

t are good approximations to the

BCF. At this point, we can write the ODE corresponding to this system of reactions and

just modify the association rate constants by y
�

l and y
�

t , as shown in S1 Text: Equation 38. Let

Kd = (dl/al)1/(Nr−1), Kt = (dt + κt)/at, βl = (γ+ 1)/dl, and βt = (γ + 1)/(κt + dt), if bl; bt;
�R=Kt � 1

(dilution and mRNA degradation is much slower than the rate of ribosome unbinding and Kt

is sufficiently large comparer to �R [29]), then a simple expression for the steady state protein

concentration is given by

�P ¼ kt �mTy
�

t
�R=Kt

y
�

l ð
�R=KdÞ

Nr � 1

1þ y
�

l ð
�R=KdÞ

Nr � 1

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ribosome loading

;
ð22Þ

where �mT is given by (19).

In [13] it was estimated that rm = 20 nm and rR = 10 nm, which implies that rm/r� � 0.88 and

rR/r� � 0.44. Assuming the average distance between ribosomes on an mRNA to be 70 nucleo-

tides [30], for a 700 nucleotide mRNA (e.g., GFP or RFP), then we have Nr = 10. Thus, for these

values, y
�

l � 1:56 and y
�

t � 1:07. This implies that the forward rate in the reaction of 9 ribo-

somes binding to an mRNA (al) is amplified by 56% and the rate at which an additional ribo-

some binds to this complex (at) increases by 7% with respect to a well-mixed model. From (22),

this would imply up to 67% increase in protein production with respect to a well-mixed model.
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Taken together, these results suggest that while a well-mixed ODE model may be sufficient

to describe transcription, it is not sufficiently descriptive to capture spatial effects on transla-

tion, particularly ribosome loading. In this case, the BCF should be incorporated in the ODE.

Additionally, these results are indicative that for other processes in the cell where complexes of

similar size as polysomes are formed, then spatial effects will likely be substantial.

Gene expression regulation by transcription factors. Regulation of gene expression is

often performed by transcription factors (TFs) [1]. A transcription factor can either enhance

(for activators) or repress (for repressors) transcription. Spatial affects play an identical role in

gene regulation via activators as they do in gene regulation via RNAP (Fig 5), thus we focus on

transcriptional repressors. In this section, we model transcription regulation where a repressor

Pr dimerizes to form dimer c1 (e.g., TetR dimerizes before binding to a gene [31]) and then

blocks transcription of gene D that produces protein P. The biochemical reactions correspond-

ing to this process are:

; � !
a Pr; Pr þ PrÐ

a1

d1

c1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Case I

; c1 þ DÐ
a2

d2

c2;

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Case II

D � !k P; Pr � !
gr
;; P � !

gp
;;

ð23Þ

where α is the production rate of Pr, a1 (d1) is the association (dissociation) rate constant to

form the c1 complex, a2 (d2) is the association (dissociation) rate constant to form the c2 com-

plex, κ is the catalytic rate constant to produce protein P, and γr and γp are the degradation

rate constant of Pr and P, respectively. Notice that we have lumped the transcription and trans-

lation process to produce Pr into one production reaction and similarly for P. From the results

of the previous section, we know that �aðtÞ depends on the location where Pr is expressed

(higher if its coding DNA is near the cell poles than mid-cell) and the size of it’s mRNA (higher

for longer mRNAs). Similarly, κ depends on the location where Pr is expressed and it’s mRNA

size. Using the results from the previous section, we can explicitly model these dependences,

however, we opt not to do so to solely investigate the role of spatial effects on transcriptional

repression. Since the repressor Pr, freely diffuses, the dimerization reaction belongs to Case I.

The gene D is spatially fixed and it is repressed by the freely diffusing c1, thus this interaction

falls under Case II. We assume that the total concentration of D is conserved, so that DT(x) =

D(t, x) + c2(t, x) and that DT(x) is localized at x = x�. The reduced ODE model corresponding

to (23) obeys

d�PrðtÞ
dt
¼ �aðtÞ � gr�PrðtÞ;

d�c1ðtÞ
dt
¼ a1y

�

1
�P2

r ðtÞ � d1c1ðtÞ � a2y
�

2
�c1ðtÞ�DðtÞ þ d2

�c2ðtÞ;

d�c2ðtÞ
dt
¼ a2y

�

2
�DðtÞ�ciðtÞ � d2�c2ðtÞ; �DðtÞ ¼ 1 � �c2ðtÞ;

d�PðtÞ
dt
¼ k�DðtÞ � gp�PðtÞ:

ð24Þ

Concentration variables were nondimensionalized with respect to the space averaged total

DNA �DT ¼
R 1

0
DTðxÞdx. From our main result, the BCF’s are given by

y
�

1
¼

Z 1

0

v̂2

Pr
ðxÞdx ¼

R 1

0
v2
Pr
ðxÞdx

½
R 1

0
vPr
ðxÞdx�2

; y
�

2
¼ v̂c1

ðx�Þ ¼
vc1
ðx�Þ

R 1

0
vc1
ðxÞdx

; ð25Þ

where vPr
ðxÞ ¼ e� ðr=r�Þ2 r̂ðxÞ and vc1

ðxÞ ¼ v2
Pr
ðxÞ (recall (10)) are the available volume profiles of

Pr and c1, respectively, and r is the radius of gyration of Pr.

We now consider the steady state behavior of system (24) by equating the time derivatives

to zero. Specifically, we are interested in how the steady state levels of P is affected by the
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spatial quantities r/r� and x�. From setting (24) to steady state, we obtain

�P ¼
k

gp

�D; where �D ¼
1

1þ ð�Pr=KÞ
2
y
�
; y

�
¼ y

�

1
y
�

2
¼ v̂2

Pr
ðx�Þ; ð26Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kd;1Kd;2

p
and Kd,i = di/ai for i = 1, 2. From (26) and (25), we observe that θ� con-

tains all the spatial information, which includes the size of Pr and the location of the target

gene D. If θ� = 1, then the protein concentration would be the same as the well-mixed model.

The ratio K=
ffiffiffiffiffi
y
�

p
can be thought of as an effective disassociation rate constant of the repressor.

If D is located near mid-cell (x� � 0 in (25)), then for r/r� � 1 we have θ� � 1 (see Fig 4), but

as r/r� increases, we have that θ� < 1 and asymptotically approaches zero as r/r� !1. Simi-

larly, if D is located near the cell poles (x� � 1 in (25)), then for r/r� � 1 we have θ� � 1 (see

Fig 4), but as r/r� increases, we have that θ� > 1. Thus, the efficacy of a transcriptional repressor

regulating genes in the chromosome (cell-poles) decreases (increases) with TF size. Intuitively,

this occurs because as the TF size increases, excluded volume effects will push it out of the

chromosome onto the cell-poles (see Remark 1), thus interacting with DNA near the cell-poles

more frequently than with DNA near mid-cell. Numerical simulations validate our predictions

as shown in Fig 6, where increasing the transcription factor size leads to higher (lower) repres-

sion when the target DNA is localized at the cell poles (mid-cell) with respect to a well-mixed

model. The simulation results also show agreement between the predictions of the full PDE

(S1 Text: Equation 42) and reduced ODE model (24) (as shown explicitly in S1 Text: Fig L).

Furthermore, we demonstrate in S1 Text: Fig J, that this agreement extends to the temporal

dynamics. Finally, all our results hold independent of the binding and unbinding speeds of the

transcription factor dimerizing and of the dimer binding to the DNA (S1 Text: Fig K). In S1

Text: Section 8, we propose an experimental method to test the hypothesis that mid-cell genes

are regulated less effectively than pole localized genes.

Fig 6. Spatial heterogeneity effects in transcriptional regulation. (A) The repressor Pr dimerizes and regulates the production of

protein P. (B) The steady state space-averaged concentration per-cell of �P normalized by its value when �Pr ¼ 0 (26) for the PDE model

(S1 Text: Equation 42), the well-mixed model ((24) with y
�

1
¼ y

�

2
¼ 1), and the reduced ODE model (24) when the DNA is located near

mid-cell (x� � 0 in (26)) and when the DNA is located at the cell-poles (x� � 1) for several sizes of Pr. The parameter values and full

simulation details are provided in S1 Text: Section 4.

https://doi.org/10.1371/journal.pcbi.1008159.g006
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The reactions in (23) can be easily extended to CRISPRi/dCas9 repression systems [34],

where instead of two identical species dimerizing, we have two distinct freely diffusing species

bind (dCas9 and guide RNA) to form the complex gRNA-dCas9, which targets a desired DNA

sequence. Exploiting the insight gained from analyzing (23), we expect that due to the large

size of dCas9 [35] (which is further augmented as it forms a complex with the gRNA), it will

regulate pole localized DNA (e.g,. ColE1 plasmid DNA [9]) more efficiently than genes in

mid-cell (e.g,. chromosomally integrated) and thus spatial effects are expected to be more sig-

nificant when using CRISPRi/dCas9 in genetic circuit design. Specifically, based on approxi-

mate values found in the literature, we estimated that θ� � 1 for a transcription factor, while θ�

can range between 0.9 and 1.1 for dCas9-enabled repression. This indicates that a well-mixed

model is appropriate for modeling transcription factor-enabled repression of gene expression

but may not be sufficient to capture effects of spatial heterogeneity arising with larger repress-

ing complexes such as with dCas9/gRNA (see S1 Text: Section 4 for details).

Genetic oscillator. As a final example, we consider the repressor-activator clock genetic

circuit designed in [32] and shown in Fig 7A. This circuit produces sustained oscillations if

tuned within an appropriate parameter range [1, 33]. The circuit consists of two proteins Pa

and Pr. Protein Pa, is an activator which dimerizes to form Pa,2 and then binds to its own gene

Da to form complex ca,1 to initiate transcription. The dimer Pa,2 also binds to the gene Dr,

which transcribes Pr to form complex ca,2 and initiates transcription. Protein Pr, dimerizes

Fig 7. Spatial effects on the dynamics of genetic circuits. (A) The activator-repressor clock where Pr represses Pa and Pa activates itself

and Pr. Both proteins are expressed from the same cell-pole localized plasmid. (B) The temporal evolution of Pa is given for the full-PDE

model (S1 Text: Equation 44), the reduced ODE model (28), and the well-mixed model (same as (28) with y
�

A;1 ¼ y
�

A;2 ¼ y
�

R ¼ 1). When

Pa is small (ra/r� � 1), all three models predict sustained oscillations. When Pa is large (ra/r� = 1), the full-PDE model and the reduced

ODE model predict the oscillations will cease. For both simulations rr=r� � 1) y
�

R � 1. The full simulation details and parameter

values are given in S1 Text: Section 5.

https://doi.org/10.1371/journal.pcbi.1008159.g007
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to form Pr,2 and then represses Pa by binding to Da to form complex cr. The biochemical reac-

tions corresponding to this circuit are:

Pa þ PaÐ
a1

d1

Pa;2;
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Case I; Pa diffuses

Pr þ PrÐ
a2

d2

Pr;2;
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Case II; Pr diffuses

Pa;2 þ DrÐ
a4

d4

ca;2;
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Case II; Pa;2 diffuses and Dr fixed

Pa;2 þ DaÐ
a3

d3

ca;1; Pr;2 þ DaÐ
a5

d5

cr;
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Case III; Pa;2 and Pr;2 diffuses and Da fixed

Da � !
k1 Pa;

Dr � !
k2 Pr; Pa � !

ga
;; Pr � !

gr
;; ca;1 � !

k3 Pa; ca;2 � !
k4 Pr;

ð27Þ

where ai (di) for i = 1, . . ., 5 are association (dissociation) rate constants, γa (γr) is the degrada-

tion rate constant of Pa (Pr) κ1 (κ2) is the basal rate at which gene Da (Dr) is transcribed, and

κ3 (κ4) is the rate at which the DNA-transcription-factor complexes are transcribed for Da (Dr).

We assume that the total concentration of Da is conserved, so that Da,T(x) = Da(t, x) + ca,1(t, x)

+ cr(t, x) and that Da,T is localized at x ¼ x�a. Similarly, we assume that the total concentration

of Dr is conserved, so that Dr,T(x) = Dr(t, x)+ ca,2(t, x) and that Dr,T is localized at x ¼ x�r . The

reduced ODE model corresponding to (27) is given by:

d�PaðtÞ
dt

¼ k1
�DaðtÞ þ k3

�ca;1ðtÞ � ga�PaðtÞ;
d�PrðtÞ

dt
¼ k2

�DrðtÞ þ k4
�ca;2ðtÞ � gr�PrðtÞ;

d�Pa;2ðtÞ
dt

¼ a1y
�

1
�P2

aðtÞ � d1
�Pa;2ðtÞ

� a3y
�

3
�Pa;2ðtÞ�DaðtÞ þ d3�ca;1ðtÞ � a4y

�

4
�Pa;2ðtÞ�DrðtÞ þ d4�ca;2ðtÞ;

d�Pr;2ðtÞ
dt

¼ a2y
�

2
�P2

r ðtÞ � d2
�Pr;2ðtÞ � a5y

�

5
�Pr;2ðtÞ�DaðtÞ þ d5�crðtÞ;

d�ca;1ðtÞ
dt

¼ a3y
�

3
�Pa;2ðtÞ�DaðtÞ � d3�ca;1ðtÞ;

d�ca;2ðtÞ
dt

¼ a4y
�

4
�Pa;2ðtÞ�DrðtÞ � d4�ca;2ðtÞ;

d�crðtÞ
dt
¼ a5y

�

5
�Pr;2ðtÞ�DaðtÞ � d5�crðtÞ;

�DaðtÞ ¼ 1 � �ca;1ðtÞ � �crðtÞ; �DrðtÞ ¼ �Dr;T � �ca;2ðtÞ:

ð28Þ

Concentration variables were nondimensionalized with respect to the space averaged total

DNA �Da;T ¼
R 1

0
Da;TðxÞdx. Applying our main result, the BCF’s are given by

y
�

1
¼

Z 1

0

v̂2

Pa
ðxÞdx; y

�

2
¼

Z 1

0

v̂2

Pr
ðxÞdx;

y
�

3
¼ v̂Pa;2

ðx�aÞ; y
�

4
¼ v̂Pa;2

ðx�r Þ; y
�

5
¼ v̂Pr;2

ðx�aÞ;

where v̂Pa
ðxÞ, v̂Pr

ðxÞ, v̂Pa;2
ðxÞ, and v̂Pr;2

ðxÞ are the normalized available volume profiles (i.e,.

v̂Pa
ðxÞ ¼ vPa

ðxÞÞ=
R 1

0
vPa
ðxÞdx) of Pa, Pr, Pa,2, and Pr,2, respectively. From (10), notice that

vPa;2
ðxÞ ¼ v2

Pa
ðxÞ and vPr;2

ðxÞ ¼ v2
Pr
ðxÞ. The available volume profiles are given by

vPa
ðxÞ ¼ e� ðra=r�Þ2 r̂ðxÞ; vPr

ðxÞ ¼ e� ðrr=r�Þ2 r̂ðxÞ; ð29Þ

where ra and rr are the radius of gyration of Pa and Pr, respectively. Approximating �Pa;2ðtÞ,
�Pr;2ðtÞ, �ca;1ðtÞ, �ca;2ðtÞ and �crðtÞ at their quasi-steady state (since di� γa, γr for i = 1, . . ., 5, [1]),
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we obtain

�Pa;2ðtÞ ¼
a1y1

d1

�P2

aðtÞ; �Pr;2ðtÞ ¼
a2y2

d2

�P2

r ðtÞ;

�ca;1ðtÞ ¼
a3y3

d3

�Pa;2ðtÞ�DaðtÞ; �ca;2ðtÞ ¼
a4y4

d4

�Pa;2ðtÞ�DrðtÞ; �crðtÞ ¼
a5y5

d5

�Pr;2ðtÞ�DaðtÞ;

and, therefore, we can further reduce (28) to

d�Pa

dt
¼

a0;A þ aA
�Pa
Kd;1

� �2

1þ
�Pa
Kd;1

� �2

þ
�Pr

Kd;2

� �2
� gA

�Pa;
d�Pr

dt
¼
a0;R þ aR

�Pa
Kd;3

� �2

1þ
�Pa
Kd;3

� �2
� gR

�Pr ð30Þ

where a0;A ¼ k1
�Da;T (a0;R ¼ k2

�Dr;T) is the basal production rate of Pa (Pr), αA = κ3

(aR ¼ k4
�Dr;T) is the additional production rate of Pa (Pr) due to activation from Pa, and

Kd;1 ¼
d1d3

y
�

A;1a1a3

; Kd;2 ¼
d2d5

y
�

Ra2a5

; Kd;3 ¼
d1d4

y
�

A;2a1a4

; ð31Þ

y
�

A;1 ¼ y
�

1
y
�

3
¼ v̂Pa

ðx�aÞ; y
�

R ¼ y
�

2
y
�

5
¼ v̂Pr

ðx�aÞ; y
�

A;2 ¼ y
�

1
y
�

4
¼ v̂Pa

ðx�r Þ: ð32Þ

The form of the dynamics given by (30) was theoretically analyzed in [1, 33], and it was shown

that the values of Kd,i for i = 1, 2, 3, were critical in determining whether sustained oscillations

occur. From (31), these parameters depend on (32) and thus on the size of Pa and Pr through

the available volume profiles (29) and the location of Da and Dr (x�a and x�r ). Numerical simula-

tions demonstrate how these spatial parameters affect circuit behavior. In our simulation setup,

the parameters are chosen such that the well-mixed model ((28) with y
�

R ¼ y
�

A;1 ¼ y
�

A;2 ¼ 1)

oscillates, the DNA of Pa and Pr are localized at the cell poles and have the same copy number

(i.e., x�a ¼ x�r and �Dr;T ¼
�Da;T ¼ 1), the size of Pr is chosen to be small rr/r� � 1 (thus y

�

R � 1),

and the size of Pa is varied (thus varying y
�

A;1 and y
�

A;2). Since Da is localized at the cell poles, it

implies x�a � 1 and from (32), we observe that if ra=r� � 1) y
�

A;1 � y
�

A;2 � 1 and y
�

A;1; y
�

A;2

increase as ra/r� increases. The results of these simulations are shown in Fig 7. When ra/r� � 1,

the full PDE model (S1 Text: Equation 44), the reduced ODE model (28), and the well-mixed

model are all in agreement and sustained oscillations are observed. By contrast, when ra/r� = 1,

the PDE and reduced model (which are in agreement with each other as explicitly shown in S1

Text: Fig N) predict that sustained oscillations will no longer occur. Furthermore, in S1 Text:

Figure M, we demonstrate that indeed as the size of Pa increases it is excluded from the chromo-

some onto the cell poles while the spatial profile of Pr is homogeneously distributed throughout

the cell since rr/r� � 1 (Remark 1).

Discussion

We derived a reduced order ODE model of genetic circuits with the same dimension as tradi-

tional ODE well-mixed models; yet, it captures effects of spatial heterogeneity within bacterial

cells (12). In particular, our reduced model is the same as a well-mixed model where all the

association rate constants are multiplied by the binding correction factor (BCF). This factor

depends on the size and location (if fixed in space) of the reacting species, according to an

analytical formula that we derived from first principles (13) and its value can be estimated

experimentally through simple procedures (S1 Text: Section 7). We have mathematically

PLOS COMPUTATIONAL BIOLOGY Effects of spatial heterogeneity on bacterial genetic circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008159 September 14, 2020 21 / 25

https://doi.org/10.1371/journal.pcbi.1008159


demonstrated that this reduced order model is a good approximation of the space-averaged

dynamics resulting from a reaction-diffusion PDE model under the assumption of fast diffu-

sion. It can therefore be used in place of PDE models, providing substantial advantages for

both simulation and mathematical analysis.

We applied this model to analyze the effects of spatial heterogeneity on core biological

processes and genetic circuits. Specifically, motivated by the fact that DNA, ribosomes, and

mRNA have been shown to localize within the cell [4, 5, 14], we analyzed the transcription and

translation processes. We determined that mRNA levels are lower (higher) when the gene is

localized near the mid-cell (cell poles). We also showed that when the target gene of a tran-

scriptional repressor is near mid-cell (cell poles) the effective repression is lower (higher) with

respect to that of the well-mixed model. This discrepancy is amplified as the size of the tran-

scription factor increases. The extent of these spatial effects depends on how different the value

of the BCF is from unity. Based on parameters found in the literature, we determined that for

the processes of transcription and its regulation the BCF should be close to unity and hence a

well-mixed ODE model should be sufficient. However, in situations where the nucleoid is

highly compacted (from overexpressing mRNA [13] or translational inhibition [36]), we

expect that the available volume profile (2) approaches small values and, as a consequence, the

value of the BCF can substantially deviate from unity (13).

Our results provide additional interpretations of well-known biological phenomena. For

example, it has been shown that the expression rate of chromosomal genes depends on the

locus where the gene is inserted [37]; that the nucleoid dynamically changes shape to control

gene expression and transcription regulation [4, 38] (e.g., see S1 Text: Section 9, for how a

time varying chromosome density modulates the BCF); and that coregulation and coexpres-

sion among genes depends on their spatial distance [39]. For a fixed amount of mRNA, we

showed that spatial heterogeneity leads to higher translation rates since both mRNA and ribo-

some are pushed out of the chromosome into a smaller region near the cell poles, which results

in larger effective binding affinity. How larger, it depends on the value of the BCF. For a poly-

some with 10 translating ribosomes, the value of the BCF can deviate from unity by 56% in

the ribosome loading step and by 7% in the peptide release step. These estimates are believed

to be conservative since we did not account for the exclusion effects from the peptide chains

attached to the translating ribosome, which will result in even more pronounced spatial effects.

Therefore, a well-mixed model may not be sufficient to capture the effects of spatial heteroge-

neity on translation.

Our modeling framework can be easily extended to other aspects of gene expression. For

example, we may consider co-transcriptional translation [40]. In this case, as a result of transla-

tion being localized at the gene location, the effective ribosome binding site strength will also

depend on gene location through the BCF. We may also consider the role of spatial heteroge-

neity on orthogonal translational machinery [41]. From our models, we predict that one can

tune the rate at which orthogonal ribosomes are formed by creating larger synthetic 16S

rRNA. Furthermore, once the production of orthogonal ribosomes is placed in a feedback

form to decouple genetic circuits [41], our framework suggests that the feedback efficiency

may depend on the spatial location of the synthetic 16S rRNA gene. The value of the parameter

r�, whose squared value is inversely proportional to the average chromosome density (2), is

critical in determining the extent of spatial effects. In this study we indirectly estimated a value

of r� based on [13]. However, a more comprehensive study should be conducted to estimate r�

for several contexts (S1 Text: Section 7), or equivalently to estimate extent of excluded volume

effects, which may easily be performed via superresolution imaging [14].

In summary, this paper provides a general and convenient modeling framework to account

for DNA localization and excluded volume effects on intracellular species dynamics. While
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other phenomena contributing to intracellular spatial heterogeneity, such as crowding [42],

sliding, hopping, and dimensionality [17], exist, this is a first step towards creating a general

framework to modify current models to capture spatial information. Our model can be used

both as an analysis and a design tool for genetic circuits, in which variables such as gene loca-

tion and regulator size may be considered as additional design parameters.

Supporting information

S1 Text. Supporting information file with mathematical proofs, detailed analysis of exam-

ples, generalization and extension of the results and additional simulations.

(PDF)
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