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One Sentence Summary: Deep learning and comprehensive evaluation identifies Azithromycin 
and Atorvastatin as repurposable drugs for COVID-19.  
 
ABSTRACT 
Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a 
vast amount of drug research for prevention and treatment has been quickly conducted, but these 
efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a 
drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug 
interactions, deep graph neural networks, and in-vitro/population-based validations. We first 
collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through 
CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, 
host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to 
derive the candidate drug’s representation based on the biological interactions. We prioritized the 
candidate drugs using clinical trial history, and then validated them with their genetic profiles, in 
vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including 
Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug 
combinations that may synergistically target COVID-19. In summary, we demonstrated that the 
integration of extensive interactions, deep neural networks, and rigorous validation can facilitate 
the rapid identification of candidate drugs for COVID-19 treatment.  
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INTRODUCTION 
 

The emergence of SARS-CoV-2 (2019 novel coronavirus, COVID-19) has created a global 
pandemic. As of today (August 27, 2020), there have been over 24 million COVID-19 cases 
worldwide, but no vaccine or highly effective antiviral treatment for COVID-19 patients is 
available yet (1).  While many millions more will likely be infected, some pessimistic estimation 
is that it may take at least one year for an approved effective vaccine to be in place (2). Lack of 
vaccine or antiviral drugs with clinical efficacy substantiates the need to expand research efforts 
in the prevention and/or treatment for COVID-19 (3, 4). There has been great effort in this direction 
and researchers have screened thousands of candidate agents (5, 6). These agents can be divided 
into two broad categories, those that can directly target the virus replication cycle, and those based 
on immunotherapy approaches either aimed to boost innate antiviral immune responses (e.g., 
targeting the host angiotensin-converting enzyme 2 (ACE2) that SARS-CoV-2 directly binds (7)) 
or to alleviate damage induced by dysregulated inflammatory responses (8). Research on this 
rapidly emerging infectious disease has created valuable knowledge. For example, a curated list 
of potential COVID-19 therapeutics is available for research, such as Comparative 
Toxicogenomics Database (CTDbase) or PharmGKB (9), which have offered valuable resources 
for systematic integration of accumulated knowledge (10). 
 

Drug discovery, however, is an expensive and time-consuming process. It typically takes 
many years and costs billions of dollars to develop and obtain the approval of a drug. Drug 
repurposing is to identify existing drugs or compounds that can be efficacious to other conditions 
of interest. Drug repurposing via systematic integration of pharmacodynamics, in vitro drug 
screening, and population-scale clinical data analysis carries high potential for a novel approach 
by identifying highly promising drugs and their combinations to save the cost and accelerate 
discovery (11). Based on this accumulated genomic and pharmacological knowledge, several 
computational approaches have explored and identified potentially effective drug and/or vaccine 
candidates (12). Examples include a network proximity study in protein-protein interaction (PPI) 
networks (13–15), in silico protein docking (16), and sequencing analysis (17). Another family of 
studies has utilized retrospective analysis of clinical data, such as electronic health records (EHRs) 
(2). These studies have assessed the potential efficacy of drugs including angiotensin receptor 
blockers, estradiol, or antiandrogens (2, 18). Although the network pharmacology and the 
retrospective clinical data analysis provide complementary insight into potential drugs (19), few 
studies have investigated by integrating these complementary perspectives, particularly in 
COVID-19. This work attempts to identify repurposable drugs from SARS-CoV-2-drug 
interactions and validating the drugs from in vitro efficacy and large-scale clinical data to prioritize 
repurposable drugs. 
 

In this work, we innovated the traditional network analysis by deep graph neural 
representation to broaden the scope from local proximity to global topology. In traditional network 



analysis, network proximity is defined with explicit and direct interactions (13, 14), thus a node’s 
local role (e.g., neighbors, edge directions) and global position (e.g., overall topology or structure) 
are less considered. With the recent advancement in machine learning and representation learning, 
the graph neural network (GNN) approach is mature for the application of its state-of-the-art 
technology to network pharmacology. GNN is one field of deep neural networks that derive a 
vectorized representation of nodes, edges, or whole graphs. The graph node embedding can 
preserve the node’s local role and global position in the graph via iterative and nonlinear message 
passing and aggregation. It learns the structural properties of the neighborhood and the graph’s 
overall topological structure (20). Adopting GNN into the biomedical network facilitates the 
integration of multimodal and complex relationships. Recently GNN has shown a great promise 
in predicting interactions (e.g., PPIs, drug-drug adverse interactions, and drug-target interactions) 
and discovery of new molecules (21, 22). GNN can also benefit drug repurposing by representing 
the complex interaction between drugs and diseases. A recent attempt has been made to use the 
GNN for drug repurposing, which builds a general biomedical knowledge graph, called Drug 
Repurposing Knowledge Graph (DRKG), from seven biomedical databases and utilizes the 
embedding to discover a therapeutic association between drugs and diseases (15). The knowledge 
graph includes 15 million edges across 39 different types connecting drugs, disease, genes, and 
pathways from seven databases including DrugBank, Hetionet, STRING, and a text-mining-driven 
database (23). This biomedical network representation offers a general and universal 
understanding of the interaction between drugs, genes, and diseases. 

 
In this study, we built the SARS-CoV-2 Knowledge Graph from curated COVID-19 

literature, transferred the universal representation from DRKG, and then utilized deep GNN to 
derive repurposable drugs’ representations which were rigorously validated with in vitro efficacy 
and large-scale EHRs (Fig. 1). Compared to the existing studies (13, 15), our work’s novelty can 
be summarized as: i) the knowledge graph was tailored to COVID-19 literature as well as backed 
by universal biomedical literature, ii) the data were comprehensive and up-to-date knowledge on 
COVID-19 (baits-genes-drugs interactomes, gene expression, in-vitro efficacy, EHRs, and clinical 
trials), and ii) synergistic drug combinations were identified based on complementary drug targets.  
 
 
 
 
 
 
 



 
Figure 1. Study workflow. (a) We collected 27 SARS-CoV-2 baits, 322 host genes interacting 
with baits, 1,783 host genes on 609 pathways, 3,635 drugs, 4,427 drugs’ targets, and 1,285 
phenotypes, and their corresponding interactions from a curated list of COVID-19 literature in 
CTDbase (24). (b) We built the SARS-CoV-2 knowledge graph with nodes (baits, host genes, 
drugs, targets, pathways, and phenotypes) and edges (virus-host protein-protein interaction, gene-
gene in pathways, drug-target, gene-phenotype, drug-phenotype interaction). (c) We derived the 
node’s embedding using the multi-relational and variational graph autoencoder (25, 26). We 
transferred extensive representation in DRKG using transfer learning. (d) We built a drug ranking 
model based on the drug’s embedding as features and clinical trials as silver-standard labels. (e) 
The drug ranking was validated using drug’s gene profiles , in vitro drug screening efficacy (6), 
and large-scale electronic health records. (f) We presented validated drugs with their genetic, 
mechanistic, and epidemiological evidence. (g) Using the highly ranked drug candidates, we 
searched for drug combinations that satisfy complementary exposure patterns (13). 
 
  



RESULTS 
 
Building the SARS-CoV-2 knowledge graph 

We built a comprehensive graph, named as the SARS-CoV-2 Knowledge Graph, that 
represents interactions between SARS-CoV-2 baits, host genes, pathways, targets, drugs 
(including compounds), and phenotypes (Fig. 1b). We identified drug-target interactions, 
pathways, gene/drug-phenotype interactions from CTDbase (24). We collected the SARS-CoV-2 
and host PPIs from a recent systematic PPI experimental study for SARS-CoV-2 (Methods) (27). 
The graph had four types of nodes and five types of edges based on the interactions. The four types 
of nodes include 27 virus baits, 5,677 unique host genes (from 322 host preys, 1,783 genes on 
pathways, and 4,427 drug targets, Fig. S1a), 3,635 drugs, and 1,285 phenotypes. The five types of 
edges include 330 virus-host PPIs, 13,423 pairwise genes on the same pathway, 16,972 drug-target 
pairs, 1,401 gene-phenotype pairs, and 935 drug-phenotype pairs.  
 
Drug embedding using graph neural network 

Using the SARS-CoV-2- knowledge graph, we derived embedding for each drug, gene, 
phenotype, and SARS-CoV-2 bait. The graph embedding method was the variational graph 
autoencoder with multi-relational edges (Methods) (26). We set the embedding size as 128 after 
several trials. We further boosted the representativeness of the embedding by transferring DRKG 
universal embedding to our embedding. The DRKG embedding contains general biological 
knowledge (e.g., drug embedding was derived from molecular structures, targets, anatomical 
therapeutic chemical classifications, side effects, pharmacologic classes, and treating diseases) 
(15). By transferring the rich representation of DRKG to the SARS-CoV-2 knowledge graph, we 
can derive embeddings that are more faithful to underlying pharmacokinetics and 
pharmacodynamics. To this end, we initialized the SARS-CoV-2 knowledge graph node 
embedding with DRKG embedding and fine-tuned the node embedding by updating them via 
GNN’s message passing and aggregation (Methods, Note S1). 

 
We first internally validated the confidence of our knowledge graph embedding via link 

prediction to confirm if the node embedding can capture the network topology centered by SARS-
CoV-2. We measured an accuracy to predict interactions between the nodes (SARS-CoV-2 baits, 
genes, drugs, and phenotypes). We randomly selected 10% of the edges for validation. As a result, 
our node embedding showed high accuracy in predicting the interactions in the SARS-CoV-2 
knowledge graph. The initial DRKG universal embedding (without fine-tuning) achieved 0.5695 
AUROC and 0.6431 AUPRC. After fine-tuning the DRKG embedding to the SARS-CoV-2 
knowledge graph, we achieved AUROC 0.8121 and AUPRC 0.8524, respectively (Table S1).  

 
We visualized the 128-dimensional node embedding using t-Distributed Stochastic 

Neighbor Embedding (t-SNE) to observe the node embedding better (28). The t-SNE plot projects 
a high-dimensional vector into a low-dimension vector while preserving the pairwise similarity 



between nodes, thus allowing us to examine the high-dimensional node embedding with low-
dimension (e.g., 2-dimensions) visualization. In the t-SNE plot (Fig. 2a, Fig. S2), we found that 
the node embedding of SARS-CoV-2 baits, host genes, drugs, and phenotypes were distributed 
separately. We found that a group of antiviral and anti-inflammatory drugs (including Tenofovir, 
Ritonavir) was closely located to SARS-CoV-2 baits. Another group of anti-inflammatory and 
immunosuppressive drugs was highlighted including Cyclosporine and Dexamethasone, which 
were surrounded by genes related to inflammation and infection such as CD68 and PRDM1. We 
also found a group of blood thinners (Heparin), anti-hypertensives (Amlodipine), anti-platelet 
(Dipyridamole), and anti-inflammatory drugs (Indomethacin).  
 
Initial drug ranking 
 

Using the rich representation of the candidate drugs, we built an initial ranking model that 
predicts antiviral effectiveness. We hypothesized that, because drugs testing in clinical trials are 
potentially efficacious in treating COVID-19, a drug that is similar to these trial drugs can have 
potential efficacy too. This drug ranking was an initial filtering step to select possibly potent drugs 
out of 3,635 candidates. For the labels, 99 clinical trial drugs were matched to the 3,635 drugs. 
The remaining drugs without matched clinical trials were regarded as having negative efficacy. 
We designed a customized neural network ranking model based on Bayesian pairwise ranking loss 
(Methods) (29). The ranking model accuracy was AUROC between 0.77-0.90 and AUPRC 
between 0.17-0.25 (Table 1). The SARS-CoV-2 knowledge graph embedding that was boosted by 
general embedding from DRKG showed the highest accuracy, thanks to rich representation in 
DRKG. 
  



Table 1. Accuracy of predicting drugs under COVID-19 clinical trials. The predictors were the 
drug embedding and labels that were whether a drug is under clinical trials. Logistic Regression, 
Support Vector Machines, XGBoost, and Random Forest were off-the-shelf models. The neural 
network is a customized model (Methods). AUROC=area under the receiver operating curve. 
AUPRC=area under the precision-recall curve. 

 
Embedding 

Methods 

 
Accuracy 

Ranking models 

Logistic 
Regression 

Support 
Vector 

Machines 

XGBoost Random 
Forest 

Neural 
network 
ranking 

SARS-CoV-2 
knowledge graph 
embedding  

AUROC 0.6800 0.6915 0.7019 0.6161 0.7628 

AUPRC 0.0604 0.1149 0.0836 0.0940 0.1272 

General 
biomedical 
knowledge graph 
embedding from 
DRKG (15) 

AUROC 0.7855 0.8332 0.8500 0.7372 0.8512 

AUPRC 0.1183 0.1848 0.1439 0.0790 0.1624 

SARS-CoV-2 
knowledge 
graph 
embedding + 
general 
embedding 
(proposed) 

AUROC 0.8973 
 

0.7697 0.8934 0.7814 0.8992 

AUPRC 0.1965 0.1629 0.1701 0.0916 
 

0.2503 

 
  



 
 
Table 2. External validation of the candidate drugs using in vitro drug screening results and 
EHRs. N/A=not available. False-negative or true-negative values could not be obtained because 
the cytopathic effect (ReFRAME) study only reports positive drugs (5). Caution is needed in 
interpreting the accuracy because the number of overlapping drugs is limited in some studies 
and, thus, the statistical power is limited.  

Validation 
type 

Source # overlap 
drugs  

# true 
positives 
(TP) 

# false 
positives 
(FP) 

# false 
negatives 
(FN) 

# true 
negatives 
(TN) 

Recall 
TP/(TP
+FP) 

Precision 
TP/(TP+F
N) 

Gene 
profiles 

GSEA scores 580 55 128 128 269 0.3006 0.3006 

In-vitro 
drug 
screening 
results 

ACE2 enzymatic 
activity (6) 

497 25 69 120 283 0.2660 0.1724 

Spike-ACE2 
protein-protein 
interaction (6) 

497 6 22 139 330 0.2143 0.0414 

Cytopathic effect 
(NCATS) (6) 

497 26 33 119 319 0.4407 0.1793 

Cytopathic effect 
(ReFRAME) (5) 

13 5 8 N/A N/A 0.3846 N/A 

Population 
based 

EHRs 138 6 4 52 76 0.6 0.1035 

 
 
  



Multiple-source validation 
From the initial drug ranking, we selected the top 300 highly-ranked drugs as potential 

repurposable candidates. We validated the highly-ranked drugs using a wide spectrum of 
validation sources such as genetic, mechanistic, and epidemiological evidence, which reflects 
complementary aspects of drug effectiveness. Note that we did not exclude the clinical trial drugs 
that were used in training.  

 
Genetic validation using gene set enrichment analysis 

For the genetic validation, we compared the gene expression signature profiles of candidate 
drugs with that of SARS-CoV-2-infected host cells. We used gene set enrichment analysis (GSEA) 
to identify a significant association between SARS-CoV-2 and candidate drugs (30). We obtained 
the gene expression signature of SARS-CoV-2 from SARS-CoV-2 infected human lung cells (Fig. 
2.B) (31), and obtained the drug's gene expression signature profile from the Connectivity Map 
(cMAP) database (GSE92742 and GSE70138) (32). We determined whether the drug’s gene 
expression signature is negatively correlated with that of SARS-CoV-2 based on the enrichment 
score (ES) (33). The combining ES <0 and p-value <0.05 was considered as the threshold to 
determine that a drug may inhibit the up-regulated or activate the down-regulated host genes 
(Methods, Note S4). As a result (Fig. 2.C), we identified 183 statistically significant drugs 
including Azithromycin (ES=-0.479), Progesterone(ES=-0.404), Amodipine (ES=-0.583), 
Atorvastatin (ES=-0.550), and Nifedipine (ES=-0.435).  



(A) 

 
        (B)                                                                (C) 

 
        (D)                                                                                                            (E) 

 
 



Figure 2. (a) SARS-CoV-2 knowledge graph t-SNE plot. Two nodes that have similar 
embedding are closely located in the t-SNE plot. We highlighted drugs undergoing clinical trials 
(as of July 23, 2020) to glimpse the promising repurposable drugs around the trial drugs. SARS-
Cov-2 baits were the upper-left green hexagons (⬢). Genes, the gray triangles (▲), were in the 
middle between baits and drugs. Drugs, the black rounds (⬤), were mixed with genes. Drugs 
undergoing clinical trials, the purple rounds, were closely located together. Phenotypes, the light 
brown diamonds (♦), are closely located relevant genes and drugs. We validated the drug ranking 
using four different external validation sources including  (b) Differentially expressed genes in 
SARS-CoV-2-infected human lung cells (GSE153970). Potential drugs can treat COVID-19 by 
inhibiting up-regulated genes or activating down-regulated genes. (c) GSEA score between the 
infected human lung cell transcriptome and drug-induced transcriptome. (d) in-vitro efficacy 
(e.g. % inhibition in viral entry and cytopathic effect assays (6)), and (e) treatment effect in 
EHRs (OptumⓇ de-identified EHR database (2007-2020)). 
 
 
  



Retrospective in-vitro drug screening validation 
We validated the candidates by comparing them with in vitro drug screening results 

retrospectively. We collected four different drug screening studies that target viral entry (ACE2 
enzymatic activity, Spike-ACE2 protein-protein interaction and viral replication/infection (Fig. 
2D) (cytopathic effect, two different compound libraries) (5, 6). Details on identifying efficacious 
drugs in each cell assay are described in Methods. We calculated precision and recall between the 
predicted (top 300 highly-ranked) drugs and the efficacious drugs in each screening result. We 
focused on only those drug candidates that are included in the compound library in the screening 
study. As a result, the recall was between 0.21 and 0.44 and the precision was between 0.04 and 
0.18 (Table 2). Caution is needed in interpreting the accuracy here, because the number of 
overlapping drugs is limited in some studies and, thus, the statistical power is limited.  
 
Population-based validation 
We examined drugs in EHRs of COVID-19 patients. We used the OptumⓇ de-identified EHR 
database (2007-2020). We derived efficacious drugs from EHRs that reduce the risk of mortality 
among hospitalized COVID-19 patients. We calculated drugs’ averaged treatment effect among 
treated (ATT) with inverse propensity score matching (PSM) and weighting from 34,043 COVID-
19 recovered or deceased patients (Table 3, Fig. S3b, see Methods). As a result, EHRs had a total 
of 391 drugs used for COVID-19 hospitalized patients; 138 drugs were common in EHRs and our 
initial 3,635 drugs. Ten (out of 138) drugs were effective (ATT>0 and p-value<0.05) in the EHRs 
(Fig. 2E). Among the ten positive drugs, our method identified several positive drugs with 
statistical significance: Azithromycin (ATT=13.08), Ceftriaxone (ATT=13.05), Acetaminophen 
(ATT=10.27), Albuterol (ATT=5.55), Glucagon (ATT=4.42), and Hydroxychloroquine 
(ATT=3.18) (Table S2).  
 
  



Table 3. COVID-19 hospitalized patient’s demographics and comorbidities before and after 
PSM. 

 Before matching After matching 

 Recovered Deceased Recovered Deceased 

Number of patients 15,078 3,200 2,774 2,827 

Age 

Mean 60.10 73.78 73.64 73.24 

Standard deviation 17.63 12.81 12.95 12.86 

Sex 

Male  7,765 1,887 1,601 1,630 

Female 7,309 1,313 1,172 1,197 

Race 

Caucasians    7336 2031 1728 1790 

African Americans 4052 544 511 490 

Asian Americans 470 113 97 102 

Others 3,220 512 438 445 

Admission conditions 

Temperature 36.93 37.16 37.07 37.00 

SPO2  94.21 91.39 92.32 92.56 

 
 
  



Validated high-ranked drugs 
Based on the extensive validation, we presented top repurposable drugs after filtering out 

and re-ordering the drug candidates according to the existence of validating evidence. We used a 
data programming technique to combine the multiple pieces of evidence (Note S3) (34). We 
highlighted the most promising drugs as follows (Fig. 3). Due to limited space, we presented the 
top 21 drugs in Table 4 and the remaining drugs are available in Table S3. The top 21 drugs include 
anti-infection, immunosuppressive or immunomodulatory, antiviral, anti-fever, antihypertensive, 
anti-cancer drugs, anticoagulant drugs which all have different possible functions in inhibiting 
SARS-CoV-2 proliferation or reducing symptoms. We highlight them below.  

 
Antimicrobial Agents. Azithromycin and Teicoplanin can inhibit 23 s ribosomes or RNA 

polymerase to stop the progress of infection. Some evidence supports Azithromycin regulating 
and/or decreasing the production of inflammatory mediators (IL-1β, IL-6, IL-8, IL-10, IL-12, and 
IFN-α), which might be effective to suppress viral entry (35). Azithromycin targets ABCC1 (an 
inflammatory modulator) that has direct PPI with SARS-CoV-2 bait orf9c (Fig. 3a). The data 
imply that Azithromycin can be related to viral gene replication. In the population-based EHR 
validation, Azithromycin had the highest treatment effect, and it is currently under testing in a 
clinical trial (36) to treat mild to moderate COVID-19 patients. Itraconazole can promote the 
production of IFN-1 that enhances viral-induced host responses (37).  

 
Immunosuppressive drugs. We identified immunosuppressive drugs such as 

Hydroxychloroquine, Chloroquine, and Sirolimus. Hydroxychloroquine or chloroquine are anti-
parasite drugs but also have effects on toll-like receptors and ACE2 (38), where toll-like receptors 
are associated with the production of inflammatory mediators (IL-1, IL-6, TNF-α, IFN-α, and IFN-
𝛽) (39), and ACE2 is the entry receptor of SARS-CoV-2 (40). Hydroxychloroquine and 
chloroquine are rather controversial in terms of its effectiveness (41). . Hydroxychloroquine 
directly targets PPT1, SIGMAR1, TRAF6, and SDC1, and it indirectly targets ECSIT and 
COL6A1, which had PPIs with SARS-CoV-2 baits orf8, orf9c orf10, and nsp6 (Fig. 3a). Thus, 
hydroxychloroquine might interfere with the SARS-CoV-2 replication. Sirolimus also works on 
toll-like receptors (42).   

 
Anti-fever drugs. Aspirin inhibits COX1, COX2, and Acetaminophen inhibits COX3 (43). 

Acetaminophen directly targets ACADM, CPT2, and indirectly targets ACSL3, and MARK2 
which finally have PPI with SARS-CoV-2 orf9b, M, and nsp7 (Fig. 3a). This means 
Acetaminophen may hinder the SARS-CoV-2 assembling and replication (44). Aspirin deactivates 
platelet function (45). A recent study reports that SARS-CoV-2 may over-activate platelets and 
thus reduce platelet production (46). Considering this evidence, Aspirin might be effective in 
COVID-19 patients by suppressing platelet function and inflammatory processes. Celecoxib is a 
COX2 selective inhibitor. According to a consensus docking result, Celecoxib inhibits SARS-



CoV-2 main protease up to 37% (47). Celecoxib combined with Oseltamivir significantly reduces 
IL-6 and IL-10 and increases the survival rate of hospitalization (47).  

 
Antiviral drugs. We identified various antiviral drugs such as Remdesivir, Ribavirin, 

Lopinavir, and Tenofovir. Currently, Remdesivir has been proved to inhibit SARS-CoV-2 
replication (48). In terms of PPI between the virus baits and host prey, Lopinavir targets HMOX1, 
which is a host prey that binds with SARS-CoV-2 orf3a (Fig. 3a). A recent study reports that 
Tenofovir may prevent SARS-CoV-2 replication (49). Ribavirin directly targets EIF4EBP1, 
IMPDH2, and TIPA, and it indirectly targets EIF4E2, POLA1, POLA2, PRM1, and PRM1, which 
have PPIs with SARS-CoV-2 baits nsp1, nsp2, and nsp14. This implies that Ribavirin may prevent 
SARS-CoV-2 replication. 

 
Antihypertensive and Lipid-lowering drugs. We identified Atorvastatin, Amlodipine, and 

Nifedipine. In addition to the original function for lowering cholesterol and triglyceride levels as 
an HMG-CoA reductase inhibitor, Atorvastatin can treat inflammation by lowering C-reactive 
protein (CRP) (50). Elevated CRP is highly associated with the aggravation of non-severe COVID-
19 adult patients (51). Also, Atorvastatin targets PLAT, which is on the same regulatory pathway 
with HDAC2 (52), and HDAC2 is a host prey of the SARS-CoV-2 nsp5. The nsp5 can assist in 
releasing nsp4 and nsp16, which are involved in viral replication (27). Both Nifedipine and 
Amlodipine are calcium channel blockers. Nifedipine reduces the ACE2 expression (53) (54). In 
a retrospective study, Amlodipine prevents virus replication in COVID-19 (55).  

 
Anti-cancer, Antipsychotic, and Hormone replacement drugs: Isotretinoin, a Vitamin A 

derivative, binds to papain-like protease, an essential viral protein encoding by SARS-CoV-2 (56). 
Chlorpromazine, an antipsychotic drug shows an in-vitro efficacy in inhibiting viral entry of 
SARS-CoV-2 (56, 57). Progesterone decreases a severity of cytokine storms in COVID-19 patients 
(58).  
  



Table 4. Top 22 promising drugs with supporting evidence and literature. + : positive evidence, 
-: negative evidence, NA: not investigated. Positive in-vitro efficacy if there is at least one 
positive efficacy in the four different in-vitro experiments. Full list in Table S3.  

Drug name Treated for Targets GSEA 
score 

In-vitro 
efficacy 

EHRs Clinica
l trials 

Supporting 
literature 

Azithromycin Anti-infection 23 s ribosome 
of bacteria 

+ + + + (35) 

Hydroxy-
chloroquine 

Immunosuppressive 
drug, Anti-parasite 

TLR-7, TLR-9, 
ACE2 NA + + + (59) 

Atorvastatin Lipid-lowering 
HMG-CoA 

Inhibitor 
+ NA + + (60) 

Acetaminophen Pain, fever  PGE-3, COX-
1, COX-2 

NA + + + NA 

Aspirin Pain, fever 
COX-1, COX-

2 - - + + NA 

Albuterol Anti-asthma beta-2-agonist NA - + - NA 

Melatonin Sleep awake cycle Melatonin 
receptor 

+ + - + (61) 

Sirolimus Immunomodulatory mTOR + - NA + (62) 

Nifedipine Anti-hypertension 
Calcium 
channel + + - + (63) 

Ribavirin Anti-HCV IMP-synthesis NA + NA + (64) 

Chloroquine 
Immunosuppressive 
drug, Anti-parasite 

TNF, TLR-9, 
ACE2 NA + NA + (38, 59) 



Lopinavir Anti-HIV HIV-protease NA + NA + (63) 

Teicoplanin Anti-infection peptidoglycan NA + NA + (65) 

Remdesivir Ebola, COVID-19 RNA 
polymerase 

NA + - + (66) 

Ivermectin Anti-parasite 
Glycine 
receptor 

subunit alpha-3 
NA + NA + (67) 

Amlodipine Anti-hypertension 
Calcium 
channel  + + - +  (47, 61) 

Celecoxib Anti-inflammatory CoX2 + + NA + (47) 

Isotretinoin Anti-cancer 
Vitamin A 
derivative + + NA +  (68) 

Chlorpromazine Antipsychotic  D1/D2 receptor + + NA + (69) 

Itraconazole Anti-fungus 
Lanosterol 14-

alpha 
demethylase 

+ + NA + (37) 

Progesterone 
Hormone 
replacement  

Progesterone 
receptor + + NA + (58) 

Tenofovir Anti-HIV 
Reverse 

transcriptase + NA NA + (70) 

 
  



(A) 

 
(B) 
 

 

 
 



Figure 3. The interaction among virus baits, host preys, and drug targets. (a) single drugs (b) drug 
combinations. SARS-Cov-2 baits = green hexagons (⬢). Genes = gray triangles (▲) Drugs = black 
rounds (⬤). The potentially repurposable drugs directly and indirectly target the host gene, which 
has PPI with the virus baits.  
  



Drug combination search 
 

As indicated by the complexity of the COVID-19 interaction network, using single drugs 
to treat the viral infection might result in short term effects. To improve treatment efficacy, we 
further predicted potential drug combinations from the top-ranking drugs with synergistic 
interactions without degradation in safety (71). Our working hypothesis was based on the 
Complementary Exposure pattern that “a drug combination is therapeutically synergistic if the 
targets of the individual drugs hit the disease module, but target a separate neighborhood” (72). 
We searched the drug combinations within the top 30 drugs.  We highlight the potential drug 
combinations as below (Table 5, Fig. 3b). 
 

Etoposide and Sirolimus. Etoposide is an anti-cancer drug that targets DNA topoisomerase 
2. Etoposide had been used to treat cytotoxic therapy for severe swine flu A/H1N1 (73). A recent 
report proposes that Etoposide can also suppress the inflammatory cytokines in COVID-19, by 
reducing activated cytotoxic T cells that further lead to eliminated activated macrophages (74). 
Sirolimus has been tested to be successful in treating MERS (75). There are some clinical trials to 
test the effectiveness of sirolimus in COVID-19 patients (NCT04341675). There is a clinical trial 
to test the effectiveness of combining Sirolimus, Celecoxib, and Etoposide on cancer 
(NCT02574728). Based on the virus bait-host prey interactome, this combination’ targets interact 
with ten virus baits (including orf9c, orf8, orf3a, nsp1, nsp2, nsp5) without overlapping targets. 
We can infer this combination can be related to virus assembly in mitochondria due to an 
association with nsp2 (27). The safety of this combination has been tested in treating Acute 
Myeloid Leukemia (76), but safety in COVID-19 still remains unknown. 

 
Mefloquine and Sirolimus. Mefloquine not only treats malaria but also has some effects on 

the immune system (77). The drug targets of Mefloquine and Sirolimus had similar baits-host prey 
interactome with Etoposide and Sirolimus. 

 
Losartan and Ribavirin. Losartan inhibits T-cell activation and also binds to ACE2 (78). 

Ribavirin has an antiviral and immunomodulatory function (79). From the bait-host gene PPI, this 
combination’s complementary drug targets had PPI with 9 virus baits including N, M, orf3a, orf8, 
nsp7,  nsp1, nsp2, nsp13, and nsp14, which might affect the virus replication, assembling, and 
releasing (27).  

 
Hydroxychloroquine and Melatonin. Melatonin has been proposed as an adjuvant for 

COVID-19 treatment (80) because Melatonin can limit virus-related diseases with a high profile 
of safety. This might imply we can reduce the dosage of Hydroxychloroquine that decreases the 
risk of a long Q-T interval (38). This speculation needs further verification.  

 
  



Table 5. Drug combinations that satisfy the complementary exposure pattern from the top 30 
drugs (72). COVID-19 genes were defined as the host genes that have PPIs with SARS-CoV-2 
baits. The full list in Table S4. 
Drug A Drug B # COVID-19 

genes that Drug 
A hits 

# COVID-19 
genes that Drug B 
hits 

# COVID-19 genes 
that either Drug A or 
B hit 

Etoposide  Sirolimus  2 22 24 

Mefloquine Sirolimus 1 22 23 

Losartan Ribavirin 12 6 18 

Hydroxychloroquine  Melatonin 4 10 14 

Etoposide Losartan 2 12 14 

Acetaminophen Chloroquine 3 11 14 

Losartan Mefloquine 12 1 13 

Chloroquine Lopinavir 11 2 13 

Chloroquine Atorvastatin 11 2 13 

Acetaminophen Melatonin 3 10 13 

 
  



DISCUSSION 
 

The objective of this study is to prioritize repurposable drugs to treat COVID-19. We built 
the SARS-CoV-2 knowledge graph based on interactions from virus baits, host genes, pathways, 
drugs, and phenotypes. We then derived drug embedding using multi-relational graph neural 
representation and ranked drugs using the drug representation and the existence of clinical trial 
history. The drug ranking was validated from GSEA scores, in-vitro drug screening results, and 
COVID-19 hospitalized patients’ EHRs. As a result, our proposed pipeline prioritized 
Azithromycin, Atorvastatin, Acetaminophen, and Aspirin. Also, we identified drug combinations 
with complementary exposure patterns: Etoposide + Sirolimus, Mefloquine + Sirolimus, Losartan 
+ Ribavirin, and Hydroxychloroquine + Melatonin. 
 

Our contributions can be summarized as: i) integration of multiple and complementary 
perspectives from biological interactomes to genetic signatures, in-vitro efficacy, epidemiological 
effectiveness in EHRs, and clinical trial history; ii) methodological innovation to represent 
biological interaction using multi-relational graph neural networks and transfer learning; and iii) 
rigorously validated list of potentially repurposable drugs and their combination to treat COVID-
19 that researchers can prioritize for further biological or clinical validation. Existing PPI-network-
based studies (13, 27) use distance-based proximity scores and lack a deep understanding of overall 
topology in heterogeneous networks (i.e., multiple types of nodes). Our work utilized a deep graph 
neural network to overcome the barrier in representing extensive biological interactomes. A similar 
study that also uses knowledge graph representation for COVID-19 drug repurposing lacks 
extensive validation (15). Our work combined genetic, mechanistic, epidemiological validations 
to derive repurposable drugs that are not only statistically plausible but also biologically/clinically 
meaningful. 

 
The main limitation of this study is the lack of statistical power in external validation. 

Although the wide spectrum of validation sources provided a complementary perspective, the 
statistical power of the accuracy was limited due to the small size of overlap between our initial 
drug set and the validation sources. Particularly in the population-based validation, 138 drugs 
overlapped between 3,635 initial drugs and 391drugs in EHRs. Only ten drugs (out of 138) were 
effective in the treatment effect analysis. Although our ranking model detected six drugs (out of 
ten) to be positive, the sample size is limited to obtain sufficient statistical power. As more data 
will be generated in the near future, we will further test and validate our approach and results. 

 
We also observed conflicts across different validation sources. For example, Aspirin and 

Albuterol had positive treatment effects in EHRs validation, but there was no positive efficacy in 
all the four in-vitro experiments. Losartan was effective in GSEA but presents negative treatment 
effects in EHR validation. The reason for this discrepancy might be because each validation source 
captures different aspects of the drug’s function. The GSEA validation focused on inhibiting or 



activating the virus-associated host genes. The in-vitro efficacy focused on viral entry, replication, 
or cytopathic effect. The population-based EHRs validation focused on the drugs’ antiviral effect 
and also clinical symptom relief. For example, Acetaminophen, Azithromycin, and Albuterol are 
frequently given to hospitalized patients for fever, pneumonia, and shortness of breath, 
respectively. These drugs might not have a direct effect on the virus itself. Concordance in multiple 
validation sources may strengthen the confidence in the drug’s effectiveness. The drugs with 
conflicting validation results are still worth investigating.  

 
We acknowledge limitations of noise or bias in the validation sources. The population-

based validation was from observational and retrospective analyses of EHRs, which are inherently 
incomplete and erroneous compared to randomized experimental data. Our propensity score 
matching and weighting approach were designed to reduce bias and confounding effects, but 
unmeasured or hidden confounders may exist in the EHRs observational data. The other limitation 
is a discrepancy between gene sets from drug-induced gene expression and SARS-CoV-2-infected 
cell’s gene expression. cMAP provides the expression value for only 12,328 genes while the 
SARS-CoV-2-infected cell line (GSE153970) contains expression value for 17,899 genes. 
Consequently, the expression values for some genes in SARS-CoV-2 signature are missing, such 
as SARS-CoV2-gp10 and SARS-CoV2-gp01, which might cause bias. In spite of differences in 
cell line as well as missing expression value of some genes, the results still have some value as a 
reference for further investigation.  

 
In conclusion, this study proposes an integrative drug repurposing pipeline for the rapid 

identification of drugs and their combination to treat COVID-19. Our pipelines were developed 
from extensive SARS-CoV-2 and drug interactions, deep graph neural representation, and ranking 
model, and validated from genetic profiles, in-vitro efficacy, and population-based EHRs. From a 
translational perspective, this pipeline can provide a general network pharmacology pipeline for 
various diseases, which can contribute to fast drug and drug combination repurposing (81).  
 
 
 
  



MATERIALS AND METHODS 
SARS-CoV-2 and human protein interactions 

We collected the SARS-CoV-2 and host interaction data from a recent work that identifies 
322 high confidence PPIs between SARS-CoV-2 and the human (27). This literature cloned 26 
SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated 
with the SARS-CoV-2 proteins. We used the SARS-CoV-2 and human protein interaction with 
MiST > 0.8. In total, the virus-host interaction network consisted of 27 virus baits and 332 SARS-
CoV-2-associated prey proteins.  
 
Drug-target interactions 

We collected drugs and targets from CTDbase’s COVID-19 curated list, which contains 
5,065 potential targetable genes for COVID-19 with supporting biological mechanisms or 
therapeutic evidence. Potential compounds to SARS-CoV-2 were identified if the compounds 
target the SARS-CoV-2-associated genes. There were 3,635 compounds that target 4,427 genes. 
The size of the intersection between host genes interacting with baits and drug targets is 94.  
 
Biological pathways 

We incorporated functional pathways related to SARS-CoV-2 infection and drugs of 
interest. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (which 
were curated in CTDbase), and PharmGKB (24, 82). There were 1,763 unique genes and 13,423 
pairs of genes that were associated with the pathways. 
 
Gene/drug-phenotype interactions 

We used a curated set of phenotypes from CTDbase, which inferred the phenotypes via 
drug interaction and/or gene to gene ontology annotation. There were 1,285 phenotypes (i.e., 
biological process gene ontology) that were associated with 31 potential drugs and/or 18 SARS-
CoV-2-associated genes.  
 
Embedding using graph neural network 

We utilized deep graph neural embedding with multi-relational data (26). We used 
variational graph autoencoders with GraphSAGE message passing (20, 25). Due to uncertainty 
and incompleteness in our knowledge graph (i.e., COVID-19 is an emerging infectious disease 
and our knowledge on COVID-19 is developing), we chose to use variational autoencoders to 
account for the uncertainty. The graph autoencoder method is an unsupervised learning framework 
to encode the nodes into a latent vector (embedding) and reconstruct the given graph structure (i.e., 
graph adjacency matrix) with the encoded latent vector. The variational version of graph 
autoencoders is to learn the distribution of the graph to avoid overfitting during the reconstructing 
the graph adjacency matrix. In the message-passing step, each node (entity)’s embedding is 
iteratively updated by aggregating the neighbors embedding, in which the aggregation function is 
a mean of the neighbor’s features, concatenation with current embedding, and a single layer of a 



neural network on the concatenated one. We set different weight matrices for each of the five types 
of edges. Since our objective is to use the drug embedding to discover drugs that can functionally 
target SARS-CoV-2-associated host genes, the model was trained to reconstruct the missing 
interaction using the node embeddings as an unsupervised manner. We set the embedding size as 
128 after several trials. We used PyTorch Geometric for implementation (83). The model structure 
was (1×400) → Graph convolution to (1×256) → RELU → Dropout → Concatenation of multiple 
edge types → Batch norm → Graph convolution to 1×128 (mean) and 1×128 (variance).  

Our knowledge graph focused only on SARS-CoV-2-related baits, genes, drugs, and 
phenotypes. General biological interactions out of COVID-19 can benefit our learning process and 
enrich our embedding. To maximally utilize external databases out of COVID-19, we leveraged 
the Drug Repurposing Knowledge Graph (DRKG) (15), a large-scale comprehensive knowledge 
graph that represents the interaction between gene, drug, and related entities. We utilized the 
DRKG via transferring DRKG pre-trained node embedding (Note S1). 
 
 
Initial drug ranking  

After we derived the drug embedding, we built a ranking model to select the most potent 
drugs. Drugs undergoing clinical trials were regarded as the first labels to identify drug candidates. 
The drugs under clinical trials were extracted from NIH ClinicalTrials.gov’s interventional trials 
(84). Ninety-nine trial drugs were matched to the CTDbase’s 3,635 drugs. We designed a simple 
neural-network-based ranking model with Bayesian pairwise ranking loss (29, 85). The 
architecture was two fully connected layers (with the size of 128→128→1) with residual 
connection, nonlinear activation (ReLU), dropout, batch norm in the middle, and the optimization 
loss (Bayesian pairwise ranking loss). Baseline ranking models to compare were logistic 
regression, support vector machine, XGBoost, and Random forest. 

We measured the accuracy of the drug ranking model using the area under the receiver 
operating curve (AUROC) and area under the precision-recall curve (AUPRC) with 50% training 
and 50% test cross-validation. We purposely set the portion of the training set lower because the 
clinical trials are not our sole “gold standard” to prioritize drugs. Note that the unsupervised 
knowledge graph embedding and the supervised drug ranking were independent. We tried to avoid 
using the supervised label (clinical trials drugs) in the knowledge graph embedding because the 
drugs being considered in clinical trials do not guarantee the efficacy of the drugs.  
 
Genetic validation using gene set enrichment analysis 

For the genetic validation, we evaluated the drugs by calculating GSEA scores between 
gene expression profiles of SARS-CoV-2-infected host cells and the gene signature of the drugs. 
The SARS-CoV-2 genetic profile was three samples from SARS-CoV-2 infected primary human 
airway epithelial cell lines and three mock-infected (PBS) cell lines (GSE153970). Deseq2 was 
used to detect the differentially expressed genes (DEGs) by adjusted p-value less than 0.01 (86). 
The up-regulated and down-regulated genes from DEGs were considered as an up-regulated 



SARS-CoV-2 signature and down-regulated SARS-CoV-2 signature. The drug’s genetic profiles 
were obtained from the drug-induced gene expression in cMAP (GSE92742 and GSE70138) (45). 
The whole drugs’ gene probe set was ordered from the highest up-regulated genes to the lowest 
down-regulated genes. 

The enrichment score (ES) was calculated to reflect the correlation between the SARS-
CoV-2 signature and the drug’s gene expression (43) by connectivity map algorithms (32). The 
hypothesis was that if the drug’s gene expression is opposite with the disease up-regulated or 
down-regulated signature, the drug tends to treat disease (87). ES is calculated as follows (33): 
𝐸𝑆 = (𝐸𝑆!" − 𝐸𝑆#$%&)/2	𝑖𝑓	𝑠𝑔𝑛.𝐸𝑆!"/ ≠ 𝑠𝑔𝑛(𝐸𝑆#$%&); 	𝑒𝑙𝑠𝑒	0. 

𝐸𝑆!" is the enrichment score for SARS-CoV-2 up-regulated signature; 𝐸𝑆#$%& is the enrichment 
score for SARS-CoV-2 down-regulated signature. If 𝐸𝑆!"and 𝐸𝑆#$%&have the same algebraic 
sign, the value of final ES is set to 0. Otherwise, ES is the difference between 𝐸𝑆!"and𝐸𝑆#$%&. 
𝐸𝑆#$%&and 𝐸𝑆#$%& was calculated based on the weighted Kolmogorov-Smirnov enrichment 
statistic (ES) (30). In order to obtain p-value, permutation tests were done by randomly generating 
the same number of genes as upregulated gene set and downregulated gene set separately and thus 
we can get the null distribution of random ES. We identified a significant genetic association 
between the drug and the disease by setting a threshold as ES < 0 and p-value <0.05, which means 
a drug has opposite effects for both up-regulated SARS-CoV-2 (𝐸𝑆!"<	0)	and	down-regulated 
SARS-CoV-2 set (𝐸𝑆#$%&>	0). 

Retrospective in vitro drug screening validation 
We validated the highly ranked candidate drugs by retrospectively comparing them with 

efficacious drugs in multiple in vitro drug screening studies. We utilized 4 drug screening studies 
targeting viral entry (ACE2 enzymatic activity, Spike-ACE2 protein-protein interaction) and viral 
replication/infection (cytopathic effect), which are obtained from NCATS OpenData COVID-19 
Portal and Riva et al. study (5, 6). The two viral entry assay studies screened  2,678 compounds in 
the NCATS Pharmaceutical Collection and 739 compounds in the NCATS Anti-infectives 
Collection (88).  In the viral entry assay, a drug was regarded as efficacious if efficacy value was 
larger than 10 and 0 for ACE2 enzymatic activity and Spike-ACE2 interaction, respectively (the 
efficacy value was defined as an % inhibition at infinite concentration subtracted by % inhibition 
at zero concentration by curve fitting). The two cytopathic effects studies use either the NCATS 
collections or the ReFRAME drug library on the same Vero E6 cell (89). In the NCATS cytopathic 
effect study, a drug was regarded as efficacious if the efficacy value was larger than 10. In the 
ReFRAME study, a drug was regarded as efficacious if the drug inhibited infection by 40% or 
more (5).  
 
Population-based validation 

We also conducted the population-level counterfactual analysis for candidate drugs on 
treating COVID-19 using EHRs (non-experimental data, as opposed to randomized clinical trials). 
The key is to reduce bias or confounders in EHRs to control the difference of confounding 



variables between those who received and did not receive treatment. We calculated the average 
treatment effect on the treated (ATT) using propensity score matching and weighting (Note S2).  

In this study, we used EHRs with 140,016 positive COVID-19 patients. There were a total 
of 34,043 hospitalized COVID-19 patients, we selected 3,200 deceased patients during the 
hospitalization and 15,078 recovered patients with medication history and length of stay > 2 days. 
From the selected hospitalized patients, we built a cohort with 2,827 cases (deceased) and 2,774 
controls (recovered) that follow similar distributions in terms of demographics (race, ethnicity, 
sex, age) and admission severity (body temperature and SPO2) using PSM. After we derived the 
matched cohort, there were a total of 391 medications that were administered in at least 35 patients. 
We calculated the treatment effect of the 391 medications using the average treatment effect among 
treated or ATT. For the inverse propensity score weighting, we considered demographics (age, 
gender, race), admission conditions (body temperature, SPO2), comorbidities (cancer, chronic 
kidney disease, obesity, a serious heart condition, solid organ transplant, COPD, type II diabetes, 
and sickle cell disease), and drug history before the treatment of interest. We assumed a drug is 
effective if ATT>0 and the p-value is <0.05. A full list of the drug's ATT coefficient is in Table 
S2.  
 
Drug combination search 

We identified efficacious drug combinations from top-ranked drugs. Our approach is to 
leverage drug targets and COVID-19 associated host genes. Our hypothesis was that “a drug 
combination is therapeutically effective only if the targets of the drugs both hit the disease module, 
but they target a separate neighborhood (Complementary Exposure pattern)” (72). We identified 
the COVID-19 modules from human protein interactomes that are physically associated with 
SARS-CoV-2 baits (27). The drug’s targets were identified from CTDbase’s COVID-19 curated 
list (90). We counted the number of genes in the COVID-19 module that a drug combination hits, 
where the drug combination’s targets are disjoint.  
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