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Transcriptome analyses reveal 
reduced hepatic lipid synthesis and 
accumulation in more feed efficient 
beef cattle
Robert Mukiibi1, Michael Vinsky2, Kate A. Keogh3, Carolyn Fitzsimmons1,2, Paul Stothard1, 
Sinéad M. Waters3 & Changxi Li1,2

The genetic mechanisms controlling residual feed intake (RFI) in beef cattle are still largely unknown. 
Here we performed whole transcriptome analyses to identify differentially expressed (DE) genes and 
their functional roles in liver tissues between six extreme high and six extreme low RFI steers from 
three beef breed populations including Angus, Charolais, and Kinsella Composite (KC). On average, 
the next generation sequencing yielded 34 million single-end reads per sample, of which 87% were 
uniquely mapped to the bovine reference genome. At false discovery rate (FDR) < 0.05 and fold change 
(FC) > 2, 72, 41, and 175 DE genes were identified in Angus, Charolais, and KC, respectively. Most of 
the DE genes were breed-specific, while five genes including TP53INP1, LURAP1L, SCD, LPIN1, and 
ENSBTAG00000047029 were common across the three breeds, with TP53INP1, LURAP1L, SCD, and 
LPIN1 being downregulated in low RFI steers of all three breeds. The DE genes are mainly involved 
in lipid, amino acid and carbohydrate metabolism, energy production, molecular transport, small 
molecule biochemistry, cellular development, and cell death and survival. Furthermore, our differential 
gene expression results suggest reduced hepatic lipid synthesis and accumulation processes in more 
feed efficient beef cattle of all three studied breeds.

An animal’s ability to convert consumed feed into saleable meat is of central importance to the meat produc-
tion industry because feeding related costs are the single largest variable expense in animal production1–3. As 
the global demand for meat products continues to increase due to population growth, and improved economic 
prosperity in the developed and developing world, provision of feed for meat animal production will become a 
potential burden on global resources including land, water, fertilizers, and labour4–6. In addition, environmental 
footprints including greenhouse gas emission associated with meat animal production have become a public 
concern7. Of meat production animals, beef cattle are the largest animals and a major contributor to environmen-
tal footprints7. Studies have shown that more feed efficient beef cattle not only consume less feed for the same 
amount of meat produced, but also have a reduced methane emission8–10. Therefore, decreasing production inputs 
through improving feed efficiency and reducing environmental footprints will be a vital step in improving the 
sustainability of the beef production industry.

Feed efficiency is a complex trait that can be measured using a variety of methods5. Residual feed intake (RFI) 
is one of the measurements of feed efficiency, and is defined as the difference between actual and expected feed or 
dry matter intake required for maintenance and growth11. RFI has become a more preferred measure of feed effi-
ciency in beef cattle due to its phenotypic independence from production traits5,12 and moderate heritability12,13, 
which allow a reasonable response to genetic selection for more efficient animals without compromising their 
growth rate and mature weight.

It has been proposed that RFI is controlled by several physical, physiological and metabolic processes 
such as feed intake, digestion, body composition, tissue metabolism, activity and thermoregulation14–16. With 
the advancement of DNA markers and genotyping technologies, multiple candidate chromosomal regions or 
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quantitative trait loci (QTL) that contribute to the variation of RFI in beef cattle have been identified through 
DNA marker based linkage and association studies17–22. However, the significant QTL regions and DNA variants 
vary largely across studies. To further identify genes associated with RFI, whole transcriptome profiling studies 
between beef cattle with divergent RFI phenotypes have also been performed for several tissues such as liver23–28, 
skeletal muscle23,28,29, adipose28, pituitary28, rumen30 and duodenum28. However, only a small proportion of the 
reported differentially expressed genes were shared across these studies. This discrepancy of DE genes identified 
across studies could be attributed to the differences in breed types, gender, tissue, and age of the animals used in 
the studies, as well as the differences in management and environmental conditions under which animals were 
raised and tested. These confounding factors hinder our understanding on genetic mechanisms that regulate RFI. 
Therefore, to better elucidate genetic influence on feed efficiency in beef cattle, we measured RFI on steers from 
three distinctive beef breeds including Angus, Charolais, and Kinsella Composite (KC) of similar age that were 
born, raised, and managed under the same environmental conditions, and then identified DE genes and molec-
ular functions/processes associated with RFI within and across the breeds using whole transcriptome RNA-seq 
analyses of liver tissues of high and low RFI phenotype steers from each breed population.

Results
Difference of RFI and other performance traits between high and low-RFI groups.  The averages 
and the t-test P-values for RFI and other performance traits are presented in Table 1. The animals used in this 
study had raw RFI values ranging from 1.55 to −1.096, 1.82 to −1.38, and 1.99 to −1.63 kg/day of dry matter 
intake for Angus, Charolais, and KC, respectively. The average RFI values of the low and high RFI steer groups 
were significantly different (P ≤ 1.69E-07) for all the three breed populations (Table 1). Of the RFI component 
traits, only DMI was significantly different between the two RFI groups for all the three populations, with low RFI 
or more feed efficient animals consuming significantly (P ≤ 0.01) less feed than their counterparts in the high RFI 
group for all the three breed populations. All the averages of growth and carcass traits as well as slaughter ages 
were not significantly different between the high and low RFI groups for all the studied breeds (P > 0.01).

Sequencing and alignment quality assessment.  The Illumina sequencing yielded an average of 
32,059,334 (SD = 2,575,908), 42,028,676 (SD = 8,852,805), and 30,259,896 (SD = 5,977,827) raw single-end 
sequence reads from the 12 cDNA libraries of Angus, Charolais, and KC samples, respectively. On average, the 
rapid run output sequencing mode produced more reads per sample (46,335,115 (SD = 5,355,272)) than the 
high output sequencing mode (30,931,809 (SD = 4,435,107)). The reads had an average length of 101 bp and an 
average Phred quality score of 36.2 ± 0.07. All reads were free of any sequencing adaptors and no read was flagged 
as having poor quality. On average 87% of the total sequences per sample were uniquely aligned and mapped to 
annotated genes in the bovine reference genome. The number of raw sequence reads, sequencing quality assess-
ment, and alignment summary results for each sample are provided in the Supplementary excel file S1.

Differential gene expression analysis.  After filtering out non-expressed genes, 11,823, 11,942 and 11,819 
genes were found to have sufficient expression for further analyses (>1 CPM for at least half of the samples) in the 
liver tissues of Angus, Charolais, and KC, respectively. The majority (96.1%) of the expressed genes were common 
to all the three breeds as shown in Fig. 1a, hence showing a great similarity between the breeds in terms of genes 
expressed in the liver tissue. Of the expressed genes, 72 (46 downregulated and 26 upregulated in low-RFI steers), 41 

Angus Charolais Kinsella Composite (KC)

Trait L_RFI ± SE H_RFI ± SE P-value L_RFI ± SE H_RFI ± SE P-value L_RFI ± SE H_RFI ± SE P-value

RFI/kg/day −0.84 ± 0.07 1.29 ± 0.10 9.24E-09* −1.10 ± 0.0.08 1.15 ± 0.16 1.69E-07* −1.29 ± 0.11 1.52 ± 0.12 1.18E-08*

DMI/kg/day 11.46 ± 0.51 13.31 ± 0.43 0.01* 10.11 ± 0.16 12.32 ± 0.16 2.21E-06* 9.21 ± 0.36 12.74 ± 0.36 3.95E-05*

ADG/kg/day 1.88 ± 0.11 1.74 ± 0.12 0.38 1.64 ± 0.04 1.67 ± 0.08 0.78 1.48 ± 0.10 1.63 ± 0.07 0.26

MWT/kg 115.58 ± 5.41 115.63 ± 2.75 0.99 120.73 ± 1.50 119.74 ± 1.79 0.68 99.7 ± 2.70 104.67 ± 2.77 0.23

FUREA/cm2 84.41 ± 1.56 80.34 ± 3.08 0.27 93.80 ± 2.27 91.99 ± 3.25 0.66 70.28 ± 2.90 74.22 ± 1.52 0.26

FUFAT/mm 9.23 ± 1.24 9.57 ± 0.68 0.73 7.08 ± 0.85 5.67 ± 0.63 0.21 8.67 ± 0.55 8.98 ± 0.45 0.67

HCW/kg 763.23 ± 44.26 753.47 ± 22.00 0.85 855.17 ± 23.18 843 ± 9.89 0.64 656.67 ± 21.52 697.33 ± 24.54 0.24

AFAT/mm 10.67 ± 1.09 12.17 ± 1.40 0.42 8.33 ± 1.11 6.67 ± 0.49 0.20 11.67 ± 1.18 10 ± 0.51 0.22

CREA/cm2 75.83 ± 2.34 74.33 ± 4.45 0.77 95.3 ± 4.44 94 ± 3.12 0.81 69.67 ± 2.54 76.33 ± 2.23 0.08

LMY/% 56.43 ± 1.18 55.2 ± 1.76 0.57 60.88 ± 1.09 61.94 ± 0.62 0.42 55.79 ± 0.87 57.81 ± 0.56 0.08

Marbling score 393.33 ± 23.47 438.33 ± 17.78 0.16 370 ± 36.79 398.33 ± 14.24 0.49 378.33 ± 20.56 378.33 ± 20.56 1.00

Slaughter age/day 488.9 ± 5.2 500.3 ± 4.4 0.12 517.3 ± 6.6 522.0 ± 5.0 0.58 445.2 ± 3.4 464.0 ± 7.1 0.04

Table 1.  Differences of RFI and other performance traits between groups of high (n = 6) and low RFI steers 
(n = 6) of the three breeds, “*” indicates significant difference (P-value ≤ 0.01). RFI = residual feed intake, 
DMI - = daily dry matter intake, ADG = average daily gain, MWT = metabolic body weight, FUREA = final 
ultrasound ribeye area at the end of feedlot test; FUFAT = final ultrasound backfat at the end of feedlot test; 
HCW = hot carcass weight; AFAT = carcass average backfat; REA = carcass ribeye area; LMY = lean meat yield; 
Marbling score (100–399 = trace marbling or less, 400–499 = slight marbling, 500–799 = small to moderate 
marbling, and 800–1199 = slightly abundant or more marbling). L_RFI ± SE = trait mean values for the low RFI 
group ± standard error (SE); H_RFI ± SE = trait mean values for the high RFI group ± standard error (SE).
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(19 downregulated and 22 upregulated in low-RFI steers), and 175 (108 downregulated and 67 upregulated in low-RFI 
steers) DE genes were identified in Angus, Charolais, and KC, respectively at the significance threshold of FDR < 0.05 
and FC > 2. A subset of the most significant differentially expressed genes (by FDR values) from each breed is shown 
in Table 2, whereas the full lists of all differentially expressed genes for each breed are provided in the Supplementary 
excel files S2, S3, and S4 for Angus, Charolais, and KC, respectively. When we compared DE genes across breeds, the 
majority of them (68.1% for Angus, 63.4% for Charolais, and 84.6% for KC) were breed specific, with only a few genes 
being shared between breeds (8 to 20 DE genes) or across the breeds (5) as shown in Fig. 1b. The five common DE 
genes across all the three breeds included TP53INP1, LURAP1L, SCD, LPIN1, and ENSBTAG00000047029 (paralo-
gous to RPS23) (Fig. 2). Four of these genes (TP53INP1, LURAP1L, SCD and LPIN1) were downregulated in all low 
RFI steers across the three breeds, whereas ENSBTAG00000047029 was upregulated in low RFI steers of Angus and 
Charolais, but downregulated in KC low RFI steers as illustrated in Fig. 2. Between two breeds, Angus and KC shared 
the most unique DE genes (15), of which the majority (13) had the same expression direction in low RFI animals of 
the two breeds, and only two genes had a different expression direction in the efficient animals of the two breeds. 
Angus and Charolais shared the fewest (3) DE genes (Fig. 1b), of which GNAZ and DLK1 were both downregulated in 
Angus, but upregulated in Charolais low RFI animals (Supplementary excel files S2 and S3).

IPA Functional Enrichment Analysis.  From the DE genes identified, 70, 37 and 169 were successfully 
mapped to the IPA knowledge base database for Angus, Charolais, and KC respectively. Subsequently, 27 sig-
nificantly enriched biological functions (P-value < 0.05) were detected for Angus and KC, and 23 functions for 
Charolais. All significant biological functions and their enrichment P-values for each breed are provided in the 
Supplementary file S5. The majority (n = 23 or 85.2%) of the identified biological functions were common across the 
three studied breeds (Fig. 1c). The most significantly enriched biological functions included lipid metabolism, amino 
acid metabolism, carbohydrate metabolism, energy production, molecular transport, small molecule biochemistry, 
cellular development, and cell death and survival. Table 3 shows the DE genes involved in the top five most signifi-
cantly enriched biological functions for each of the studied breeds. A full list of all biological functions identified is 
provided together with the list of DE genes for each breed in the Supplementary excel files S2, S3, and S4.

Of the five shared DE genes identified in this study across the three breeds, LPIN1 and SCD were involved in 
lipid metabolism, small molecule biochemistry, carbohydrate metabolism and energy production. LURAP1L was 
involved in small molecule biochemistry, and TP531NP1 was involved in carbohydrate metabolism and molecu-
lar transport. Within the lipid metabolism function, further analyses of regulatory gene networks revealed several 
enriched fat or lipid related metabolic processes as presented in Figs 3, 4 and 5 for Angus, Charolais, and KC, 
respectively. Lipid synthesis was predicted to be downregulated in the liver tissues of more feed efficient animals 
(low-RFI steers) across all the three breeds (Figs 3, 4 and 5). Lipid accumulation was also predicted to be down-
regulated in Angus and KC feed efficient steers. Additionally, downregulation of accumulation of triglycerides 
was predicted in Charolais and KC low-RFI steers. These results indicate that more feed efficient beef cattle have 
reduced hepatic lipid synthesis and accumulation. However, oxidation of fatty acids was relatively upregulated in 
KC and Angus while downregulated in Charolais efficient steers.

Discussion
The liver is a relatively small organ (1–2% of body mass) although metabolically it is a very active and important 
organ sharing 18–26% of the total body oxygen for its metabolic activities31. The liver is a central physiologi-
cal and metabolic organ of ruminant animals. It is responsible for modulation and distribution of nutrients to 

Figure 1.  Venn diagrams showing: (a) overlap of expressed genes (>1CPM in ≥6 samples) in the three 
studied breed populations; (b) overlap of differentially expressed genes (DE genes) in the three studied breed 
populations; (c) overlap of biological functions enriched by DE genes identified in the three studied breed 
populations.
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peripheral tissues and organs for maintenance and production purposes such as muscle deposition in beef cattle 
or milk production in dairy cattle32. The liver is also involved in important metabolic and physiological functions 
relating to glucose, lipid, protein, mineral and vitamin metabolism as well as immune function, steroid hormone 
catabolism and detoxification of ammonia and endotoxins33,34. Therefore, transcriptome differences in the liver 

Angus Charolais Kinsella Composite (KC)

Gene logFC FDR Gene logFC FDR Gene logFC FDR

RPL12 3.05 6.72E-20 PRAP1 −2.93 9.4E-22 SERPINI2 5.52 1.92E-47

Sectm1b 2.67 1.33E-19 CYP2C19 3.146 1.9E-21 FKBP5 −4.66 2.2E-25

CDHR5 −3.17 9.81E-19 SLC13A2 1.987 2.6E-08 LPIN1 −4.49 4.9E-23

PRSS2 −4.73 4.79E-18 REC8 −1.416 1.9E-05 CYP2B6 −3.49 9.67E-15

HLA-DQA1 2.99 2.55E-17 CES1 −1.694 3.3E-05 CES1 2.42 3.04E-14

APOA4 2.36 8.67E-14 GPX3 1.412 2.6E-04 PRAP1 −4.00 1.83E-12

HLA-DQA2 −2.83 3.55E-13 LURAP1L −1.726 2.6E-04 NAV2 2.29 8.5E-11

ECEL1 −2.50 5.51E-11 AK4 1.225 2.6E-04 AK4 2.26 3.38E-10

DOPEY2 2.39 3.29E-10 LAMB3 −1.462 2.6E-04 AKR1B10 −3.98 4.73E-10

LOC690507 −2.77 5.79E-10 TP53INP1 −1.367 5.6E-04 COL27A1 1.94 1.17E-08

SLC22A2 −3.59 1.06E-09 SLC7A5 −1.71 07E-04 SLC16A6 −2.46 3.59E-08

GIMAP4 1.93 3.46E-09 TMEM176B 1.195 1.35E-03 STS −2.41 4.52E-08

SCD −2.07 1.40E-08 HLA-DQB1 −2.194 2.6E-03 ALAS1 −2.23 9.65E-08

HLA-B −1.97 3.55E-07 TNC 1.233 2.71E-03 GLCE −2.19 1.3E-07

HOPX 1.71 4.97E-07 CXCL2 1.474 3.37E-03 GNMT −2.23 4.85E-07

UGT2B7 1.64 1.14E-06 NR0B2 −1.18 4.12E-03 SDS −2.14 7.61E-07

HLA-B −1.79 1.44E-06 THEM4 −1.239 9.12E-03 ARG1 −1.99 3.05E-06

CCDC80 −1.95 1.47E-06 PDK4 −1.33 0.0184 ABHD2 1.67 4.49E-06

CABYR 1.66 3.91E-06 GPNMB 1.155 0.0192 NMNAT2 −3.02 5.49E-06

UGT2B17 −1.78 4.86E-06 LPIN1 −1.118 0.0192 PER1 −2.03 7.37E-06

LPIN1 −1.77 5.94E-06 SERPINA3 −1.225 0.0192 GLS2 −1.95 7.65E-06

SLCO4A1 −1.87 5.94E-06 TBATA 1.02 0.0195 WFDC2 −2.02 8.16E-06

ASCL1 −1.71 6.26E-06 RND1 1.021 0.02 MKNK1 −1.90 1.13E-05

IFI6 −1.79 9.22E-06 INMT 1.104 0.0291 OAT −2.01 1.51E-05

RXRG 1.42 1.06E-04 ANXA2 1.065 0.0309 MFSD2A −2.05 1.64E-05

FKBP5 −1.53 2.14E-04 SCD −1.275 0.0356 MYCL 2.03 1.88E-05

ALAS1 −1.54 2.47E-04 SLC4A4 −1.063 0.0389 ERBB2 1.51 4.23E-05

TSKU −1.54 9.20E-04 KLHL13 −1.184 0.0429 HLA-B −1.75 4.36E-05

LURAP1L −1.49 1.26E-03 SPNS2 1.028 0.0466 ASB9 −2.80 4.80E-05

Table 2.  Twenty-nine of the most significant (by FDR value) differentially expressed genes in Angus, Charolais, and 
KC. FDR = False discovery rate; logFC = log 2(Fold-change in low RFI steers in comparison with high RFI steers).

Figure 2.  Expression profile (log2 (Fold-change)) in low-RFI steers of the five differentially expressed (DE) 
genes common across all three breeds.
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tissues between efficient and inefficient animals offer a great potential to shed some light on genes and biolog-
ical functions that are involved in determining RFI in beef cattle. In the current study we employed RNA-seq 
to explore whole transcriptome expression differences between individuals with divergent RFI phenotypes in 
three beef cattle breed populations. Angus and Charolais are two distinct beef breeds with Angus being a British 
breed characterized by its moderate frame and early age fattening, whereas Charolais is a continental European 
breed with a broader frame, and later maturity and fattening35. KC is a composite herd composed of animals bred 
through crossing of multiple breeds as reported by Nkrumah et al.13. Breed composition analyses showed that the 
12 KC steers used in this study had an average of 22.3% Angus and 6.7% Charolais influence along with multiple 
other beef breeds, indicating that KC is genetically distinct from the two pure breeds included in this study.

Our results showed that the majority of the identified DE genes related to RFI were breed or breed population 
specific although 96.1% of expressed genes in liver were common across the three breeds. This could be an indi-
cation that causal genes and causals mutations contributing to RFI variation in beef cattle are likely breed specific. 
This concurs with a low level of overlapped QTL regions of RFI across multiple breeds as reported by Saatchi 
and colleagues in multi-breed QTL analysis study20, as well as concurs with a greater discrepancy of QTL regions 
reported in different studies17–19,22. Furthermore, with respect to previous liver tissue whole transcriptomic stud-
ies in beef cattle, only 31 of the 253 DE genes identified in the current study have been previously reported in the 
liver tissue of beef cattle with divergent RFI phenotypes24,27,29, as listed in the Supplementary excel files S2, S3, and 
S4. It is interesting to note that of the five genes differentially expressed across all three cattle populations in our 
study, two genes including Stearoyl Co-A desaturase (SCD) and Lipin 1 (LPIN1) code for key enzymes involved 
in lipid metabolism. Tumor protein p53 inducible protein 1 (TP53INP1) gene codes for a stress inducible protein 

Biological Function
No. of 
genes Genes involved in the biological function

(Angus)1 Lipid metabolism 21
ELOVL5, GATM, HP, LPIN1, ADIPOR2, CSF2RB, SLC22A2, CCDC80, ZBTB16, ACSS2, 
EDNRA, CPT1B, RXRG, APOA4, UGT2B17, SCD, FKBP5, G0S2, MARCO, PLA2G2D, 
DLK1

2 Molecular transport 20
ADIPOR2, APOA4, CCDC80, CPT1B, CSF2RB, DLK1, EDNRA, ELOVL5, G0S2, 
GATM, HP, LPIN1, MARCO, PLA2G2D, RXRG, SCD, SLC22A2, TP53INP1, UGT2B17, 
ZBTB16

3 Small molecular 
biochemistry 23

ACSS2, ADIPOR2, APOA4, CCDC80, CPT1B, CSF2RB, DLK1, EDNRA, ELOVL5, 
FKBP5, G0S2, GATM, HP, LPIN1, LURAP1L, MARCO, PLA2G2D, RXRG, SCD, 
SLC22A2, TP53INP1, UGT2B17, ZBTB16

4 Carbohydrate metabolism 13 SCD, CCDC80, UGT2B17, LPIN1, CSF2RB, PLA2G2D, GNAZ, TP53INP1, EDNRA, 
GATM, ADIPOR2, ELOVL5, APOA4

5 Energy production 6 SCD, CCDC80, LPIN1, G0S2, ADIPOR2, CPT1B

(Charolais)1 Lipid metabolism 14 ABCC4, AKR1C1/AKR1C2, ANXA2, CES1, CYP2C19, DLK1, LPIN1, NR0B2, PDK4, 
SCD, SLC4A4, SPNS2, THEM4, TNC

2 Molecular transport 17 ABCC4, AKR1C1/AKR1C2, ANXA2, CES1, CXCL2, DLK1, LPIN1, NR0B2, PDK4, SCD, 
SIRPA, SLC13A2, SLC4A4, SLC7A5, SPNS2, TNC, TP53INP1

3 Small molecule 
biochemistry 21

ABCC4, AK4, AKR1C1/AKR1C2, ANXA2, CES1, CYP2C19, DLK1, GPX3, LPIN1, 
LURAP1L, MIOX, NR0B2, PDK4, SCD, SLC13A2, SLC4A4, SLC7A5, SPNS2, THEM4, 
TNC, TP53INP1

4 Energy production 6 AKR1C1/AKR1C2, CYP2C19, LPIN1, NR0B2, PDK4, SCD

5 Cellular development 15 ANXA2, CXCL2, DLK1, GNAZ, GPNMB, LAMB3, LPIN1, NR0B2, PDK4, RND1, SCD, 
SIRPA, SLC7A5, TNC, TP53INP1

(KC)1 Amino acid metabolism 22 AASS, ACMSD, ARG1, ASL, ERBB2, GCH1, GCLC, GHR, GLS2, GNMT, GOT1, HAL, 
IGF1, IGFBP2, OAT, RXRG, SDS, SLC16A10, SLC22A7, SLC25A15, SLC7A2, TAT

2 Small molecule 
biochemistry 64

AASS, ABCG8, ACACA, ACMSD, ADA, AK4, AKR1B10, APOA1, ARG1, ASL, ASPG, 
ATP2A2, BAG3, CDKN1A, CES1, CPT1B, CXCL10, CYCS, CYP1A1, CYP2B6, DUSP1, 
EDNRA, ELOVL2, ERBB2, ERBB3, FGF21,GATA4, GCH1, GCLC, GHR, GLS2, GNMT, 
GOT1, HAL, HMGCR, IGF1, IGFBP2, INSIG1, LPIN1, MFSD2A, MKNK1, NMNAT2, 
NPC1, NR0B2, OAS1, OAT, OGDH, P2RY2, PER1, PNP, PPARGC1A, RBP5, RHOJ, 
RXRG, SCD, SDS, SLC16A10, SLC22A7, SLC25A15, SLC7A2, SQLE, STS, TAT, ZBTB16

3 Cell death and survival 64

ACACA, ADA, APMAP, APOA1, ARG1, ATP2A2, BAG3, BTG2, CCND1, CDKN1A, 
CES1, CXCL2, CXCL10, CYCS, CYP2B6, DDIT4, DUSP1, EDNRA, ERBB2, ERBB3, 
FGF21, FKBP5, GADD45B, GATA4, GCH1, GCLC, GHR, GLS2, GNL3, GNMT, HEYL, 
HLA-B, HLA-F, HMGCR, IGF1, IGFBP2, INSIG1, IRAK3, ITGA7, KYAT1, LRIG1, 
MANF, MKNK1, MOB3B, NMNAT2, NPC1, NR0B2, OAS1, OGDH, PER1, PIGR, PNP, 
PPARGC1A, PRAP1, RHOJ, RRS1, SCD, SERPINA3, TOP1, TP53INP1, TRIB2, UHRF1, 
USP2, ZBTB16

4 Lipid metabolism 43

ABCG8, ACACA, ADA, AKR1B10, APOA1, ASPG, ATP2A2, BAG3, CDKN1A, CES1, 
CPT1B, CXCL10, CYCS, CYP1A1, CYP2B6, DUSP1, EDNRA, ELOVL2, ERBB2, FGF21, 
GATA4, GHR, GNMT, GOT1, HMGCR, IGF1, IGFBP2, INSIG1, LPIN1, MFSD2A, 
MKNK1, NPC1, NR0B2, OGDH, P2RY2, PER1, PPARGC1A, RBP5, RXRG, SCD, SQLE, 
STS, ZBTB16

5 Molecular transport 45

ABCG8, ACACA, ADA, APOA1, ARG1, ATP2A2, BAG3, CDKN1A, CES1, CPT1B, 
CXCL10, CXCL2, CYP1A1, DUSP1, EDNRA, ELOVL2, ERBB2, ERBB3, FGF21, GATA4, 
GHR, GNMT, HMGCR, HOOK1, IGF1, INSIG1, LPIN1, MFSD2A, NPC1, NR0B2, 
P2RY2, PER1, PIGR, PNP, PPARGC1A, RHOJ, RXRG, SCD, SLC16A10, SLC16A6, 
SLC22A7, SLC25A15, SLC38A7, SLC7A2, ZBTB16

Table 3.  Top five most significantly enriched biological functions within each breed and the DE genes involved 
within each specific function.
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(SIP) that is involved in regulation of cell death (apoptosis) and cell cycle arrest influenced by cell stressors36. 
Leucine rich adaptor protein 1 like (LURAP1L) codes for an adaptor protein reported to be involved in regula-
tion of cell motility and migration37, while ENSBTAG00000047029 codes for an uncharacterized protein and its 
sequence is paralogous to ribosomal protein S23 (RPS23) that encodes a protein that is a component of the 40 S 
subunit of the ribosomes (protein synthesis organelles)38, suggesting that these genes play key roles in altering RFI 
across the studied beef breeds.

Although the DE genes we identified were mainly breed specific, the enriched biological functions were greatly 
similar across the breeds, indicating that genes influencing RFI in beef cattle are involved in the same biological 
functions underlying the trait across different breeds even though the specific genes underlying RFI are differ-
ent between breeds. Some of the major biological functions identified in our study included lipid metabolism, 
molecular transport, small molecule biochemistry, energy production, amino acid metabolism, carbohydrate 
metabolism, cell development, and cell death and survival. Our results showed that lipid metabolism was the 
most significantly enriched biological function in Angus and Charolais, and the fourth most enriched function in 
KC, indicating the significant biological importance of lipid metabolism in regulating RFI in beef animals. Lipid 
metabolism has also been previously identified as an important biological function in relation to beef cattle RFI 
in other hepatic transcriptome studies24,26,28.

Regarding lipid metabolism, our results showed that lipid synthesis (including triacylglycerol synthesis) was 
predicted to be downregulated in the liver tissues of low-RFI animals from all the three beef breeds (Figs 3, 4 and 
5). Similarly, downregulation of genes involved in lipogenesis and steroidogenesis in both liver and fat tissue of 
low-RFI Yorkshire pigs has been reported by Lkhagvadorj and colleagues39. In a liver transcriptomic study of 
Nellore steers, downregulation of fatty acid synthase (FASN) was reported in steers with low residual intake and 
body weight gain (low-RIG)26, implying possible reduced fatty acid synthesis in the liver tissue of those animals. 
In a more recent study in Angus cattle, predicted downregulation of lipid synthesis was reported in the adipose 
tissue of low-RFI steers28. These observations suggest that feed efficient animals (not only cattle) direct consumed 
energy/nutrients away from lipid synthesis and probably towards protein or lean muscle synthesis. Notably, SCD 
and LIPN1 genes identified as differentially expressed across all the three studied cattle breeds are involved in lipid 
synthesis. SCD codes for Stearoyl Co-A desaturase enzyme, a rate limiting enzyme in the biosynthesis of mono-
unsaturated fatty acids, predominantly oleic and palmitoleic acid40. The synthesized fatty acids are then used as 
substrates for biosynthesis of other lipids such as phospholipids, triglycerides and cholesterol esters. Therefore, 
differential expression of this gene between feed efficient and inefficient animals may contribute to the genetic 
linkage/correlations between feed efficiency and carcass fatty acid composition that have been reported in beef 
cattle41,42. Differential expression of the SCD gene between RFI divergent beef animals has been reported in pitu-
itary, muscle, adipose and duodenum tissues where it was also downregulated in low-RFI Angus steers28. LIPN1 
encodes for Lipin-1 a phosphatidate phosphatase (PAP) enzyme, and a member of the Lipin protein family, which 
are mainly involved in triacylglycerol (TAG) synthesis in the glycerol phosphate pathway where they dephospho-
rylate phosphatidic acid to diacylglycerol43. Diacylglycerol is then converted to triacylglycerol by diacylglycerol 
transferase (DGAT). Triacylglycerol is a major and vital form of energy storage in adipose tissues and source of 
fatty acids for oxidation in both cardiac and skeletal muscles43. We acknowledge the fact that in ruminants such 
as cattle, lipogenesis or lipid synthesis predominantly occurs in the adipose tissue and a limited capacity of lipo-
genesis occurs in the liver44. This limited lipogenesis in the liver does however generate new fatty acids that are 

Figure 3.  Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in 
the different lipid metabolic processes and their predicted activation or deactivation levels in Angus low-RFI 
steers.
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either esterified into triglycerides for storage in adipose tissue, oxidized in the liver or exported to other parts of 
the body as lipoproteins where they are used as a source of energy and structurally as membrane building compo-
nents. Additionally, downregulation of accumulation and storage of lipids (such as triglycerides) was predicted in 
the low-RFI animals in all three studied breed populations. This could be another metabolic advantage that feed 
efficient animals have over inefficient animals. It is worth mentioning that species with limited hepatic lipogene-
sis like cattle also have limited potential to secrete triglycerides from the liver cells as compared to those species 
that use the liver as the major tissue for lipogenesis45. Therefore, increased hepatic lipid synthesis and accumula-
tion as predicted in the high-RFI animals could consequently lead to increased fat accumulation in the hepatic 
cells of inefficient animals. Increased accumulation of fat in the liver cells may lead to the development of fatty 
liver34. Fatty liver then impairs the liver tissue’s optimal functionality of gluconeogenesis, β-oxidation, endotoxin 
and metabolic waste detoxification, exposing the animals to a number of metabolic stressors34. Interestingly, our 
results showed predicted upregulation of lipid secretion, transport and efflux from the hepatic cells of KC low-RFI 
steers which could be another mechanism of minimizing fat accumulation in those cells. In this regard, reduced 
liver fat synthesis and accumulation might be an adaptive metabolic or physiological advantage for feed efficient 
animals to maintain an optimal functioning liver tissue as compared to the inefficient animals. Although we did 
not perform histological evaluation of the liver tissues of the animals studied in the current study, an independ-
ent study on Nellore steers by Alexandre et al.26 through histopathological evaluation observed different liver 
tissue health status between the less feed efficient or high-RIG animals as compared to high efficient animals or 
low-RIG. In that study, they reported increased periportal liver lesions in the less feed efficient compared to high 
feed efficient animals, which they hypothesized was because of increased hepatic lipid biosynthesis and elevated 
bacterial infection in the less feed efficient animals26, hence revealing that hepatic tissue health could influence 
observed differences in feed efficiency in beef cattle.

Although phenotype records of the fat related traits (FUFAT, AFAT and marbling score) in our study did not 
show significant difference between the high and low RFI steer groups (Table 1), low fat accumulation or depo-
sition in more feed efficient beef animals in different body parts has been reported by a number of studies. For 
example, Trejo46 and Nascimento et al.47 reported significantly lower internal fat content in more feed efficient 
beef cattle carcasses as compared to inefficient animals. Richardson and colleagues also reported lower carcass 
and internal fat in low-RFI Angus steers than high-RFI steers48. In our previous studies, it was observed that more 
feed efficient beef cattle tended to have less backfat and slightly less marbling12,13. In a more recent transcriptomic 
study, higher specific gravity of carcasses from feed efficient Angus steers was observed in comparison to the 
inefficient steers, indicating lower fat and higher lean content in the carcasses of more feed efficient animals28. In 
the same study, transcriptome analysis results predicted reduced fat synthesis and accumulation in the adipose 
tissue of the animals with low-RFI or more feed efficient animals28. Therefore, our results and the previous reports 
showing fat synthesis and accumulation differences between feed efficient and inefficient animals could be a 
result of metabolic prioritization of nutrients, especially energy. The efficient animals probably spend less energy 
on lipid synthesis and accumulation/deposition, which metabolically require more energy than lean tissue or 
protein deposition49,50, thus indicating that energy required to deposit fat may play a major role in determining 
feed efficiency in growing steers.

Figure 4.  Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in 
the different lipid metabolic processes and their predicted activation or deactivation levels in Charolais low-RFI 
steers.
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The liver modulates body nitrogen through several amino acid and other nitrogen compound metabolic pro-
cesses, such as protein synthesis51,52, protein and amino acid catabolism and ureagenesis31,32. Indeed, our data 
demonstrates that amino acid metabolism was the most significantly enriched biological function in the cross-
bred animals with 22 DE genes involved (shown in Table 3), though only three DE genes (SLC7A5, ANXA2 
and ABCC4) and two DE genes (GATM and EDNRA) were identified as involved in amino acid metabolism in 
Charolais and Angus, respectively. The genes identified in KC are involved in several amino acid metabolic pro-
cesses such as catabolism of amino acids (AASS, ARG1, ASL, GOT1, HAL, SDS and TAT), amino acid transport 
(ARG1, IGF1, SLC16A10, SLC22A7, SLC25A15 and SLC7A2) and the urea cycle (ARG1 and ASL). Even though 
we could not obtain activation/deactivation prediction scores for the identified processes from IPA because of 
low DE gene numbers, the majority of the DE genes identified in these processes were downregulated in low-RFI 
steers. For example, of the seven genes involved in amino acid catabolism, six (ARG1, ASL, GOT1, HAL, SDS and 
TAT) were downregulated in low-RFI animals, and this suggests reduced protein and amino acid breakdown in the 
feed efficient animals. Argininosuccinate lyase (ASL) and arginase (ARG1) are key enzymes in ureagenesis, where 
Argininosuccinate lyase catalyzes conversion of argininosuccinate to arginine, and arginase catalyzes conversion of 
arginine to urea and ornithine53. Hence, downregulation of these genes could be an indication of reduced amino 
acid catabolism and/or reduced synthesis of urea in the liver. Lower levels of blood urea concentration have been 
reported in low-RFI steers as compared to high-RFI beef cattle by Richardson et al.54 and Fitzsimons et al.10, sug-
gesting that amino acid metabolism also plays a considerable role in regulating RFI of beef cattle.

Carbohydrate metabolism was another interesting enriched biological function in our study with 13 DE genes 
involved in Angus (genes shown in Table 3), 10 in Charolais, and 31 in the crossbred KC population (genes of 
both populations shown in Supplementary files S3 and S4). Association between RFI variation and carbohydrate 
metabolism has been previously reported in a liver whole transcriptome study between efficient and inefficient 
Angus steers24. More interestingly, some of the DE genes we identified are involved in gluconeogenesis, and these 
included ADIPORA, GATM and SCD for Angus, NROB2 and SCD for Charolais, and DUSP1, FGF21, GNMT, 
NROB2, PPARGC1A, SCD, SDS and TAT for KC. Carbohydrates are a very important nutrient to an animal as 
they provide more than half of the total energy needed by an animal for maintenance, growth and production 
(muscle deposition in beef cattle)55. Furthermore, glucose is the main source of metabolic energy in the body, 
however, in ruminants most of the carbohydrates (cellulose and starch) are fermented by rumen microbes into 
volatile fatty acids (VFAs) which are absorbed into the blood stream and transported to the liver55, where VFAs 
are utilized for biosynthesis of several organic molecules including carbohydrates. Therefore, differential expres-
sion of genes involved in carbohydrate metabolism between inefficient and efficient animals may reflect the dif-
ference in catabolic or anabolic efficiency difference in carbohydrate synthesis and utilization by these animals.

Conclusions
We investigated differential gene expression through RNA-seq analyses in the liver tissues of steers with divergent 
feed efficiency phenotypes from two beef pure breeds and a composite breed population that were born, raised 
and managed under the same environments, and with a similar age. We identified a total of 253 unique genes 
associated with RFI in the three Canadian beef cattle breeds, of which five DE genes were shared across all three 
breeds. The study showed a great similarity in the biological functions associated with RFI across the three breeds, 

Figure 5.  Metabolic process regulatory gene network showing differentially expressed (DE) genes involved in 
the different lipid metabolic processes and their predicted activation or deactivation levels in KC low-RFI steers.
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with lipid metabolism, amino acid metabolism, carbohydrate metabolism, molecular transport, energy produc-
tion, small molecule biochemistry, cell death and survival, and cellular development being the major functions we 
identified. Our results further suggest reduced hepatic lipid synthesis and fat accumulation in more feed efficient 
beef cattle across all the studied breeds, which may be an indication of energy prioritization away from lipid depo-
sition and towards lean growth or maintaining better health or function of liver tissue. However, most of DE genes 
identified in this study were breed specific, which indicates that most causative genetic mutations contributing 
to RFI variation are likely not the same across beef breeds or expressed differently in different breeds. Further 
studies including blood tissue whole metabolome profiling, liver lipid biosynthesis and accumulation evaluation, 
and transcriptome analyses from multiple tissues at various developmental stages would help generate a better 
understanding of the genetic influence and would contribute to identification of causative mutations for RFI in 
beef cattle, especially when different beef breeds are examined.

Materials and Methods
Animal populations and management.  All animals used in this study were managed according to the 
guidelines established by the Canadian Council of Animal Care56 and the experiment procedures were approved 
by the University of Alberta Livestock Animal Care and Use Committee (AUP00000777). Beef steers from three 
beef cattle herds including purebred Angus, purebred Charolais, and Kinsella Composite (KC) were used in this 
study. The three beef cattle herds were located and managed alike at the Roy Berg Kinsella Ranch, University of 
Alberta, Canada. These cattle herd populations were described previously12,19. Briefly, the purebred Angus and 
Charolais cows were bred by artificial insemination (AI) and natural service bulls with their pedigree information 
maintained by the Canadian Angus or Charolais Associations, respectively. The KC herd was produced from 
crosses between Angus, Charolais, or Alberta Hybrid bulls and the University of Alberta’s hybrid dam line that 
was generated by crossing composite cattle lines of multiple beef breeds as described by Goonewardene et al.57. 
The animals used in this study were born between April to May of 2014 and were weaned at approximately six 
months of age. They were then fed a background diet composed of 80% barley silage, 17% barley grain, and 3% 
rumensin pellet supplement, and then a transition diet with gradually decreasing barley silage and increasing 
barley grain proportions for 3 weeks prior to the finishing diet of 75% barley grain, 20% barley silage, and 5% 
rumensin pellet supplement (as fed basis).

Growsafe feedlot test and residual feed intake calculation.  In 2015, 50 Angus, 48 Charolais, 
and 158 KC steers were measured for individual feed intake between April to August using the GrowSafe sys-
tem® (GrowSafe Systems Ltd., Airdrie, Alberta, Canada), and were fed a finishing diet during the feed intake 
test. Details of individual animals’ daily feed intake data collection using the GrowSafe automated system was 
described previously by Mao et al.12. Briefly, daily dry matter intake (DMI) of each steer was calculated as the 
average of daily feed intakes over the test period (70 to 73 days), standardized to 12 MJ ME per kg dry matter 
based on the energy content of the diet. Initial body weight and average daily gain (ADG) for each animal were 
obtained from a linear regression of serial body weight (BW) measurements that were recorded on two consecu-
tive days at the beginning, at approximately 14 day intervals during the feedlot test, and on two consecutive days 
at the end of test. Metabolic body weight (MWT) was calculated as midpoint BW0.75, where midpoint BW was 
computed as the sum of initial BW of the animal and the product of its ADG multiplied by half the number of 
days under the feedlot test. The expected DMI for each animal was predicted using the regression intercept and 
regression coefficients of ADG and MWT on actual standardized daily DMI, and RFI was computed as the differ-
ence between the actual standardized daily DMI and the expected DMI as proposed by Koch et al.11.

Liver tissue collection.  Animals were slaughtered at Agriculture and Agri-Food Canada (AAFC) Lacombe 
Research Centre (Lacombe, AB) between July and September of 2015. Steers were targeted for slaughter at a back-
fat thickness of 8–10 mm between the 12th and 13th ribs as measured by ultrasound using an Aloka 500 V diag-
nostic realtime ultrasound machine with a 17 cm 3.5 Mhz linear array transducer (Overseas Monitor Corporation 
Ltd., Richmond BC), which resulted in an average slaughter age of 494 ± 3, 518 ± 4, and 457 ± 4 days for Angus, 
Charolais, and KC, respectively. The liver sample of each animal was collected immediately after slaughter and 
the tissue was dissected from approximately the same location on the right lobe with the fibrous capsule removed. 
Samples were separately bagged and labelled, and were immediately flash frozen in liquid nitrogen, transported 
on dry ice, and stored at −80 °C until RNA extraction.

RNA isolation and purification.  From the frozen liver samples, a total of 36 samples (12 from each breed) 
consisting of six samples from animals with extreme high and six extreme low RFI phenotypes from each of the 
three breeds were selected for total RNA extraction and consequently differential gene expression analyses. The 
frozen liver tissue of each steer was pulverised into fine powder using liquid nitrogen with a pre-chilled mortar 
and pestle on dry ice. Total RNA was then extracted from 10 mg of the pulverised tissue using a Qiagen RNeasy 
Plus Universal Kit (Qiagen, Toronto, ON, Canada) and further purified using a Zymo RNA Clean & Concentrator 
(Zymo, Irvine, CA, USA). RNA was quantified using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, 
Wilmington, DE, USA) and was deemed acceptable if its absorbance (A260/280) was between 1.8 and 2.0. 
RNA integrity was confirmed using a TapeStation-Agilent instrument (Agilent Technologies, Mississauga, ON, 
Canada), and the RNA integrity number (RIN) values for all samples were higher than 8.

cDNA library preparation and sequencing.  Preparation of cDNA library and sequencing for each of the 
36 animal samples were performed at the Clinical Genomics Centre (Toronto, ON, Canada), where mRNA was 
purified and enriched from 1 µg of each of the total RNA samples and then fragmented. Thereafter, the first strand 
of the cDNA was synthesized using SuperScript II cDNA kit (Thermo Fisher Scientific, San Jose, CA, USA) and 
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the second strand was synthesized using the Illumina TruSeq® RNA Sample Prep Kit v2 (Illumina, San Diego, CA, 
USA). The cDNA libraries were validated using gel electrophoresis to confirm that the fragment size was 150 bp (on 
average) and concentration was on average 25 ng/µl per sample. Unique oligonucleotide adapters were added to the 
cDNA of each sample to allow for multiplexing. Of the prepared sample cDNA libraries, 27 (all Angus, all KC and 
3 Charolais samples) were single end sequenced (100 bp) under the high output run mode of the Illumina Hiseq 
2500 System on eight flow cell lanes, while the other 9 Charolais samples were sequenced under the rapid run mode 
of the same sequencing equipment. High quality single end reads of 101 bp with an average Phred score of 36 and 
37 for high output run mode and rapid run mode, respectively, were obtained with an average of 31 and 46 million 
reads per sample for high output run mode and rapid run mode, respectively. All sequence data generated for this 
study has been submitted to the Gene Expression Omnibus repository under the accession number GSE107477.

RNA-seq data analyses.  Raw single-end sequence reads for each sample were assessed for sequencing 
quality using FastQC (Version 0.11.5) with default parameters58. Reads of each sample were aligned and mapped 
to the bovine genome UMD3.1 using the TopHat (version 2.1.1) RNA-seq mapper with default single end read 
alignment parameters59. Reads that were uniquely aligned to each gene annotated in the GTF Bovine gene anno-
tation file (ftp://ftp.ensembl.org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz) were counted 
using HTSeq-count with default parameters60 which generated the read count tables that were used for down-
stream differential gene expression statistical analyses.

Differential gene expression statistical analysis.  Gene read count tables from HTSeq-count, the anno-
tation file downloaded from Ensembl Biomart (http://www.ensembl.org/biomart/martview/9153354bb2bef3f0fe-
8126460f4804ae), and sample information file were used for differential gene expression statistical analyses using 
edgeR61. Genes within each breed with less than one count per million (CPM) of mapped reads in at least six 
samples (half of the analyzed samples) were removed from further analyses as proposed by Anders et al.62. For 
the retained genes, their counts were normalized using the trimmed mean M values (TMM) method to account 
for the variation in library sequencing depths between samples62. The TMM normalization method implemented 
in edgeR was proposed by Robinson & Oshlack63, and it assumes that the majority of the sequenced genes in the 
libraries are not differentially expressed. With one sample considered as a reference, a TMM factor was calculated 
for each sample as a weighted mean of log ratios of gene-wise log fold changes and absolute expression level after 
exclusion of genes with the highest (30%) log-fold change ratios and highest (5%) absolute expression. The TMM 
value for each sample was expected to be equal or close to 1, if not, correction factors were calculated and applied 
to the original library sizes to calculate new effective library sizes. Normalized read counts were then analyzed 
with a generalized linear model for each of the breed populations with an assumption of a negative binomial dis-
tribution of gene counts to identify differentially expressed genes, as implemented in egdeR. The statistical models 
used for analyses are as described below:

µ. = + + +Model 1: log (CPM) RFI SIRE eijkl i j ijkl

µ. = + + + +Model 2: log (CPM) RFI SIRE SEQ eijmkl i j m ijmkl

Model.1 was used for Angus and KC steer gene expression analyses, where log(CPM)ijkl was the log trans-
formed read counts per million of mapped reads for the gene l in sample k from ith RFI group (high or low) and 
jth SIRE group, and eijkl as the random error term. Model.2 was used for Charolais steer gene expression analyses, 
where log(CPM)ijmkl was the log transformed counts per million of mapped reads for gene l in sample k from the 
ith RFI group, jth SIRE group, and mth SEQ (sequencing mode), and eijmkl was the random error term. The term µ 
was the expected (average) gene expression in the breed population and RFI, SIRE and SEQ were treated as fixed 
effects in the models. For each model, the RFI group consisted of 6 steers with high RFI values in the high-RFI 
group and 6 steers with low RFI values in the low-RFI group. The SIRE effect of Angus, Charolais, and KC steers 
included 6, 5, and 9 sires, respectively. For Charolais, SEQ was included as an additional fixed effect to account for 
differences due to the sequencing modes (i.e. high output run mode or rapid run mode) (Model.2). Differentially 
expressed (DE) genes were identified using a likelihood ratio test of each gene expression level between the two 
RFI groups with the high-RFI group (or less feed efficient group) used as the reference group. The analysis was 
performed for each gene, therefore, Benjamin-Hochberg method was used to control the false discovery rate 
(FDR) due to multiple testing64. A threshold FDR of 0.05 and fold change (FC) of greater than two (>2) were used 
as the cut off to indicate significant differential gene expression.

Functional enrichment analysis.  To understand the biological functionality of the DE genes identified, 
functional analyses for the DE genes within each breed were performed using Ingenuity Pathway Analysis soft-
ware (IPA) (Redwood City, CA; www.qiagen.com/ingenuity). Ensembl bovine gene IDs and log2-fold change 
(logFC) of the DE genes were used as identity (ID) and expression level (Observation 1), respectively, in IPA. To 
increase the number of mapped genes, Ensembl IDs for the unmapped genes were extracted and replaced with 
their closest human orthologue gene Ensembl IDs. Thereafter a combined list of bovine Ensembl for the mapped 
and human ortholog Ensembl IDs for unmapped genes was used for IPA biological function analysis. Molecular 
and cellular functions or biological functions were considered significantly enriched if the p-value for the overlap 
comparison test between the input gene list and the IPA Knowledge base database for a given biological function 
was less than 0.05. Activation or deactivation level of a specific enriched metabolic process within a biological 
function was defined by the Z-score that was calculated from the expression levels of the overlapping DE genes, 
where a negative or a positive score indicated deactivation or activation, respectively.

http://www.ensembl.org/biomart/martview/9153354bb2bef3f0fe8126460f4804ae
http://www.ensembl.org/biomart/martview/9153354bb2bef3f0fe8126460f4804ae
http://www.qiagen.com/ingenuity
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