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Abstract

Heart failure is a serious condition with high prevalence (about 2% in the adult population in developed countries, and

more than 8% in patients older than 75 years). About 3–5% of hospital admissions are linked with heart failure incidents.

The guidelines of the European Society of Cardiology for the diagnosis and treatment of acute and chronic heart failure

have identified individual markers in patients with heart failure, including demographic data, aetiology, comorbidities,

clinical, radiological, haemodynamic, echocardiographic and biochemical parameters. Several scoring systems have been

proposed to identify adverse events, such as destabilizations, re-hospitalizations and mortality. This article reviews

scoring systems for heart failure prognostication, with particular mention of those models with exercise tolerance

objective definition. Although most of the models include readily available clinical information, quite a few of them

comprise circulating levels of natriuretic peptides and a more objective evaluation of exercise tolerance. A literature

review was also conducted to (a) identify heart failure risk-prediction models, (b) assess statistical approach, and (c)

identify common variables.
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Few topics have received as much attention in medical

literature over recent years as risk prediction in heart

failure patients, especially in those with reduced ejection

fraction (HFrEF). Estimation of prognosis in HFrEF is

crucial,1 for patients who are concerned about the prob-

ability of future events, for families who are worried

about obligations, aspirations, fears, limitations,

resources, and needs of relatives, and for physicians

who like to decide the type and timing of additional

tests or therapies with reliable and objective criteria.2,3

A proper prognostic risk model for HFrEF

In theory, a multiparametric prognostic model should

be as good as the variables from which it is derived.

However, the relevance of individual prognostic

markers may vary according to the phase of the disease
and the presence and value of accompanying variables
– including non-cardiac comorbidities. Basic demo-
graphic and clinical variables such as age, gender, aeti-
ology of disease and history of hospitalizations have a
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prognostics role. Their predictive value declines as

heart failure becomes progressively more severe, and

left ventricular ejection fraction (LVEF) also declines,
although in several experiences female sex appears to

be protective even in advanced stages of disease. In the

general population, increased systolic blood pressure

(SBP) and body mass index (BMI) are associated
with worse outcomes;4 however, once HFrEF has

developed, a reverse epidemiology is observed, and

higher SBP and BMI are associated with lower risk.5

For example, a 10% reduction in mortality for each

five-unit increase in BMI was seen in a large registry
of acutely decompensated HFrEF.6,7 Impaired socio-

economic status has been shown to be a predictor of

poor outcome,8 whereas the impact of race on mortal-

ity is controversial: some studies showed increased
rates of hospitalization, while others exhibited a surviv-

al advantage in Black HFrEF patients.1

Many univariate predictors, such as clinical features,

New York Heart Association (NYHA) functional
class, haemodynamic parameters, laboratory findings,

several biomarkers, electrocardiographic and echocar-

diographic parameters, cardiac magnetic resonance

imaging and coronary angiographic findings, have
been shown to correlate with prognosis. Some findings

at physical examination (e.g. third heart sound,

increased jugular venous pressure) are associated with

lower probability of survival, but their reproducibility

is low since they are influenced by subjective apprecia-
tion.8 NHYA classification is also related to survival in

HFrEF, but it depends also on subjective appreciation

of symptoms by the patients. Several laboratory

markers have revealed an independent association
with prognosis.9–14 B-type natriuretic peptides (BNPs)

have received most of the attention in recent years.14–16

The quartile of patients with the lowest N-terminal

pro-brain natriuretic peptide (NT-proBNP) levels in
the placebo arm of the Valsartan Heart Failure Trial

(Val-HeFT) had less than one-third the mortality

(7.8%) of patients in the highest quartile (25.3%).17

NT-proBNP level at baseline and at discharge entered

as independent markers of the risk of death in hospital
and during follow-up, respectively, in a multicentre

cohort of patients hospitalized for decompensated,

advanced HFrEF.17–19 Many echocardiographic

parameters of both right and left ventricular function
show correlation with prognosis,20,21 of which LVEF is

the most popular and probably the most relevant.

Lower LVEF was associated with worse outcome in

the CHARM programme: 1013 patients with an ejec-
tion fraction <23% had triple the all-cause mortality

and quadruple the heart failure progression-related

mortality of the 2795 patients with an ejection fraction

>42%. When LVEF is severely reduced in all the

patients, indexes of right ventricular function may
help in further risk stratification.22,23

In HFrEF, oxygen consumption at peak exercise
(peak VO2) includes two relevant aspects related to
impaired physiologic processes: cardiac output and
the ability to extract oxygen from circulating blood.
Peak VO2 has been used for selection of heart trans-
plant candidates for years:24,25 excessive ventilatory
response to exercise (measured as an elevated slope of
ventilation per unit of carbon dioxide production (VE/
VCO2 slope)) is a powerful risk predictor, perhaps sec-
ondary to abnormal cardiopulmonary reflexes; VE/
VCO2 slope >34–36 identifies high risk patients,
beyond peak VO2.

23 Thus, symptom-limited CPET
relies on different gas exchange parameters that have,
as individual factors, a prognostic impact.26–28

Other variables that frequently resulted to have high
predictive value in multiparametric scores were blood
urea nitrogen and sodium.9 Cancer, acidosis expressed
by arterial pH or blood lactate, and renal failure were
highly predictive in case–control studies, but not in
prognostic cohort studies. The opposite was seen with
ejection fraction and BNPs, which were found to be
highly prognostic in cohort studies but not in case–con-
trol studies. In the advanced heart failure models, the
strongest predictor variable was heart failure
admissions.9

Beside characteristics of patients’ clinical presenta-
tion, interventions have an impact on prognosis.
HFrEF treatments significantly reduce mortality, and
their effects on survival must be included in any discus-
sion of prognosis.1,29,30 In the absence of evidence-
based therapies, whatever the cause, patients become
more critically ill. Being aware of the effects of thera-
pies on the predicted mortality according to the Seattle
Heart Failure Model (SHFM)31 led to an escalation of
pharmaceutical or device-based therapy for 82%
of observed patients. Implanted cardioverter defibrilla-
tor (ICD) and cardiac resynchronization therapy
(CRT) are devices that may alter the outcome
and course of the disease: ICD shows a 25–30% rela-
tive reduction in all-cause mortality in patients
with myocardial infarction and reduced ejection frac-
tion32 while in patients with wide QRS and left bundle
branch block morphology CRT improves symptoms
and survival.33

Therapeutic options for refractory HFrEF are heart
transplantation (HTx), left ventricular assist device
(LVAD) and continuous intravenous inotropes. The
average post-transplant survival is about 10–15 years,
while destination therapy LVADs is followed by 5–10
years of survival in the Interagency Registry for
Mechanically Assisted Circulatory Support
(INTERMACS) database.34 Various models have
been proposed for assessment of outcomes after
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LVAD placement. The INTERMACS classification

describes patient pre-implant conditions. The

INTERMACS 1 and 2 compared with 3 and 4 profiles

demonstrated statistically significant 44% versus 11%

mortality within 30 days after VAD placement, but

later on INTERMACS 1 and 2 patients actually

showed lower mortality than the 3 and 4 patients

when considering only 30-day survivors.35 A compari-

son of the INTERMACS, Destination Therapy Risk

Score, Acute Physiology and Chronic Health

Evaluation II, SHFM and Columbia risk scores in

patients receiving a LVAD showed the SHFM risk

score to have the strongest association with mortality.36

Treatment with positive inotropic medications has an

unquestionably deleterious effect:37 HFrEF patients

dependent on continuous home dobutamine show a

median survival as low as little months and a six-

month mortality of 50%. Thus, long-term inotropes

can be used cautiously only as a symptomatic therapy

when other options are precluded.
In summary, allocating patients to one strategy or

another is highly dependent on underlying survival

expectation. As clinical practice guidelines continue to

move toward personalized treatment recommendations

that are tailored to the unique benefit–harm assess-

ments of a given patient, integration of clinical risk

prediction equations will remain essential for guiding

absolute risk assessment. Predicting the future is an

imperfect science: quantitative risk assessment is just

the start, not the end, of a treatment decision. Risk

estimates must be contextualized by clinicians.38,39

Table 1 summarizes the multidimensional risk stratifi-

cation in HFrEF.

Factors limiting the use in clinical practice

of risk models

Why are risk models not used in clinical assessment?
One major cause is the type of outcome. Risk models
that are designed to predict the combined outcome of
death or hospitalization, or of hospitalization only, had
a poorer discriminative ability than those designed to
predict cardiac or all-cause death. This may happen
because differences in the probability of hospitalization
are more difficult to foresee, and hospitalizations
depend also on healthcare delivery organization;40

therefore, non-fatal events are rarely included in risk
score. Moreover, risk scores generally do not predict
the mode of death and do not account for the associ-
ated changes in quality of life.3 Risk models for prog-
nostication in advanced heart failure, for example, the
Heart Failure Survival Score (HFSS) and the
Metabolic Exercise Cardiac Kidney Index (MECKI)
score, often refer to the combined outcome of death
or HTx, and/or LVAD implant. This is motivated by
the fact that both HTx and LVAD may be considered
life-saving therapies that have the potential to change
radically the destiny of these patients, especially when
performed in an acute, emergency condition (‘urgent’
HTx, or LVAD with INTERMACS profile1–3).
However, performing HTx and LVAD depends not
only on patients’ medical characteristics, but also on
individual choices (by the patient and by the medical
staff), on non-medical characteristics (e.g. blood type 0
and large size reduce the probability of getting a HTx),
and on events that may be considered causal (again,
availability of a suitable donor) but in fact are also
influenced by organization of healthcare (e.g. policy

Table 1. Acknowledged risk aspects in heart failure due to left ventricular systolic dysfunction.

Demographic data Age, male, low socioeconomic status

Severity of heart failure NYHA class, duration of HFrEF, peak VO2; VE/VCO2 slope, distance at 6mWT

Clinical status HR, SBP, fluid overload (rale pulmonary visceral congestion, peripheral oedema), hypotension, body

weight reduction and frailty

Myocardial and LV

dysfunction severity

LVEF, LV systolic and diastolic chamber size, filling pressure, LV hypertrophy, valvular disease (mitral

regurgitation, aortic stenosis). RV and LA dimension, pulmonary pressure, disynchrony, area of

hypo/akinesia, wide QRS complex, presumed infiltration or inflammatory, inducible ischaemia,

poor viability

Biomarkers Sodium, natriuretic peptide, plasma renin activity, aldosterone and catecholamines, endothelin-I,

vasopressin; renal function, inflammatory, cardiac stress, cardiac damage markers. Metabolic and

collagen and organ dysfunction markers

Cardiovascular

co-morbidities

Diabetes, anaemia, atrial fibrillation, renal and hepatic dysfunction, COPD, depression, dementia,

sleep apnoea.

Non-adherence With recommended HFrEF treatment

Events HFrEF hospitalization, aborted cardiac arrest, ICD shock

HFrEF: heart failure reduced ejection fraction; LV: left ventricular; RV: right ventricle; LA: left atrium; NYHA: New York Heart Association; VO2:

oxygen consumption; VE/VCO2 slope: ventilation (VE) and carbon dioxide production (VCO2) slope; 6mWT: 6 min walking test; HR: heart rate; SBP:

systolic blood pressure; LVEF: left ventricular ejection fraction; ICD: implanted cardioverter defibrillator; COPD: chronic obstructive pulmonary

disease
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for donor retrieval and allocation), and they vary
widely from country to country.

Another source of heterogeneity is the clinical pre-
sentation of HFrEF patients: risk in chronic/acute,
advanced/moderate HFrEF is different, and improve-
ments have been seen between both inpatients and
outpatients.3

Moreover, like most statistical analyses, risk scores
perform well for large groups of individuals and for the
intermediate term, but they perform very poorly for
individuals and for the short term.3 A further compli-
cating issue is the time horizon of risk scores, which
may span from one to five years (the time horizon
varied considerably among the studies identified, with
few studies providing sufficient information to confirm
robustness and generalizability to qualify the prognosis
of individual patients), which may not be an adequate
time frame in which to make lifestyle decisions, partic-
ularly in younger, less severely affected patients.3

Such a complex interplay cannot be reduced to the
binary outcome of alive or dead.

Statistical techniques

Generation of a risk model requires to get access to a
robust dataset and to apply several statistical techni-
ques.29,39,40 Starting with a set of univariate predictors
and applying a Cox proportional hazards model or
logistic regression are the most used techniques (if
patient follow-up is not uniform, a Cox-based analysis
is the best statistical technique, while logistic regression
analysis is most appropriate when follow-up is com-
pleted). Significant risk variables can be transformed
by an equation into a continuous number, or one or
more points may be attributed to individual significant
factors, which are summed up to build the final score.
Thresholds for defining low, intermediate and high-risk
categories may be identified. Validation consists of
analysis of the C statistic or area under the receiver-
operator characteristic curve (AUC): assessment of the
sensitivity and specificity of the predictive model.

The additional value of new proposed markers may
be evaluated with several statistical approaches – such
as the net reclassification and integrated discrimination
improvement.1 Moreover, to integrate risk prediction
models into the decisional process and the healthcare
management must be carried out keeping an eye on
possible biases and on how missing data have been
handled. In a review,39 only 28% of the studies
reported on how they handled missing data. This high-
lights the need for a significant improvement in the
quality of data reporting.

Machine learning methods based on administrative
claims offered limited improvement over logistic regres-
sion in predicting outcomes.40 Inclusion of additional

clinical parameters from electronic medical records
improved prediction for some outcomes. Models

derived with reference to administrative data may be
helpful in identifying high-risk target populations for
deploying population-based interventions.

Comparison among risk models (with the

adjunction of cardiopulmonary exercise

testing variables)

The Controlled Trial Investigating Outcomes of
Exercise TraiNing (HF-ACTION)41 was a multicentre
randomized controlled trial that tested the long-term

safety and efficacy of aerobic exercise training plus
evidence-based medical therapy versus evidence-based
medical therapy alone in medically stable outpatients.
The relationship between baseline clinical factors and

the composite end point of death or all-cause hospital-
ization41 showed that exercise duration at the baseline
cardiopulmonary exercise testing (CPET) was the most
important predictor, while supplementary predictors

were Kansas City Cardiomyopathy Questionnaire
symptom stability score, serum urea nitrogen and
male sex.42

Several risk models for HFrEF mortality have been
developed,2 showing variable levels of success, and
many of these models were developed and validated
in selective cohorts of patients from clinical trials and

may or may not perform in the same way in the so-
called ‘real-world’ patients. Considering the aging of
the population and the heterogeneity in clinical presen-
tation and disease progression over time, a multipara-

metric approach is actually advocated as the best
available strategy to predict HFrEF outcome.
Because women are less represented in most clinical
trials than men, risk models derived without validation
in sex-specific cohorts may not have the same predic-

tive accuracy as sex-specific heart failure risk models. A
study was performed in 2225 advanced HFrEF
patients; the 4 strongest predictors of outcome in
both women and men were B-type natriuretic peptide,

peak VO2 by CPET, NYHA classification, and use of
angiotensin-converting enzyme inhibitor or angiotensin
receptor blocker.43 In addition, the UCLA model per-
formed better than the SHFM31 and the HFSS.44 A
simple risk model assessing 4 clinical variables is well

suited to provide prognostic information in HFrEF
patients to verify whether the risk model was better
with ejection fraction could be better in event-free
survival.

In 2011, Goda et al. compared HFSS45 and SHFM
in a large cohort of HFrEF patients which were under

evaluation for HTx candidacy and had undergone
CPET: the AUCs were similar.45 As the decision to
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list ambulatory patients for HTx remains difficult, in
2012, Levy et al.46 appraised whether the addition of
peak VO2 improved the predictive accuracy of the
SHFM in 1240 outpatients; the outcomes were death/
LVAD/urgent HTx, with patients being censored as
alive at the time of elective transplant. The multivariate
SHFM was a powerful predictor, and peak VO2 added
prognostic information. Conversely, in 2015, Dardas
et al.47 showed that integrating CPET variables or the
6-min walking distance with the SHFM improved only
marginally the accuracy of risk predictions in 2152
ambulatory patients enrolled in HF-ACTION. Thus,
CPET variables appear to be of particular relevance
in the specific setting of advanced HFrEF.

The HFSS, SHFM and MECKI score were com-
pared in a cohort of HFrEF patients that were able
to perform symptom-limited CPET.48 The MECKI
score exhibited a greater prognostic accuracy in terms
of combination of cardiovascular death, urgent HTx
and LVAD implantation: the superiority of the
MECKI score was evident at two-year follow-up and
was also confirmed at four years. The accompanying
editorial49 stated that the MECKI model was judged in
comparison with HFSS (peak VO2 and clinical data)
and SHFM (no CPET data), and, as peak VO2 and
VE/VCO2 are used by clinicians for the transplant list-
ing, it was not too surprising that this risk model was
superior to a clinical risk model. Freitas et al.50 com-
pared the MECKI, SHFM, HFSS and MAGGIC risk
models: all four models had a similar AUC for all-
cause mortality at two years in 259 HFrEF patients.
Therefore, a comparison between resting and exertion-
al variables is in favour of the exercise ones in selected
HFrEF cohorts and according to the outcome.

The MAGGIC risk model51 appeared to be more
accurate than the CHARM and SHFM models in pre-
dicting one-year mortality at the population level: how-
ever, the reliability at the individual patient level was
very poor. In a large number of chronic heart failure
patients reported in the European Society of
Cardiology Heart Failure Long-Term Registry,52 the
MAGGIC risk model was more accurate. In a recent
letter, MAGGIC and MECKI score were compared
after cardiac rehabilitation in Holland:53 the MECKI
score showed an excellent performance in Dutch
HFrEF patients, and the MECKI score can appropri-
ately monitor time-dependent changes in risk estimates
for adverse outcomes in HFrEF.

Conclusions

Each risk model has its own peculiarities, depending on
the overall aim of the study, target population, length
of follow-up, health procedures assessed, location of
study and accessibility to study data. Time horizon

and sample size varied considerably among the studies

identified, with few studies providing sufficient infor-

mation to confirm robustness and generalizability to

qualify the prognosis of individual patients. It is clear

that there is a real need to integrate risk prediction

models into healthcare management, but this must be

carried out with an eye on bias and handling missing

data. Comparing different risk models and accuracy of

prognosis is a hard task. Most studies are exposed to

criticisms relating to their construction.
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