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Abstract: The identification of candidate genes and genetic variations associated with growth traits is
important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1
receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The
current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms
and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten
single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then
constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association
studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth
traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result
indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In
IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits
(p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with
12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and
haplotype combinations associated with the growth traits, which provided genetic resources for
marker-assisted selection (MAS) in Hulun Buir sheep breeding.

Keywords: IGF1; IGF1R; association analysis; growth traits; haplotype; Chinese indigenous sheep

1. Introduction

Growth traits are among the most important economic attributes in sheep breeding
and are of great concern to breeding experts. Growth traits, including body weight, average
daily gain and body size greatly influence meat productivity, which influences production
and profitability in the mutton sheep industry [1]. Studies have revealed that many
candidate genes are related to growth traits, among which IGF1 and IGF1R genes are well-
accepted candidate genes that affect growth and production performance in livestock [2,3].
Insulin-like growth factor 1 (IGF1) is an endocrine growth factor involved in normal growth
and development [4–6], fetal development and metabolism [7,8]. Insulin-like growth factor
1 receptor (IGF1R) is encoded by the IGF1R gene and is a receptor tyrosine kinase that
mediates the actions of IGF1 [9,10].

Significant associations were identified between single nucleotide polymorphisms
(SNPs) of the two genes and growth performance in diverse farm animals, including

Genes 2022, 13, 666. https://doi.org/10.3390/genes13040666 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13040666
https://doi.org/10.3390/genes13040666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-6378-2519
https://orcid.org/0000-0002-8633-6087
https://orcid.org/0000-0001-5738-8016
https://orcid.org/0000-0002-6020-1459
https://doi.org/10.3390/genes13040666
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13040666?type=check_update&version=2


Genes 2022, 13, 666 2 of 14

cattle [11–13], buffaloes [14], pigs [15,16] and goats [17–20]. In sheep, it has been reported
that SNPs of IGF1 and IGF1R are related to meat production and growth [21–23]. Using the
PCR restriction fragment length polymorphism (PCR-RFLP) method, Grochowska et al.
found a highly significant effect of SNPs in the 5' untranslated (5’ UTR) region of IGF1 on
carcass traits and meat compositions in local sheep breeds in Poland Merino sheep [24].
Negahdary et al. found a significant effect of the 5’ UTR region of the IGFI gene on birth
weight, weaning weight, 6-month weight, average daily gain from birth to weaning and
average daily gain from 6 to 9 months in Makooei sheep [25]. A mutation in intron 12 of the
IGF1R gene was significantly associated with body weight and growth rate in Pomeranian
Coarse wool ewes [26]. Later, associations were found between SNP in exon 3 of IGF1R
and daily gain in the early developmental stage of Colored Polish Merino sheep [23]. The
discovery of associations between genetic polymorphisms and growth traits provides
useful information for the genetic improvement in sheep breeding. SNPs in the exon of
genes are important because they may cause potentially functional variations, which lead
to phenotypic changes in livestock. Since most identified SNPs in IGF1 and IGF1R were
located in the 5’ flanking regions, we paid particular attention to genetic variations in the
exons of the two genes.

Hulun Buir sheep are one of the representative indigenous sheep breeds in northern
China, characterized by their high-grade meat quality and outstanding resistance to stress,
such as cold and roughage. A lack of advanced breeding methods leads to poor growth
performance compared to commercial breeds. To conduct the genetic improvement and
breeding in Hulun Buir sheep, several works have been performed to identify genetic
variations that were associated with economic traits in Hulun Buir sheep. It has been shown
that the somatostatin receptor 1 (SSTR1) gene harbors two SNPs that were remarkably
associated with growth traits of Hulun Buir sheep [27]. Based on Genome-wide association
studies (GWAS), six SNP loci from 526,225 autosomal markers were greatly associated
with carcass traits and chest girth [28]. Candidate genes and SNPs have been reported
to be associated with fat deposition and fat metabolism [29,30]. However, no systematic
investigations have been reported on the association between genetic polymorphism and
the early growth traits in Hulun Buir sheep.

To improve the growth performance of Hulun Buir sheep, we investigated the genetic
polymorphisms of IGF1 and IGF1R and their associations with twelve growth traits. By
scanning exons of IGF1 and IGF1R, we identified thirteen SNPs in the IGF1 and IGF1R
genes and two haplotype blocks involving six haplotypes in 229 Hulun Buir sheep. Among
these SNPs and haplotype blocks, six SNPs and two haplotype blocks were remarkably
associated with growth traits in Hulun Buir sheep. Notably, we identified two combined
haplotypes that demonstrated a strong association with twelve greater phenotypic traits.
Conclusively, our study provided useful information and laid the foundation for the genetic
breeding of Hulun Buir sheep.

2. Materials and Methods
2.1. Animals and Data Collection

In total, 229 Hulun Buir lambs (male = 106, female = 123), which were born in March
2019 on Hulun Buir sheep farms (Hulun Buir city, Inner Mongolia, China), were investi-
gated. The animals were grazed in identical conditions. The birth weight (BW), weaning
weight adjusted at 4-month-old (WW) and body weight at 9-month-old (NBW) were
recorded. Meanwhile, average daily gains (ADG) during birth to weaning, weaning to
9-month-old and birth to 9-month-old periods were calculated. Body height (BH), body
length (BL) and chest girth (CG) were measured at weaning and at 9 months of age, re-
spectively. Approximately 1 cm3 marginal ear tissues were collected and preserved in 95%
ethanol. Genomic DNA of Hulun Buir sheep was extracted using a Tiangen DNA extraction
kit (Tiangen Biotech Co., Ltd, Beijing, China) and stored at −20 ◦C for PCR amplification.
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2.2. SNP Identification and Genotyping

Four and twenty-one pairs of primers were designed for all exons of IGF1 and
IGF1R genes based on the published mRNA sequences (Gene ID: 443318, GenBank No.
NM_001009774 (IGF1), Gene ID: 443515, GenBank No. XM_027957015 (IGF1R)), using
Primer Premier 5.0 (Premier Biosoft, Palo Alto, Santa Clara, CA, USA), respectively. The
primer information is listed in Supplementary materials Table S1. The PCR contained
100 ng template DNA, 10 pM of each primer, 3.5 µL 10 × PCR buffer, 2.5 mM dNTP, 1 U of
Taq DNA polymerase (Takara Biotechnology Co., Ltd., Beijing, China) and double-distilled
water (ddH2O), to make up a volume of 35 µL. PCR was performed in Thermocycler
System (ABI 9700, Applied Biosystems, Waltham, MA, USA) with the following reaction
procedure: predenaturation at 94 ◦C for 5 min, followed by 35 cycles at 94 ◦C for 30 s,
53–60 ◦C for 30 s and 72 ◦C for 40 s, with a final extension at 72 ◦C for 10 min. PCR
products were separated by gel electrophoresis (1.5% agarose), purified using magnetic
beads (Agencourt AMPure XP, Beckman Coulter, Krefeld, Germany) and sequenced in
an Agilent 3730 sequencer (Agilent Technologies, Santa Clara, CA, USA). The sequencing
results were aligned to published sheep IGF1 and IGF1R genes using Chromas 2.0 and
SeqMan (DNASTAR software, version 7.1) to identify potential SNPs.

2.3. Population Genetics of IGF1 and IGF1R Genes

Genotypic and allelic frequencies were estimated with the direct counting method.
Hardy–Weinberg equilibrium (HWE), observed heterozygosity (Ho), expected heterozy-
gosity (He) and effective allele numbers (Ne) were analyzed according to the genotype
frequencies of SNPs [31]. Cervus (version 3.0) was used to calculate the polymorphic
information content (PIC) of each mutation site [32].

2.4. Linkage Disequilibrium Analysis and Haplotype Construction

The extent of linkage disequilibrium (LD) between each pair of SNPs in IGF1 and
IGF1R was analyzed according to the value of r2 using Haploview software (version 4.2) [33].
Haplotype blocks with strong LD of SNPs (r2 > 0.33) were defined based on the confidence
intervals methods [34].

2.5. Statistical Analyses

SAS software (version 13.0, SAS Institute) was applied for statistical analyses, and the
results were expressed as the mean ± SE (standard error). The associations were carried
out between the genotypes and individual growth traits using general linear model (GLM):

Yij = µ + Gi + Sj + Gi × Sj + ε (1)

where Yij is a growth trait measured on an individual animal (BW, WW, NBW, ADG, BH, BL
and CG); µ is the mean value of overall; Gi is the fixed effect of genotypes of the population
(i = 3 levels, except rs600896367 of IGF1 gene and c.244C>T, rs162159917, rs601806812 and
rs193644211 of IGF1R gene where i = 2 levels); Sj is the fixed effect of sex (j = 2 levels);
Gi × Sj is the interaction effect between sex and genotypes; if the difference of interaction
effect between the sex and genotypes is not significant, the general linear model should be
reduced as:

Yi = µ + Gi + ε (2)

The association analysis between haplotype combinations and individual growth traits was
analyzed by the following GLM:

Yij = µ + Hi + Sj + Hi × Sj + ε (3)

where Yij is a growth trait measured on an individual animal (BW, WW, NBW, ADG, BH,
BL and CG); µ is the mean value of overall; Hi is the fixed effect of haplotype combinations
of the population (i = 5 levels); Sj is the fixed effect of sex (j = 2 levels); Hi × Sj is the
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interaction effect between sex and haplotype combinations; if the difference of interaction
effects between the sex and haplotype combinations is not significant, the general linear
model should be reduced as:

Yi = µ + Hi + ε (4)

ε is the random error in the above models. Tukey’s test and Bonferroni corrections were per-
formed for multiple pairwise comparisons between genotypes or haplotype combinations
based on SNPs. The p value of 0.05 was defined as statistical significance.

3. Results
3.1. SNP Detection of IGF1 and IGF1R Genes in Hulun Buir Sheep

We detected three SNPs in the IGF1 gene and ten SNPs in the IGF1R gene in 229 Hulun
Buir sheep (Figure 1, Figure 2, Table 1). All of the detected SNPs were transition mutations
except for SNP13 (transversion mutation) in exon 19 of IGF1R. SNP4 in IGF1R was a
nonsynonymous mutation resulting in a substitution of Cys for Arg in amino acid sequence,
and the rest were synonymous mutations. By searching in the dbSNP database of NCBI,
we found that SNP4 and SNP8 in IGF1R were two novel single-nucleotide mutations in
sheep and will be uploaded to the SNP data bank (Table 1).
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Figure 1. The sequencing peaks for three SNP loci of the IGF1 gene in Hulun Buir sheep. SNP1: 
c.144G>A (rs600896367); the arrow indicates the G–A mutation site. SNP2: c.150T>C (rs159876393); 
Figure 1. The sequencing peaks for three SNP loci of the IGF1 gene in Hulun Buir sheep. SNP1:
c.144G>A (rs600896367); the arrow indicates the G–A mutation site. SNP2: c.150T>C (rs159876393);
the arrow indicates the T–C mutation site. SNP3: c.495G>A (rs400398060); the arrow denotes to the
G–A mutation site.

Table 1. The information of SNP in IGF1 and IGF1R in Hulun Buir Sheep.

Gene Mutant Loci SNPs RefSNP Region
Allele Amino Acid

Variation
Mutation Type

A B

IGF1
c.144G>A SNP1 rs600896367 exon2 G A Ala synonymous
c.150T>C SNP2 rs159876393 exon2 T C Pro synonymous
c.495G>A SNP3 rs400398060 exon5 G A Thr synonymous

IGF1R

c.244C>T SNP4 - exon3 C T p.Arg81Cys nonsynonymous
c.714G>A SNP5 rs162159917 exon6 G A Lys synonymous
c.924T>C SNP6 rs161166969 exon8 T C Asp synonymous
c.939C>T SNP7 rs162159919 exon8 C T Cys synonymous
c.1305T>C SNP8 - exon11 T C Asp synonymous
c.1320G>A SNP9 rs601806812 exon11 G A Thr synonymous
c.1401A>G SNP10 rs161166977 exon11 A G Ala synonymous
c.1722T>C SNP11 rs161166984 exon12 T C Ser synonymous
c.2253C>T SNP12 rs193644211 exon17 C T Ala synonymous
c.2634C>G SNP13 rs161167008 exon19 C G Gly synonymous
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Figure 2. The sequencing peak maps for the ten detected SNP loci of the IGF1R gene in Hulun Buir
sheep. SNP4: c.244C>T; the arrow denotes to the C–T mutation site. SNP5: c.714G>A (rs162159917);
the arrow demonstrates the G–A mutation site. SNP6: c.924T>C (rs161166969); the arrow indicates
the T–C mutation site, reverse sequenced as an A–G change. SNP7: c.939C>T (rs162159919); the
arrow pinpoints the C–T mutation site, reverse sequenced as a G–A change. SNP8: c.1305T>C; the
arrow points to the T–C mutation site. SNP9: c.1320G>A (rs601806812); the arrow indicates the G–A
mutation site. SNP10: c.1401A>G (rs161166977); the arrow indicates the A–G mutation site. SNP11:
c.1722T>C (rs161166984); the arrow demonstrates the T–C mutation site, reverse sequenced as an
A–G change. SNP12: c.2253C>T (rs193644211); the arrow indicates the C–T mutation site. SNP13:
c.2634C>G (rs161167008); the arrow pinpoints the C–G mutation site.

3.2. Population Genetic Analyses
3.2.1. Genotyping, Genotypic and Allelic Frequencies

Among all the SNPs, the wild types were dominant alleles compared with the mutants
(Table 2). Genotyping results showed that SNP1 in IGF1 as well as SNP4, SNP5, SNP9
and SNP12 in IGF1R displayed two genotypes: wild-type homozygotes and mutant het-
erozygotes, and the remaining eight SNPs showed three different genotypes: wild-type
homozygotes, mutant heterozygotes and mutant homozygotes (Table 2). In SNP6–8, het-
erozygotes showed the highest genotype frequencies compared with wild-type and mutant
homozygous. In the remaining 10 SNPs, the wild-type homozygotes had the highest
genotype frequencies compared with mutant heterozygotes and homozygotes (Table 2).
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Table 2. Genetic diversity of the SNP loci within IGF1 and IGF1R genes in Hulun Buir sheep population.

Gene SNPs

Genotype Frequency Allele Frequency

Ne Ho He PIC P (HWE)Wild
Type

Hybrid
Subtype

Mutant
Type Wild Type Mutant

Type
AA AB BB A B

IGF1
SNP1 0.984 0.016 0 0.992 0.008 1.017 0.016 0.016 0.016 0.057
SNP2 0.490 0.436 0.074 0.708 0.292 1.705 0.436 0.414 0.328 0.604
SNP3 0.646 0.329 0.025 0.811 0.189 1.443 0.329 0.307 0.260 0.485

IGF1R

SNP4 0.948 0.052 0 0.974 0.026 1.053 0.052 0.051 0.049 0.085
SNP5 0.810 0.190 0 0.905 0.095 1.208 0.190 0.172 0.157 0.685
SNP6 0.307 0.451 0.242 0.532 0.468 1.992 0.450 0.498 0.374 0.841
SNP7 0.368 0.493 0.139 0.615 0.385 1.900 0.494 0.474 0.361 0.818
SNP8 0.320 0.511 0.169 0.576 0.424 1.955 0.511 0.489 0.369 0.562
SNP9 0.797 0.203 0 0.898 0.102 1.224 0.203 0.183 0.166 0.085

SNP10 0.693 0.281 0.026 0.833 0.167 1.385 0.281 0.278 0.239 0.685
SNP11 0.723 0.247 0.030 0.846 0.154 1.352 0.247 0.260 0.226 0.841
SNP12 0.931 0.069 0 0.965 0.035 1.072 0.069 0.067 0.065 0.818
SNP13 0.493 0.416 0.091 0.701 0.299 1.721 0.416 0.419 0.331 0.562

P (HWE) = P value of Hardy-Weinberg equilibrium, PIC < 0.25 demonstrates low polymorphism, 0.25 < PIC < 0.5
demonstrates medium polymorphism, PIC > 0.5 demonstrates high polymorphism.

3.2.2. Genetic Diversity and Hardy–Weinberg Equilibrium

The allelic frequencies of all 13 SNPs obey the HWE law (p > 0.05). The Ne values
of SNP2 in IGF1 and SNP6–SNP8 in IGF1R were close to 2. The PIC value showed that
the five SNP loci (SNP2, SNP3, SNP6–SNP8) exhibited low polymorphism (PIC < 0.25),
while the remaining eight SNPs showed moderate polymorphism in the Hulun Buir sheep
population (0.25 < PIC < 0.5) (Table 2).

3.3. Effects of Genotypes on Growth Traits

Association analysis was performed between genotypes of the SNPs and growth traits
on 229 Hulun Buir sheep. The statistical results were listed in Supplementary Tables S2–S5.

3.3.1. Effects of SNP Genotypes in IGF1 on Growth Traits

The GA genotype of SNP1 had significantly greater WCG and NBL than the GG
genotype (p < 0.05). At the SNP2 locus, the higher NCG was observed in TC genotype than
that in the CC genotype but not in the TT genotype (p < 0.05). The GG and GA genotypes of
SNP3 were significantly associated with greater 4–9 ADG than the AA genotype (p < 0.05,
Figure 3).
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Figure 3. Associations for the SNPs of IGF1 gene with growth traits in Hulun Buir sheep. (A) The
comparison of growth traits in SNP1 genotypes of IGF1 gene; WCG = chest girth at weaning (4-month-
old); NBL = body length at 9-months-old. (B) The comparison of growth traits in SNP2 genotypes
of IGF1 gene; NCG = chest girth at 9-months-old. (C) The comparison of growth traits in SNP3
genotypes of IGF1 gene; 4–9 ADG = average daily gain from 4 to 9-months-old. Different letters (small
letters: p < 0.05) above the column indicate significant differences among the different genotypes.
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3.3.2. Effects of SNP Genotypes in IGF1R on Growth Traits

The mutant homozygotes (CC) of SNP6 had significantly longer NBL than those
individuals with the TC genotype (p < 0.05, Figure 4A). Significant differences (p < 0.05)
and extremely significant differences (p < 0.01) were found between genotypes of the SNP8
locus with the 11 growth traits out of 4–9 ADG (Figure 4B,C). The genotypes containing the
wild–type allele had better phenotypic values than mutant homozygotes. At the SNP13
locus, the individuals with the CC genotype had greater NBW, 0–9 ADG, WCG, NBH
and NCG than those with the GG genotype (p < 0.05); the CC and CG genotypes were
associated with significantly longer NBL than the GG genotype (p < 0.05, Figure 4D,E). No
significant effects were detected among the remaining seven SNP loci and early growth
traits of Hulun Buir sheep (p > 0.05).
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Figure 4. Associations for the SNPs of IGF1R gene with growth traits in Hulun Buir sheep. (A) Asso-
ciation analysis for different genotypes of SNP6 in the IGF1R gene with growth traits; NBL = body
length at 9-months-old. (B) The comparison of body weight traits in SNP8 genotypes of IGF1R gene;
BW = birth weight; WW = weaning weight (4-month-old); NBW = body weight at 9-months-old;
0–4 ADG = average daily gain from birth to 4-months-old; 0–9 ADG = average daily gain from birth
to 9-months-old. (C) Association analyses for different genotypes of SNP8 in IGF1R with body size
traits; WBH = body height at 4-months-old; WBL = body length at 4-months-old; WCG = chest girth
at weaning (4-months-old); NBH = body height at 9-months-old; NBL = body length at 9-months-old;
NCG = chest girth at 9-months-old. (D) The comparison of body weight traits in SNP13 genotypes
of IGF1R gene; NBW = body weight at 9-months-old; 0–9 ADG = average daily gain from birth to
9-months-old. (E) Association analyses for different genotypes of SNP13 in the IGF1R with body
size traits; WCG = chest girth at weaning (4-month-old); NBH = body height at 9-months-old;
NBL = body length at 9-months-old; NCG = chest girth at 9-months-old. Different letters (small
letters: p < 0.05; capital letters: p < 0.01) above the column indicate significant differences among the
different genotypes.

3.4. Linkage Disequilibrium and Haplotype Analysis

A strong linkage disequilibrium (r2 > 0.33) was observed among SNP5, SNP9 and
SNP11, and between SNP6 and SNP7, as well as SNP8 and SNP9 loci in the IGF1R gene
(Figure 5). In particular, SNP6 to SNP9 loci formed two haplotype blocks. The first
haplotype block was composed of SNPs 6 and 7, including three common haplotypes.
The haplotypes H1 (TC), H2 (CT) and H3 (CC) occurred at frequencies of 0.537, 0.389 and
0.074, respectively, and five haplotype combinations were generated (Table 3). The second
haplotype block was composed of SNP8 and SNP9, including three common haplotypes.
The haplotypes H4 (CG), H5 (TG) and H6 (CA) occurred at frequencies of 0.321, 0.581 and
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0.098, respectively, and generated five haplotype combinations (Table 4). We did not detect
the linkage disequilibrium among three SNP loci (r2 < 0.33) in the IGF1 gene (Figure 6).
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Table 3. Haplotype and haplotype combination analyses of SNPs (block1) in IGF1R gene.

Haplotype SNP6 SNP7 Frequency Haplotype Combination Frequency

H1 (TC) T C 0.537 H1H1 0.310
H2 (CT) C T 0.389 H1H2 0.402
H3 (CC) C C 0.074 H1H3 0.096

H2H2 0.052
H2H3 0.140

Table 4. Haplotype and haplotype combination analyses of SNPs (block2) in IGF1R gene.

Haplotype SNP8 SNP9 Frequency Haplotype Combination Frequency

H4 (CG) C G 0.321 H1H1 0.114
H5 (TG) T G 0.581 H1H2 0.367
H6 (CA) C A 0.098 H1H3 0.048

H2H2 0.323
H2H3 0.148
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Figure 6. Linkage disequilibrium plot (r2) and haplotype blocks for SNPs of the IGF1 gene in Hulun
Buir sheep. The values within boxes are pairwise SNP correlations (r2) and light red boxes represent
very weak LD (r2 < 0.001).

3.5. Effects of Haplotype Combinations on Growth Traits

Association analysis was performed between haplotypes in the IGF1R gene and
growth traits of 229 Hulun Buir sheep populations. The statistical results were shown in
Supplementary Tables S6–S9. The haplotype block 1 was only significantly associated with
NBL, in which H1H3 (TCCC) haplotype combination had significantly longer NBL than
those individuals with the H2H3 (CTCC) haplotype combination (p < 0.05) (Figure 7A). For
haplotype block 2, the sheep with H5H6 (TGCA) haplotype combination was significantly
heavier than that of the H4H4 (CGCG) haplotype combination of BW (p < 0.05). The individ-
uals with the H5H5 (TGTG) and H5H6 (TGCA) haplotype combinations had significantly
greater WW, NBW, 0–4 ADG, 4–9 ADG, 0–9 ADG, WBL, WCG, NBH, NBL and NCG than
those with the H4H6 (CGCA) haplotype combination (p < 0.05). H5H5 (TGTG) and H5H6
(TGCA) with the wild-type allele T were the predominant haplotype combinations in the
experimental population (Figure 7B,C). Therefore, haplotype combinations H1H3 (TCCC),
H5H5 (TGTG) and H5H6 (TGCA) can be used as candidate markers for better growth traits
of Hulun Buir sheep.
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Figure 7. Associations for the haplotype combinations of SNPs in the IGF1R gene with growth
traits in Hulun Buir sheep. (A) Association analysis for the haplotype combinations (block 1) of
the IGF1R gene with growth traits; NBL = body length at 9–months–old. (B) The comparison of
body weight traits for the haplotype combinations (block 2) of IGF1R gene in Hulun Buir sheep;
BW = birth weight; WW = weaning weight (4–month–old); NBW = body weight at 9–months–old;
0–4 ADG = average daily gain from birth to 4–months–old; 4–9 ADG = average daily gain from 4 to
9–months–old; 0–9 ADG = average daily gain from birth to 9–months–old. (C) Association analyses
for the haplotype combinations (block 2) of IGF1R gene with body size traits in Hulun Buir sheep;
WBH = body height at 4 months of age; WBL = body length at 4–months–old; WCG = chest girth at
weaning (4–month–old); NBH = body height at 9–months–old; NBL = body length at 9–months–old;
NCG = chest girth at 9–months–old. Different letters (small letters: p < 0.05; capital letters: p < 0.01)
above the column indicate significant differences among the different haplotype combinations.

4. Discussion

The growth of the animal was subject to growth hormone (GH)-IGF1 somatrotropic
axis, in which GH acts as a major regulator for development, growth and anabolic processes.
IGF1 modulates the biological actions of GH by binding to its receptor (IGF1R) [35]. IGF
system includes IGF ligands and their receptors, which influences glycogenesis, glucoge-
nesis and protein synthesis through the regulation of downstream gene expression and
signaling pathways [36]. Among IGF ligands and receptors, IGF1 and IGF1R proteins
are crucial regulators of cell growth and metabolism [37,38]. Genetic variation may have



Genes 2022, 13, 666 11 of 14

an impact on the phenotypic characteristics of animals by influencing the expression and
function of the genes [39,40]. Therefore, we inferred that the genetic variation in IGF1 and
IGF1R may also influence the growth traits of sheep.

In the present study, we discovered genetic polymorphisms of the IGF1 and IGF1R
genes and evaluated their effects on growth traits in Hulun Buir sheep. Our results indicated
that IGF1 and IGF1R exhibited low to medium genetic diversity, and some of the genetic
variations exhibited a significant association with the growth performance in Hulun Buir
sheep. This observation provided SNP marker information, which has potential feasibility
for MAS in Hulun Buir sheep breeding schemes.

The Hardy–Weinberg equilibrium of all 13 SNPs indicated the absence of artificial
selection of Hulun Buir sheep [41]. In the current study, two novel single-nucleotide
polymorphisms were identified, including a nonsynonymous mutation of SNP4. A growing
body of evidence has shown that the synonymous mutations could influence phenotypic
performance by influencing gene expression through the regulation of mRNA stability
and protein expression [42–45]. Maria et al. reported that the synonymous mutation
rs159876393 SNP1 of IGF1 was associated with milk protein and casein contents in Sarda
sheep [46]. A synonymous mutation SNP2 (rs159876393) in exon 2 of IGF1 was associated
with variations in carcass traits of New Zealand Romney Sheep, including carcass weight,
backfat thickness and the lean meat percentage [47]. Consistent with previous reports on
other sheep breeds, we also identified a strong association of SNP1 and SNP2 with growth
traits in Hulun Buir sheep, which indicated that SNP1 and SNP2 of the IGF1 gene might
be related to multiple traits in sheep. A remarkable association was found between SNP3
(rs400398060) of the IGF1 gene and average daily gain from 4–9 months of age (4–9 ADG)
in the present study. This mutant site was also detected in Egyptian Barki sheep and
was not correlated with growth traits, indicating that its association might be dependent
on the genetic backgrounds of sheep breeds [48]. Few studies reported the association
between genetic polymorphisms of the IGF1R gene and growth traits in sheep. A significant
correlation was detected between average daily gain and an SNP of the IGF1R gene in
local sheep breed in Poland Merino sheep [23]. The present study reported 10 SNPs in the
IGF1R gene, and SNP6, SNP8 and SNP13 were significantly associated with growth traits in
Hulun Buir sheep. In addition, the sheep with homozygous wild genotype TT of SNP8 and
CC of SNP13 had superior growth traits than those with homozygous mutant genotypes
CC and GG, suggesting that they could serve as the predominant genotypes.

Generally, linked SNP loci are of much concern because of the existence of substan-
tial LD between causal SNPs [49]. Haplotype combinations involving multiple linked
SNP loci may provide more precise information than single SNP markers for association
analysis [50–52]. In this study, the strong LD suggested that these alleles were tightly
linked; thus, we carried out an association analysis between the haplotypes and growth
traits. The association and multiple comparison analyses demonstrated that the H5H5
(TGTG) haplotype combination with wild-type alleles was the dominant haplotype. This
was consistent with the result that the wild-type allele T of SNP8 was related to better
growth traits. Additionally, SNP6-SNP9 formed two haplotype blocks, which displayed a
remarkably significant effect on growth traits. Based on the results above, we inferred that
the four SNPs did not act independently [53], and SNP6 and SNP8 of IGF1R may be causal
mutations that affect phenotypic traits [54].

5. Conclusions

Conclusively, our analysis showed that SNP1, SNP2 and SNP3 of the IGF1 gene, SNP6,
SNP8 and SNP13, as well as haplotype block 1 and haplotype block 2 of the IGF1R gene can
be used as candidate markers for early growth traits in MAS of Hulun Buir sheep. Further
studies will be conducted to investigate the effects of these SNPs on other economic traits
in Hulun Buir sheep. The wild-type alleles of SNP8, haplotype combinations H5H5 (TGTG)
and H5H6 (TGCA) in the IGF1R gene showed superior growth traits during the early stage.
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Overall, our study provided important genetic variations, which could serve as potential
markers for growth trait selection in Hulun Buir sheep.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13040666/s1, Table S1: Primer information of IGF1 and
IGF1R in Hulun Buir sheep; Table S2: Associations for the SNPs of IGF1 gene with body weight traits
and ADG traits in Hulun Buir sheep; Table S3: Associations for the SNPs of IGF1 gene with body size
traits in Hulun Buir sheep; Table S4: Associations for the SNPs of IGF1R gene with body weight traits
and ADG traits in Hulun Buir sheep; Table S5: Associations for the SNPs of IGF1R gene with body
size traits in Hulun Buir sheep; Table S6: Associations for the haplotype combinations (block 1) of
IGF1R gene with body weight traits and ADG traits in Hulun Buir sheep; Table S7: Associations for
the haplotype combinations (block 1) of IGF1R gene with body size traits in Hulun Buir sheep; Table
S8: Associations for the haplotype combinations (block 2) of IGF1R gene with body weight traits and
ADG traits in Hulun Buir sheep; Table S9: Associations for the haplotype combinations (block 2) of
IGF1R gene with body size traits in Hulun Buir sheep.
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