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Summary 

Epstein-Barr virus (EBV) is associated with a number of different human tumors and appears 
to play different pathogenetic roles in each case. Thus, immunoblastic B cell lymphomas of the 
immunosuppressed display the full pattern of EBV latent gene expression (expressing Epstein- 
Barr nuclear antigen [EBNA]I, 2, 3A, 3B, 3C, and -LP, and latent membrane protein [LMP]I, 
2A, and 2B), just as do B lymphoblastoid cell lines transformed by the virus in vitro. In contrast, 
those EBV-associated tumors with a more complex, multistep pathogenesis show more restricted 
patterns of viral gene expression, limited in Burkitt's lymphoma to EBNA1 only and in 
nasopharyngeal carcinoma (NPC) to EBNA1 and LMH, 2A, and 2B. Recent evidence has implicated 
EBV in the pathogenesis of another lymphoid tumor, Hodgkin's disease (HD), where the malignant 
Hodgkin's and Reed-Sternberg (HRS) cells are EBV genome positive in up to 50% of cases. 
Here we extend preliminary results on viral gene expression in HRS cells by adopting polymerase 
chain reaction-based and in situ hybridization assays capable of detecting specific EBV latent 
transcripts diagnostic of the different possible forms of EBV latency. We show that the transcriptional 
program of the virus in HRS cells is similar to that seen in NPC in several respects: (a) selective 
expression of EBNA1 mRNA from the BamHI F promoter; (b) downregulation of the BamHI 
C and W promoters and their associated EBNA mRNAs; (c) expression of LMP1 and, in most 
cases, LMP2A and 2B transcripts; and (d) expression of the "rightward-running" BamHI A 
transcripts once thought to be unique to NPC. This form of latency, consistently detected in 
EBVopositive HD irrespective of histological subtype, implies an active role for the virus in the 
pathogenesis of HD and also suggests that the tumor may remain sensitive to at least certain 
facets of the EBV-induced cytotoxic T cell response. 

T here is now strong evidence implicating EBV, a herpes 
virus widespread in human communities, in the patho- 

genesis of at least three human tumors. These are the im- 
munoblastic B cell lymphomas to which immunosuppressed 
patients are especially prone, another tumor of B cell origin 
(endemic Burkitt's lymphoma [BL] 1) and an epithelial 
malignancy (nasopharyngeal carcinoma [NPC]) (1). All carry 

1 Abbreviations used in this paper: APAAP, alkaline phosphatase anti-aLkaline 
phosphatase; BL, Burkitt's lymphoma; Cp, C promoter; EBNA, Epstein- 
Barr nuclear antigen; Fp, F promoter; HD, Hodgkin's disease; HRS, 
Hodgkin and Reed-Sternberg; LMP, latent membrane protein; NPC, 
nasopharyngeal carcinoma; Wp, W promoter. 

the EBV genome in episomal form in the malignant cells and 
are positive for EBERs, small noncoding nuclear viral RNAs 
now recognized as the most consistent indicator of latent EBV 
infection (2-4). However, the contribution made by the virus 
to tumor development appears to be different in each of these 
situations, and this is to some extent reflected in the different 
patterns of viral gene expression observed in the tumor cells. 

The least complex case involves immunoblastic B cell lym- 
phoma, where tumor cell growth appears to be directly EBV 
driven in a manner analogous to that of the lymphoblastoid 
cell lines (LCLs) that arise when EBV infects normal resting 
B cells in vitro (5). Both tumor- and in vitro transformed 
cells show the same pattern of virus latent gene expression 
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encompassing six Epstein-Barr nuclear antigens (EBNA1, 2, 
3A, 3B, 3C, and -LP) and three latent membrane proteins 
(LMP1, 2A, and 2B) (6-8). It is known from studies on LCLs 
that the different EBNAs are encoded by individual mRNAs 
generated by differential splicing of the same long primary 
transcripts expressed from the BamHI C promoter (Cp) or 
the BamHI W promoter (Wp) (9), while the LMP transcripts 
are expressed from separate promoters in the BamHI N re- 
gion of the EBV genome (9, 10). The situation is different 
in BL, where EBV forms part of a complex multistep patho- 
genesis and where virus latent gene expression is restricted 
to EBNA1 only (11, 12). Recent work has shown that this 
is achieved through selective expression of a uniquely spliced 
EBNA1 mRNA from a novel promoter (Fp) in the BamHI 
F region of the viral genome; Cp, Wp, and the LMP promoters 
are silent in BL cells (13, 14). Yet a third form of latency 
is displayed by NPC cells, where Fp-driven EBNA1 transcripts 
are detected (again leading to expression of EBNA1 in the 
absence of other EBNAs), as well as most or all the LMP 
mRNAs (15-17); in addition, NPC cells express a series of 
spliced rightward-running BamHI A transcripts that may en- 
code other, as yet poorly characterized, latent proteins (18, 
19). It remains to be seen whether this particular form of 
latency, where the virus appears to encode some but not all 
of its growth transformation-associated proteins, is unique 
to NPC or can on occasions be adopted by the virus in a 
lymphoid cell environment. 

Here we address the question of EBV latent gene expres- 
sion in another malignancy, Hodgkin's disease (HD), whose 
association with the virus has only recently been fully real- 
ized and where the role played by EBV in tumor develop- 
ment remains to be determined. HD is an unusual tumor 
in which the malignant population of Hodgkin and Reed- 
Sternberg (HRS) cells constitutes only a minority of the tumor 
mass, the different histological subtypes of HD being distin- 
guished by the nature of the normal cell infiltrate; the HRS 
cells themselves are probably of lymphoid origin but often 
cannot be assigned unequivocally to either T or B cell lineages 
by conventional markers (20, 21). Epidemiological studies first 
raised the possibility of a link between EBV and HD (22-24), 
but direct evidence came with the detection of EBV DNA 
in tumor biopsies in 19-50% of HD cases and with the lo- 
calization of the EBV genome and of EBERs to HRS cells 
by in situ hybridization (25-28). Recently we and others ob- 
served by immunohistological staining that at least one viral 
protein, LMP1, was detectable in these same cells apparently 
in the absence of a second latent protein, EBNA2 (29, 30). 
This raised the possibility of a form of viral latency in HD 
similar to that found in NPC. Given the limitations of im- 
munohistochemical methods for the analysis of EBV latent 
protein expression and the paucity of tumor cells in HD, it 
was clear that a proper resolution of this question would re- 
quire a different experimental approach. In the present study 
we use a combination of PCR-based and in situ hybridiza- 
tion assays specific for defined viral mRNAs to characterize 
in detail the resident pattern of EBV latent gene transcrip- 
tion in virus-positive HD. The consistency with which one 
form of viral latency was observed has implications both for 

the possible role of the virus in HD pathogenesis and for 
the possible susceptibility of the tumor to EBV-specific im- 
mune T cell control. 

Materials and Methods 
Hodgkin Lymphoma Tissue. Lymph node biopsy specimens from 

23 HD patients were obtained, snap frozen, and stored at - 80~ 
40 sections were subsequently cut from each biopsy specimen, 10 
fixed in acetone and stored at -20~ (for use in immunohistochem- 
ical staining), and the remaining 30 fixed in paraformaldehyde, 
washed in PBS, dehydrated through graded ethanols, and stored 
at -80~ (for use in in situ hybridization). The remaining biopsy 
tissue was halved with half the tissue being used in immunoblot- 
ting and the other half being used in the RNA PCR. 

Control Cell Cultures and Tumor Tissue. For immunohistochem- 
istry and RNA in situ hybridization, cytospins of cell lines of known 
EBV status were prepared and used as controls. These included the 
EBV-transformed LCL X50-7 and the EBV-positive BL cell line 
Akata. Also used was the NPC cell line C15, kindly provided by 
Dr. P. Busson (Institut Gustave Roussy, Villejuif, France) and pas- 
saged in SCID mice (31). Reference cell lines used as positive con- 
trols in the RNA PCR included C15, X50-7, and B95.8 (an EBV- 
transformed marmoset LCL) with the EBV-negative BL cell line, 
BL41, serving as a negative control. In the immunoblotting, X50-7 
and C15 were used as positive controls, and BJAB (an EBV-negative 
BL cell line) and the transplantable line NOR (an EBV-negative 
SCID mouse-passaged nasopharyngeal carcinoma [17]) were used 
as negative controls. 

lmmunoblotting. Protein samples from SCID mouse-passaged 
tumors, B cell lines, and HD biopsies were separated by discon- 
tinuous PAGE, blotted onto nitrocellulose membranes as previously 
described (15), and probed with the mAb specific for LMP (clone 
CS1-4 [32]) or with polyclonal human sera reactive against EBNA 
proteins (15). 

Immunohistology. Acetone-fixed frozen sections of HD biopsies 
were stained using the alkaline phosphatase anti-alkaline phospha- 
tase (APAAP) technique as previously described (33) using the mAb 
CS1-4 at a dilution of 1:50. Cytospins of reference cell lines Akata 
BL and X50-7 LCL were stained using the same technique. 

In Situ Hybridization. For the preparation of KNA probes, 
cDNA fragments were subcloned into the plasmid pBluescript KS 
containing promoters for T7 and T3 polymerases. The pBSW 
plasmid contains the BamHI W fragment of EBV subcloned at 
the BamHI site. The plasmids pBSJJJ1 and pBSJJJ2 contain EBER1- 
and EBER2-specific fragments, respectively. These fragments were 
derived from plasmids pJJJ1 and pJJJ2 (34), kindly provided by Dr. 
J. Arrand (Paterson Institute for Cancer Research, Manchester, UK), 
and subcloned into the BamHI and EcoRI, and EcoRI and HindlII 
sites, respectively. After linearization with the appropriate restric- 
tion enzyme, 3sS-labeled antisense (complementary to the mRNA) 
or sense (anticomplementary, negative control) run-off transcripts 
were generated using either T3 or T7 RNA polymerases (Bethesda 
Research Laboratories, Gaithersburg, MD) as described previously 
(35). The length of the KNA probes was adjusted to ,~100-200 
bases by controlled alkaline hydrolysis. For in situ hybridization 
experiments using the pBSJJJ1 and pBSJJJ2 probes, the antisense 
probes were mixed to increase sensitivity, as were the sense probes. 

RNA-RNA hybridization was performed as described previously 
(35). Fixation and treatment of sections with HC1 and pronase fol- 
lowed by postfixation in 4% paraformaldehyde/PBS, acetylation, 
and dehydration was as previously described (35). Hybridization 
mixture (25 #1) containing 50% deionized formamide, 2 x SSC, 
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10% dextran sulphate, 0.2 mg/ml yeast tRNA, and 2-5 x 105 
cpm of labeled probe was applied per section. Hybridization was 
performed at 50~ for 12 h. Excess probe was removed by washing 
in 50% formamide, lx  SSC at 52~ for 4 h, followed by a diges- 
tion with 20/~g/ml RNase A for 30 min at 37~ Slides were 
rinsed agoin in 2 x SSC, dehydrated, dipped into Ilford G5 emul- 
sion, exposed, developed, and counterstained as previously described 
(35). In some experiments, HD sections and cytospin preparations 
were treated with RNase-free DNase I (Bethesda Research Labora- 
tories) in concentrations of up to 40/~g/ml at 37~ for 30 min 
before hybridization to the RNA probes. 

Extraction of RNA for PCR Analysis. tLNA was extracted from 
HD biopsies, the transplantable tumor cell line C15, and the refer- 
ence B cell lines using the RNAzol B method according to the 
manufacturer's protocol (Cinna/Biotecx, Houston, TX). Frozen 
specimens were pulverized in a small glass homogenizer before ex- 
traction with RNAzol B. 

Amplification and Analysis of RNA Transcripts by PCR. tLNA 
samples were treated and analyzed as described previously (17). Es- 
sentially the samples were heated for 2 rain at 90~ rapidly cooled 
on ice, reverse transcription PCR was performed in a one-tube reac- 
tion for 60 rain at 42~ the samples were heated to 94~ for 7 
min and cooled to 70~ and ~q DNA polymerase was added. 
Samples were subjected to 40 rounds of amplification in a DNA 
thermal cycler (Perkin-Elmer Cetus, Norwalk, CT). Amplification 
conditions were as follows: denaturation for 30 s at 94~ primer 
annealing for 90 s at 45~ and extension for 240 s at 70~ For 
the specific amplification of LMP1 mRNAs, a higher annealing 
temperature of 50~ and an extension temperature of 72~ for 
120 s were used. The sequences and coordinates of EBV-PCR primers 
utilized to detect LMP1, LMP2, and EBNA1 transcripts in this 
study are as previously described (17) and are based on the pub- 
lished B95.8 genomic sequence (36). Two sets of primers based on 
the splice pattern of the 18.8 cDNA were used to detect the BARF0 
transcript (18). The first primer pair spans the large first intron 
of the 18.8 cDNA and the second primer pair spans the second 
and third introns. The sequences of the primers and probes used 
to detect the BARF0 transcript are described in the legend to Fig. 7. 

Amplified samples were analyzed by electrophoresis through 3% 
Nusieve agarose gels and then by Southern transfer onto Hybond 
N + nylon membranes (Amersham Corp., Arlington Heights, IL). 
Detection of EBNA1, LMP1, LMP2A, LMP2B, and BARF0 
mRNA products was achieved by hybridization to end-labeled oli- 
gonucleotide probes, the sequences of which are as previously de- 
scribed (17, 37); the sequences of the BARF0 probes are described 
in the legend to Fig. 7. Oligonucleotide probes were hybridized 
at 42~ overnight in the presence of 5x SSC (lx SSC is 0.1 M 
NaC1 plus 0.015 M sodium citrate), 5 x Denhardt solution, 0.5% 
SDS, and 100 #g/ml of calf thymus DNA in 50% formamide. 

As an additional control to check for amplifiable mRNA in each 
individual HD biopsy extract, amplifications were performed by 
using PCR primers specific for human CD45 mRNA. These 
primers (5'-GGAACTGACACGCAGACATT-3' and 5'-CTCAGA- 
GTGGTTGTTTCAGA-3') span an intron in the CD45 gene and 
generate a 260-bp amplified product that is visible on ethidium 
bromide-stained agarose gels. 

Results 

Histological Analysis of LMPI and EBER Expression in l iD 
Biopsies. 16 H D  biopsies were selected as EBV-positive cases 
on the basis of immunostaining for LMP1 and of in situ hy- 
bridization for the EBER RNAs. The majority of  these HD 
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cases were of the mixed cellularity histological subtype in 
accordance with the previously reported preferential associa- 
tion of EBV with this form of the disease (29). However, 
EBV-positive cases of nodular sclerosing and lymphocyte pre- 
dominant subtypes were also included. In all 16 cases the LMP1 
staining was restricted to the HRS cells with characteristic 
strong membrane and cytoplasmic reactivity (Fig. 1 A, Table 
1). These same cases showed EBER expression in the tumor 
cells by in situ hybridization (Fig. 1 B, Table 1). The cell-to- 
cell variation in the intensity of the autoradiographic signal 
among HRS cells was similar to that observed in LCLs, BL 
cell lines, and NPC tumors. As a further check for specificity, 
no signal was observed with the control sense EBER probes 
on these H D  cases or on EBV-positive controls. Seven cases 
of HD that were negative for both LMP1 and EBER expres- 
sion, again including a range of histological subtypes of the 
tumor, were used as EBV-negative control specimens in these 
and subsequent analyses. 

Figure 1. Detection of EBV in the malignant HRS cells of HD. (A) 
Immunohistological staining of an EBV-positive HD biopsy, HD8, with 
the mAb CS1-4 demonstrates the expression of LMPl in the tumor calls 
(APAAP, hematoxylin counterstaining, x340). (B) In situ ILNA-ILNA 
hybridization of an EBV-positive l id  biopsy, HD8, reveals strong nuclear 
labding in the tumor cells with EBER-specific antisense probes (3-d ex- 
posure, H + E counterstaining, x 340). No signal was detected with the 
control sense probes. 



Table  1. EBV Latent Gene Expression in Hodgkin's Disease Biopsies 

In situ 
hybridization 

HD biopsy LMP1 Cp, 
(subtype) EBER BamW staining W p  

PCR detection of spliced transcript 

EBNA1 LMP1 LMP2 BamHIA 

Y / U / K  Q / U / K  2.8 3.7 A B A1/2 A3/4 

HD1 (ns) + - + - - 

HD2 (mc) + - + - - 

HD3 (mc) + - + - - 

HD4 (ns) + - + - - 

HD5 (ns) + - + - - 

HD6 (ns) + - + - - 

HD7 (mc) + - + - - 

HD8 (mc) + - + - - 

HD9 (mc) + - + - - 

HD10 (mc) + - + + + 

H D l l  (mc) + - + - - 

HD12 (lp) + - + - - 

Latency h BL + . . . .  

Latency II: NPC + - + - - 

Latency III: LCL + + + + + 

+ + + + + + + 

+ + + - _ + + 

+ + + - + + + 

+ + + + + + + 

- + - _ _ + + 

+ + + + - + + 

+ + + -- _ + + 

. . . . .  -t- + 
- -  + + + + + + 

+ + + + + + + 

+ + + + + + + 

+ + + + + -- _ 

+ . . . .  ND ND 
+ + + + + + + 

- -  + + + + + + 

mc, mixed cellularity; ns, nodular sclerosing; lp, lymphocyte predominant. 

Analysis of LMP1 Expression at the Protein and mRNA 
Level. We first sought  independent  evidence that the im- 
munohistochemical staining obtained above and in earlier work 
us ing the LMPl-specific m A b  CS1-4 did indeed reflect ex- 
pression of  the authent ic  LMP1 protein.  I m m u n o b l o t  anal- 
ysis for LMP1 in extracts of  H D  biopsies revealed expression 
of  the appropriately sized ful l - length protein;  generally, the 
a m o u n t  of  protein  detectable correlated w i th  the prevalence 
of  H R S  cells in the biopsy as assessed by LMP1 and C D 3 0  
immunos ta in ing  (Fig. 2). As a control EBV-negative H D  cases 
w i th  similar numbers  of  H R S  cells as assessed by C D 3 0  im- 
munos ta in ing  were LMP1 negative by immunob lo t t i ng .  The  
variable size of  the LMP1 band  in each EBV-positive H D  bi- 
opsy is consistent w i t h  the presence of  a different EBV iso- 
late in each of  these cases. The  abili ty to detect LMP1 in total 
biopsy extracts reinforces the impression that LMP1 levels 
in H R S  cells are unusual ly  high.  Similar i m m u n o b l o t t i n g  
analysis on these same biopsy extracts wi th  polyspecific human  
sera reactive against the E B N A  proteins gave uni formly  nega- 
tive results (data no t  shown).  

R N A  prepared from snap-frozen biopsies of 12 EBV-positive 
and 5 EBV-negative H D  specimens was analyzed for LMP1 
m R N A  by P C R  after reverse t ranscript ion to c D N A  us ing  
a 5' (2.8) pr imer  situated in the first exon and a 3'  pr imer  
spanning the exon 2-3 boundary  (Fig. 3). These primers, which 
we have previously used to examine LMP1 transcripts in N P C  
biopsies, yielded the predicted 381-bp product  in 11 of  the 

12 EBV-positive H D  biopsies; no signal was detected from 
the EBV-negative H D  biopsies even after long  overexposures 
of  the autoradiographs (Fig. 3). R N A  from the transplant-  
able N P C  line C15 was used as a positive control  for LMP1 
m R N A  while that from the EBV-negative BL41 cell line served 
as a negative control.  Since we have previously used P C R  
to show that fresh N P C  biopsies also express the longer 3.7-kb 

Figure 2. Immunoblot of LMPl protein in extracts from EBV-positive 
and -negative HD biopsies. Control extracts were provided by the EBV- 
transformed I_CL X50/7, the EBV-negative BL cell line BJAB, the trans- 
plantable EBV-positive NPC line C15, and the transplantable EBV-negative 
pharyngeal carcinoma line NOR NaCa. The immunoblot was probed with 
the anti-LMPl mAb CS1-4. 
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Figure 3. PCR analysis of LMP1 mRNA in 12 EBV-positive (HD1 
to HD12) and 5 EBV-negative (HD13 to HD17) HD biopsies. The EBV- 
negative BL cell line BL41 and the transplantable EBV-positive NPC line 
C15 served as controls. Total RNA from the biopsies and cell lines was 
analyzed by reverse transcription and PCR amplification by using a 5' (2.8 
[ .~ ]) primer and a 3' primer spanning the exon 2-3 splice junction ( ,-,. ). 
The 381-bp LMPl-specific amplified products were detected with an oli- 
gonucleotide probe from exon 2 ( , ) .  

LMP1 mRNA (containing additional untranslated upstream 
sequences), first identified in the C15 NPC line, LMP1 tran- 
scription in HD was further examined using the 3' primer 
described above in combination with the 5' (3.7) LMP1 primer 
derived from a sequence upstream of the 2.8-kb mRNA start 
site. This primer combination yielded the predicted 3.7-kb 
mR, NA-specific 460-bp product in 10 of the 12 EBV-positive 
HD biopsies; again, no signal was detected from the EBV- 
negative HD biopsies (data not shown). As the presence of 
amplifiable mRNA in each of the HD extracts was verified 
by using primer combinations specific for the cellular CD45 
mRNA (data not shown), the inability to detect both the 
2.8- and 3.7-kb LMP1 mRNAs in biopsy HD8 is likely to 
be due to the low number of HRS cells in this particular 
biopsy. 

Analysis of LMP2A and LMP2B Expression at the mRNA 
Level. RNA from the same series of HD biopsies was ex- 
amined for LMP2A and LMP2B transcripts by PCR using 
a common 3' primer to exon 3 in combination with LMP2A- 
and LMP2B-specific 5' primers from the unique first exons 
of the two mRNAs (Fig. 4). These primers, which we have 
previously used to examine LMP2 transcription in NPC bi- 
opsies, yielded the predicted 280-bp LMP2A product or the 
predicted 324-bp LMP2B product in 8 of the 12 EBV-positive 
HD biopsies; no signal was detected from the EBV-negative 
HD biopsies even after long overexposures of the autoradio- 
graphs (Fig. 4). In two cases, HD3 and HD6, only one form 
of LMP2 was detected while the remaining biopsies were posi- 
tive for both LMP2A and LMP2B. 

Analysis of EBNAI Expression at the mRNA Level. We 
postulated that, even though immunoblotting could not de- 
tect EBNAs in total HD biopsy extracts, the latent EBV in- 
fection in HRS cells (like all other known forms of EBV 
latency) would be associated with expression of at least one 
nuclear antigen, the virus genome maintenance protein 
EBNA1. Identification of an EBNA1 transcript would not 
only constitute strong evidence that this was the case, but 
also the splice structure of the transcript would help to char- 
acterize the resident form of virus latency. Thus, RNA from 
the HD biopsies was examined for EBNA1 transcribed from 
either: (a) the Fp using a 3' primer within the BamHI K 
EBNA1 open reading frame (ORF) in combination with a 
5' primer from the BamHI Q exon, or (b) the Cp/Wp using 
the same 3' primer in combination with a 5' primer from 
the BamHI Y3 exon. These primers, which we have previ- 
ously used to examine EBNA1 transcription in LCL, BL, and 
NPC cells, yielded the predicted 236-bp Q/U/K spliced 
product diagnostic of Fp-driven EBNA1 transcription in the 
control C15 NPC line and in 9 of the 12 EBV-positive HD 

Figure 4. PCR analysis of LMP2 mKNAs in 12 
EBV-positive (HD1 to HD12) and 5 EBV-negative 
(HD13 to HD17) HD biopsies using LMP2A-specific 
(9) and LMl~-specific (bottora) primer combinations. 
The EBV-negative BL cell line BL41, the EBV-positive 
B95.8 LCL, and the transplantable EBV-positive NPC 
line C15 served as controls. Total RNA from the bi- 
opsies and cell lines was analyzed by reverse transcrip- 
tion and PCR amplification by using a 3' primer ( -4 ) 
from the common exon 3 of LMP2 in combination 
with a 5' primer ( P - )  from the unique first exon of 
either LMP2A (top) or LMP2B (bottom). The 280-bp 
LMP2A-specific and 324-bp LMP2B-specific amplified 
products were detected with an oligonuclcotide probe 
from the common e~on 2 (m). 

343 Deacon et al. 



Figure 5. PCR analysis of EBNA1 mRNAs in 12 
EBV-positive (HD1 to HD12) and 5 EBV-negative 
(HDD to HD17) HD biopsies. The EBV-positive B95.8 
I.CL and the transplantable EBV-positive NPC line C15 
served as controls. Total RNA from the biopsies and 
cell lines was analyzed by reverse transcription and PCR 
amplification by using a 3' primer ( .q ) from the 
EBNAl-coding (shaded) BamHI K exon in combina- 
tion with a 5' primer ( D,- ) either from the BamHI 
Q exon (top) or from the BamHl Y3 exon (bottom). 
Amplified products were detected with an oligonu- 
cleotide probe from the common BamHI U exon (Jl). 

biopsies; no signal was detected in the X50/7 LCL or from 
the EBV-negative HD biopsies even after long overexposures 
of the autoradiographs (Fig. 5). In contrast, the 265-bp 
Y3/U/K spliced product diagnostic of Cp/Wp-driven EBNA1 
transcription was readily detected in the X50/7 LCL but in 
only one of the EBV-positive HD biopsies: HD10, which 
is also positive for Fp transcription (Fig. 5). 

Analysis of Cp/Wp mRNA Transcription. To confirm the 
lack of Cp/Wp activity in EBV-positive HD suggested by 
the EBNA1 mRNA analysis, we used two further assays to 
examine more directly transcription from these promoters. 
First, we used in situ hybridization with a BamHI W 
riboprobe specific for "rightward-running" transcripts con- 
taining BamHI W sequences. While the control X50/7 LCL 
gave a strong cytoplasmic signal with this probe, no positive 
cells were observed in any of the EBV-positive HD samples, 
including HD10, which by PCR was positive for Cp/Wp- 
driven EBNA1 transcripts (Fig. 6). Second, using PCR primers 
from appropriate W exons (37), we were able to confirm that 
the majority of the EBV-positive HD cases were negative for 
Cp/Wp activity (data not shown); however, RNA extracted 
from HD10 did contain BamHI W mRNA-specific transcripts 
in accord with the earlier finding of Cp/Wp-driven EBNA1 
mRNA in this particular sample. 

Analysis of BamHI A Transcription. The detection of abun- 
dant transcription over the BamHI A region of the EBV ge- 
nome in NPC prompted us to examine these transcripts in 
EBV-positive HD. We developed two sets of oligonucleotide 
primers that were specific for the large BamHI A-encoded 
18.8 mRNA first isolated from a cDNA library made to the 
nude mouse-passaged C15 NPC tumor line (Fig. 7). These 
PCR primers spanned the introns of this transcript and gave 
the products of predicted size on RNA extracted from the 
C15 line; no signals were ever detected from RNA extracted 
from EBV-negative B cell lines (Fig. 7). A further conforma- 
tion of the specificity of the primers spanning the first intron 

of the 18.8 mRNA (the A1/A2 primers) is their inability 
to detect BamHI A-specific mRNA in the B95.8 cell line 
due to a deletion of the first exon. However, the A3/A4 primers 
spanning the second and third introns confirmed that the 
3' end of the 18.8-like mRNA is correctly spliced in B95.8 
cells. Both sets of primers detected the correctly spliced BamHI 
A transcript in all EBV-positive HD biopsies except HD12; 
no signal was detected from the EBV-negative HD biopsies 
even after long overexposures of the autoradiographs (Fig. 7). 

Table 1 presents a summary of all the data obtained from 
the 12 EBV-positive HD biopsies by in situ hybridization for 
EBERs and for BamI-II W-containing transcripts, by immuno- 
histochemical staining for LMP1 and by PCR amplification 
for EBNA1, LMP, and BamHI A mRNAs. Below the liD 
data are shown the different patterns of results displayed by 
the three well-established forms of viral latency in the same 
assays. Note that the forms of latency characteristic of BL, 
NPC, and LCL cells are now referred to as latency I, II, and 
III respectively. 

Discussion 

While much of the early work suggesting an association of 
EBV with HD was circumstantial, more direct evidence comes 
from recent studies in which EBV genomes and the EBV- 
encoded EBERs have been detected in the malignant HRS 
cells of up to 50% HD cases (25-28). To investigate the ex- 
pression of EBV latent proteins in HD, we originally used 
mAbs to LMP1 and EBNA2 in an immunohistochemical 
study; this revealed LMP1, but no detectable EBNA2, ex- 
pression in the HRS cells of 48% of cases with a predomi- 
nance of positivity in the mixed cellularity histological sub- 
type of the disease (29). This result was subsequently confirmed 
by other groups (30, 38, 39) and suggested that the pattern 
of EBV gene expression in HD was similar to that observed 
in NPC (15, 16). Subsequent studies of EBV latent protein 

344 Epstein-Barr Virus and Hodgkin's Disease 



Figure 6. In situ RNA-RNA hybridization of an EBV-positive HD 
biopsy, HD1, with a BamHl W-specific antisense probe (a, 7-d exposure, 
H + E counterstaining, x 340) confirms absence of" Cp/Wp promoter ac- 
tivity, whereas the same probe shows an intense cytoplasmic mRNA signal 
in X50/7 LCL cells (b, 5-d exposure, H+E counterstaining, x340). No 
corresponding signal is seen in X50/7 cells with the control sense probe 
(c, 5-d exposure, H+E counterstaining, x340). 

expression in HD have been hampered by the limited range 
of available reagents for immunohistochemical staining and 
by the relative paucity of malignant HRS cells in HD biop- 
sies, which prevents their analysis by the standard immuno- 
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blotting approach. Interestingly, in the present study we were 
able to detect LMP1 at the protein level by immunoblotting 
in those EBV-positive HD cases with sufficient numbers of 
HRS cells. This testifies to the high-level expression of LMP1 
in HRS cells already apparent by immunohistochemistry. 
High-level expression of LMP1 from inducible heterologous 
promoters has been shown to be extremely toxic in a variety 
of different cell types (40). That HRS cells can sustain such 
levels of LMP1 is itself interesting, and its continued expres- 
sion argues for an important role of this oncogenic protein 
in the pathogenesis of HD (41). The pleiotropic nature of 
LMPrs effects in a variety of cell systems, notably the mul- 
tiple phenotypic changes induced in B cell lines and the inhi- 
bition of epithelial cell differentiation, likewise suggests that 
this protein may contribute to the malignant transformation 
of HRS cells (42, 43). 

In this study we have further characterized the pattern of 
EBV latent gene expression in EBV-positive HD by reverse 
transcription PCR amplification of specific viral mRNAs using 
primer-probe combinations previously validated and used in 
the analysis of EBV transcription in NPC biopsies (17). This 
approach is ideally suited to the analysis of HD biopsies where 
the content of malignant HRS cells is small. Analysis of LMP1 
transcription in HD biopsies consistently detected transcripts 
with the same splicing pattern as originally identified in the 
2.8-kb LMP1 mRNA expressed in LCL cells (44); further- 
more, use of an alternative 5' primer indicated that at least 
some, and possibly all, of these transcripts represent the longer 
3.7-kb LMP1 mRNA initiating from a promoter upstream 
of the 2.8-kb mRNA start site (N.B., the 5' [2.8] primer, 
would amplify both 2.8- and 3.7-kb transcripts). This LMP1- 
specific 3.7-kb mRNA was originally described in the C15 
NPC line and has also been observed in fresh biopsies of NPC 
(19). Thus, LMP1 transcription in EBV-positive HD resembles 
that observed in NPC. Although EBNA2 has been shown 
to transactivate the 2.8-kb LMP1 promoter and is indeed re- 
quired for LMP1 expression in EBV-infected B cells (45-47), 
the presence of the 3.7-kb and possibly also the 2.8-kb LMP1 
transcript in HD and NPC cells in the absence of EBNA2 
expression suggests that the relevant promoter(s) are no longer 
~,BNA2 dependent in these particular cell environments. 

The lack of specific antibodies to LMP2 protein prevents 
immunohistological analysis of HRS cells with respect to 
LMP2 status (N.B. LMP2A and 2B are antigenically related 
since all of the LMP2B sequence is contained within LMP2A 
[48]). However, we have recently used PCR to examine the 
expression of LMP2A and LMP2B mRNA in NPC biopsies 
(17). In the present study we have demonstrated that both 
LMP2A and LMP2B transcripts are frequently expressed in 
EBV-positive HD. The inability to detect LMP2 mRNA in 
four of the HD biopsies is probably due to the low number 
of HRS cells in those cases. Thus, in HD5 and HD8 neither 
LMP2 mRNA nor EBNA1 mRNA is detectable even though 
these cases are positive for LMP1 protein and EBERs at the 
histological level (see Table 1). The regularity of LMP2 ex- 
pression in HD again indicates that both the LMP2A and 
LMP2B promoters (the latter located in the same region as 
the 2.8-kb LMP1 promoter [10]) can function in the absence 



Figure 7. PCR analysis of BamHl A transcripts in 12 
EBV-positive (HD1 to HD12) and 5 EBV-negative (HD13 
to HD17) FID biopsies. The EBV-positive 1395.8 I.CL and 
the transplantable EBV-positive NPC line C15 served as 
controls. Total RNA from the biopsies and cell lines was 
analyzed by reverse transcription and PCR amplification 
using two sets of primers. The first primer pair (A1/A2) 
span the large first intron of the "rightward-running" 18.8 
cDNA, and the second primer pair (A3/A4) span the 
second and third introns (18). The A1 primer (5'-ATG- 
GCCGGAGCTCGTCGACG-3') lies within a 11,835-bp 
fragment present in the Raji BL (as well as most other) 
virus strains but is deleted from B95.8 between nucleo- 
rides 152012 and 152013 of the ]395.8 sequence (60). Thus, 
amplification with the A1 primer in combination with 
the A2 primer (5'-CCTTCGATATCGAGTGTCTG-3') 
gives the predicted 168-bp amplified product detected with 
the end-labeled A1/A2 oligonudeotide probe (5'-ACC- 
AGAGGACGCAGGATATC-3') in RNA extracted from 
the C15 NPC line and in the EBV-positive HD samples 
but not from B95.8. The combination of primer A3 
(5'-AGAGACCAGGCTGCTAAACA-3') with primer A4 
(5'-AACCAGCTTTCCTTTCCGAG-3') yielded the 
predicted 240-bp product detected with the end-labeled 
A3/A4 probe (5'-AAGACGTTGGAGC~ACGCTG-3'). 

of EBNA2, even though both are EBNA2 dependent in LCL 
cells (48). Thus, it is likely that LMP2 proteins are regularly 
expressed in EBV-positive HD biopsies as in NPC (17, 49), 
again raising the possibility of an effector role for these pro- 
teins in the development of HD. Furthermore, antibodies to 
LMP2 are frequently detected in NPC patients but not in 
tumor-free controls (51); similar serological studies in HD 
patients will be of interest. 

A particularly interesting aspect of the current study is 
the finding that EBV-positive HD biopsies consistently ex- 
press EBNA1 mRNA with the same Q/U/K splice struc- 
ture as has been recently identified in NPC biopsies as well 
as in BL cell lines that retain the original BL phenotype (13, 
14, 17, 36). Our recent work shows that this splice pattern 
is diagnostic of a distinct EBNA1 mRNA transcript driven 
from a novel promoter Fp close to the BamHI F/Q boundary. 
Thus, it would appear that the Fp is responsible for EBNA1 
transcription in HRS cells as opposed to the Cp/Wp 
promoters, which are active in LCLs (9). This was further 
confirmed in HD by the lack of Cp/Wp activity as assessed 
by both PCR and in situ hybridization. The Cp/Wp activity 
detected by PCR in one of the EBV-positive HD biopsies, 
HD10, is likely to reflect the presence of EBV-infected reac- 
tive lymphoid cells, a phenomenon that we and others have 
previously observed in a number of EBV-positive and -negative 
HD cases (50-52). Our inability to detect Cp/Wp activity 
by in situ hybridization in the reactive lymphoid component 
of HD10 may be due to sampling differences such that these 
few EBV-positive cells were present in the tumor portion from 
which RNA was extracted but not in the thin sections used 
for the in situ studies. The overall result of EBNA1 tran- 
scription analysis strongly suggests that the EBV genome 
maintenance protein EBNA 1 is expressed in HD as in both 
NPC and BL without concomitant expression of the other 

EBNAs by virtue of the selective use of the Fp promoter. 
Studies on the regulation of Fp activity will help define the 
cellular factors responsible for the selective use of Fp in different 
cell types. 

The identification of novel latent transcripts running 
through the BamHI A region of the EBV genome in the 
opposite orientation to conventional BamHI A transcripts 
of the virus lytic cycle came from work on a nude mouse- 
passaged NPC cell line C15 (18, 19). Such "rightward- 
running" transcripts appear, from limited analyses published 
to date, to be a consistent feature of NPC (53). Using PCR 
primers spanning introns in the largest BamHI A-specific 
cDNA isolated from the C15 NPC line, we have recently 
detected transcripts with this splice structure in 10 fresh NPC 
biopsies (Brooks et al., manuscript in preparation). Given 
the similarities between NPC and HD with regard to EBV 
gene expression, we analyzed EBV-positive HD cases for such 
mRNAs and found easily detectable expression of the ap- 
propriately spliced transcript in all but one case. While a puta- 
tive BamHI A-encoded protein product has been identified 
(53), the lack of a suitable antibody reagent precludes anal- 
ysis of the expression of this protein in biopsies of NPC and 
HD. Whatever the function of the protein encoded by the 
BamHI A transcript, the expression of this mRNA in EBV- 
positive HD dearly indicates that it is not preferentially ex- 
pressed in epithelial cells as has previously been suggested 
(53). Indeed our recent findings show that latently infected 
B cell lines also contain the same transcript (Brooks et al., 
manuscript in preparation). 

The finding of a consistent pattern of EBV latent gene tran- 
scription in EBV-positive HD further supports a role for the 
virus in the pathogenesis of this malignancy. This particular 
form of infection (with coexpression of EBNA1, LMP1, 2A, 
and 2B, and BamHI A transcripts) is identical to that ob- 
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served in NPC and is likely to be similar to that in certain 
other malignancies of lymphoid origin whose association with 
EBV is now becoming better documented. Thus, EBV-positive 
cases of AIDS-related lymphoma, CD30-positive anaplastic 
large cell lymphoma, and peripheral T cell lymphoma have 
been described where LMP1 is often, but not always, expressed 
in the absence of EBNA2 (54-56). There are now two in 
vitro model systems in which this form of latency can be 
induced, in one case by broadening the highly restricted viral 
latent gene expression seen in BL cells (57), and in another 
case by repressing some of the viral genes expressed in LCLs 
(37). Interestingly, the latter example involved cell fusion of 
an EBV-transformed B cell with another parent cell of non-B 
cell origin; it is at least formally possible that HKS cells arise 
by such a fusion event in vivo. 

Another important aspect of the present work is its impli- 
cations for the possibility of CTL control over EBV-positive 
HD. Recent analyses indicate that, while many EBV-specific 

CTL responses are directed towards target proteins such as 
EBNA3A, 3B, or 3C, which are downregulated in HD cells, 
at least two of the viral proteins that are expressed, namely 
LMP1 and 2, can provide target peptides when presented in 
the context of at least some common HLA class I antigen 
types (58, 59). If EBV-positive HD cells are indeed sensitive 
to such responses (and one has to remember that the primary 
role of EBV-specific CTLs is to survey viral infection of the 
B cell pool), then it may be that those HLA class I antigens 
selectively presenting LMP1- or LMP2-derived epitopes will 
prove to be protective against the EBV-positive but not the 
EBV-negative form of HD. Now that target epitopes from 
LMP1 and LMP2 are being defined at the peptide level, it 
will be possible to determine whether these sequences are 
conserved in HD-derived EBV isolates and/or whether peptide- 
specific responses can be elicited from the T cell memory of 
appropriate HD patients. 
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