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ABSTRACT

Cytosineglycols (5,6-dihydroxy-5,6-dihydrocytosine)
are initial products of cytosine oxidation. Because
these products are not stable, virtually all biological
studies have focused on the stable oxidation
products of cytosine, including 5-hydroxycytosine,
uracil glycols and 5-hydroxyuracil. Previously, we
reported that the lifetime of cytosine glycols was
greatly enhanced in double-stranded DNA, thus
implicating these products in DNA repair and
mutagenesis. In the present work, cytosine and
uracil glycols were generated in double-stranded
alternating co-polymers by oxidation with KMnO4.
The half-life of cytosine glycols in poly(dG-dC) was
6.5 h giving a ratio of dehydration to deamination of
5:1. At high substrate concentrations, the excision
of cytosine glycols from poly(dG-dC) by purified
endonuclease III was comparable to that of uracil
glycols, whereas the excision of these substrates
was 5-fold greater than that of 5-hydroxycytosine.
Kinetic studies revealed that the Vmax was several
fold higher for the excision of cytosine glycols
compared to 5-hydroxycytosine. In contrast to
cytosine glycols, uracil glycols did not undergo
detectable dehydration to 5-hydroxyuracil.
Replacing poly(dG-dC) for poly(dI-dC) gave similar
results with respect to the lifetime and excision of
cytosine glycols. This work demonstrates the
formation of cytosine glycols in DNA and their
removal by base excision repair.

INTRODUCTION

Reactive oxygen species are constantly generated by
endogenous processes, such as aerobic respiration,
phagocytosis and by exposure to ionizing radiation (1).

The reaction of H2O2 with DNA-bound metal ions, i.e.
Fe2+, appears to be a major source of endogenous
oxidative DNA damage (2). In cellular DNA, the
formation of oxidative DNA damage is counterbalanced
by repair, involving an array of DNA repair proteins,
which maintain a low steady state level of potentially
mutagenic damage (3). Oxidation of cytosine involves
saturation of the 5,6-double bond of cytosine, rendering
the exocyclic amino group susceptible to deamination,
i.e. conversion of the amino to a carbonyl group (4).
Because these groups dictate base pairing in duplex
DNA, both thermally and oxidatively induced deamina-
tion are efficient mechanisms of GC!AT transition
mutations. The most common mutation in the genome of
aerobic organisms is GC!AT transitions based on the
analysis of mutations within the lacI gene in bacteria,
lacI transgenes in rodents and the HPRT gene in rodents
and humans (5–7). The same bias toward GC!AT
transitions is observed with oxidants, such as H2O2 and
ionizing radiation (8,9). Recently, Loeb and co-workers
(10) reported that GC!AT transitions represented 81%
of all spontaneous mutagenic events within mitochondria
DNA using a sensitive assay for mutagenesis known as
random mutation capture. Again the oxidation of
cytosine is likely a major contributor to GC!AT
transitions. In contrast, GC!AT transitions do not
arise from the oxidation of G because this damage either
blocks replication or leads to transversions (GC!TA;
e.g. 8-oxo-7,8-dihydroguanine).

The majority of studies on cytosine oxidation has
focused on three modifications: uracil glycols,
5-hydroxycytosine and 5-hydroxyuracil (11). These mod-
ifications are believed to arise from intermediate cytosine
glycols, which undergo deamination to uracil glycols,
dehydration to 5-hydroxycytosine, or both deamination
and dehydration to 5-hydroxyuracil (4,12). These mod-
ifications are substrates for numerous DNA repair
proteins, including Nth homologues (Endo III,
hNTH1), Nei-like homologues (Endo VIII, yNtg1/
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yNtg2, hNeil1/hNeil2), uracil N-glycosylases (Ung and
Smug1) and Nfo-like endonucleases with nucleotide
incision activity (Apn1, Ape1) (13–16). The mutagenic
potential of the above cytosine products has also been
studied. The specific incorporation of 5-hydroxycytosine
into M13 led to a relatively low frequency of GC!AT
transition mutations in host Escherichia coli [0.05%;
(17)]; however, 5-hydroxycytosine may be mutagenic in
certain sequence context (18,19). In contrast, the
incorporation of uracil glycols and 5-hydroxyuracil into
the DNA of E. coli. led to a relatively high mutation
frequency [>80%; (16,19)]. This may be explained by the
initial deamination of oxidized cytosine intermediates
(e.g. the deamination of cytosine glycols to uracil
glycols). Thus, DNA polymerases predominantly insert
A opposite to uracil glycols and 5-hydroxyuracil, leading
to GC!AT transitions after a round of replication.
Finally, it is noteworthy that deficiencies in base excision
repair associated with the repair of cytosine lesions tend
to increase spontaneous and oxidant-induced mutations.
For example, E. coli that are deficient in both Endo III
and Endo VIII are hypersensitive to ionizing radiation
and H2O2 and display a high frequency of spontaneous
mutations (20). In addition, when the activities of both
Smug1 and Ung proteins are compromised in mamma-
lian cells, the frequency of spontaneous GC!AT
transition mutations rises to as much as 10-fold higher
than that in wild type cells (21).

Previously, we reported that the lifetime of cytosine
glycols was greatly enhanced in double-stranded calf
thymus DNA compared to the free nucleoside (half-life
is 28 h for DNA compared to 50min for the nucleoside;
(12)). This suggests that cytosine glycols are substrates for
base excision repair and if they are not repaired, they may
contribute to mutagenesis during DNA replication.
Moreover, the inability to repair cytosine glycols gives
time for these products to undergo deamination and
transform into products with an extremely high mutagenic
potential (i.e. uracil glycols). For the above reasons, it is
important to examine cytosine glycols in DNA and
determine the specificity of DNA repair proteins toward
this damage. In the present work, we have oxidized
alternating heteroduplexes [poly(dG-dC) or poly(dI-dC)]
with KMnO4 such that the main product in polymers is
either cytosine glycols or 5-hydroxycytosine. We have
developed several methods to measure cytosine glycols in
DNA and in the supernatant of DNA–enzyme mixtures.
Using these methods, we confirm the presence of cytosine
glycols in oxidized polymers, examine their decomposition
(half-life and extent of deamination) and determine the
kinetics of their excision by Endo III as a model system of
base excision repair.

MATERIALS AND METHODS

Chemicals

Water was prepared by double distillation in glass
followed by passage through a water purification system
(resistivity is 18.3M�/cm; EASY pure, Barnstead).
Chemicals were of the highest available purity.

Sodium chloride (NaCl), potassium permanganate
(KMnO4), sodium metabisulfite (Na2O5S2), sodium
hydroxide (NaOH) and formic acid (CH2O2) 88% were
purchased from Fluka; N,O-bis(trimethylsilyl)trifluoroa-
cetamide (BSTFA) with 1% trimethylchlorosilane
(TMCS) were purchased from Supelco, EDTA was
purchased from Sigma; phosphoric acid 88%, cytosine,
guanine were obtained from Aldrich; and the alternating
heteroduplexes [poly(dG-dC) and poly(dI-dC)] from
Amersham Pharmacia Biotech. Purified endonuclease III
DNA N-glycosylase (Endo III) and formamidopyrimidine
DNA N-glycosylase (Fpg) were kindly provided by Serge
Boiteux, Fontenay aux Roses, France.

Acid hydrolysis and GC/MS

All operations were carried out in silicon capped glass
vials (300ml), which were sealed under an atmosphere of
nitrogen between steps. Acidic hydrolysis was achieved by
heating polymers for 40min at 1458C in 100 ml of 88%
formic acid. Samples were then dried under vacuum using
a speed-vac apparatus (Savant). The corresponding
trimethylsilyl derivatives of DNA bases were obtained
by derivatization at 1208C for 25min using a 1:3 mixture
(total volume=50 ml) of anhydrous acetonitrile and
BSTFA containing 1% TMCS. The analysis of modified
bases was carried out by GC/MS (Model QP5050A,
Shimadzu) equipped with a 0.25 mm� 30m XTI-5
column (Restek) with helium as carrier gas at a flow rate
of 2 ml/min. The initial temperature of the column was set
at 1258C for 2min and it was increased at a rate of 5.28C/
min for 30min and then held at 2808C for an additional
12min. The temperature of the injector and detector
were 2508C and 2808C, respectively. Ionization was
carried out by collision with 70 eV electrons. Authentic
standards of 5-hydroxycytosine and 5-hydroxyuracil were
prepared by an established method (22). Stable isotopes
(+3 amu) of cis and trans uracil glycols, 5-hydroxycyto-
sine, 5-hydroxyuracil were prepared from 15N2

13C-labeled
urea (Cambridge Isotopes), as previously described
(23,24).

Acid hydrolysis and HPLC/EC

The same acid hydrolysis protocol was used for HPLC/EC
and GC/MS analysis (see above). HPLC analysis of
modified nucleobases was performed using a dual pump
HPLC (Model 616, Waters) with a solvent controller
(Model 600S, Waters), attached to an automated injector
(Model 717 plus, Waters), PDA detector (Model 996,
Waters) and an electrochemical detector (Coulochem II
Model 5200, ESA Associates) equipped with an electro-
chemical cell (Model 5011, ESA). Data were acquired
using an AD converter (SAT/IN, Waters). HPLC and
data acquisition was controlled by Millenium software
(Version 3.2, Waters). For the separation of modified
nucleobases, we used a 0.6� 25 cm C18 ODS-AQ column
(YMC) at a flow rate of 1.2ml/min with a mixture of
sodium phosphate (25mM) and sodium acetate (2.5mM)
at pH 5.5 as the mobile phase. 5-Hydroxycytosine
and 5-hydroxyuracil were detected at the first electrode
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(75mV vs Pd reference) and second electrode (350mV)
of the electrochemical detector, respectively. The yield of
damage was calculated from a ratio of 5-hydroxycytosine
(or 5-hydroxyuracil) obtained by electrochemical detec-
tion, to nonmodified cytosine, obtained by UV detection
at 260 nm, on the same chromatographic run.

Enzymatic hydrolysis and HPLC/EC

Polymers were hydrolyzed to a mixture of nucleosides by
enzymatic digestion. Ten micrograms of oxidized poly-
mers were incubated at 508C for 30min with 5 units of P1
nuclease (Roche) in 40 ml of 10mM sodium acetate
(pH 4.8). Following digestion with P1 nuclease, the pH
of the solution was adjusted to pH 7 by the addition of 5 ml
of 1.2M ammonium acetate and 5 units of alkaline
phosphatase (Roche) was added to hydrolyze the phos-
phate group. Protein was removed from the sample by the
addition of 50 ml of chloroform. The sample was analysed
by HPLC using a 0.6� 25 cm C18 ODS-AQ column
(YMC) at a flow rate of 1.2ml/min and 25mM sodium
phosphate (pH 5.5) plus 2.5mM sodium acetate as the
mobile phase. 5-Hydroxy-20-deoxycytidine and 5-hydroxy-
20-deoxyuridine were quantified using the electrochemical
detector with a window of oxidation between 50 and
350mV (Model 5011, ESA). As described above for
nucleobases, the yield of damage was normalized to the
amount of nonmodified 20-deoxycytidine obtained by
UV detection at 260 nm.

Oxidation of polymers by KMnO4

The standard procedure for the oxidation of poly(dG-dC)
and poly(dI-dC) involved the addition of KMnO4

(final concentration is 1–5mM) to a solution of polymer
(0.5 mg/ml; 1 absorbance unit=50 mg/ml) containing
sodium phosphate buffer (25mM; pH 3–10) and NaCl
(0–3M). The reaction was allowed to proceed at room
temperature for specific times (0–4 h). It was terminated by
the addition of 2 mM EDTA (final concentration) and
Na2O5S2 (two equivalents) followed by the addition
of NaCl (0.5M) and then isopropanol (50% v/v) to
precipitate the polymer. For precipitation, the samples
were kept at �208C for 30min prior to centrifugation at
13 200 g at 48C for 40min. The pellets were subsequently
dissolved in 25 ml of water and dialyzed overnight against
4 l of water at 48C. Dialysis was carried out using a
microdialyzer apparatus (Spectra/Por 16 wells, Spectrum)
equipped with 12 000–14 000 MWCO regenerated
cellulose membranes (Spectra/Por). The membranes were
prepared by boiling them in water containing 1mM
EDTA and 2% bicarbonate for 10min followed by
extensive washing with water and 1mM EDTA.

Excision of cytosine products by Endo III

Poly(dG-dC) and poly(dI-dC) (0.5 mg/ml) were oxidized by
exposure to 1mM KMnO4 for 2 h in a solution of 2M
NaCl. The reaction was stopped and DNA was pre-
cipitated as described above. The pellets were subse-
quently dissolved in TE buffer (10mM Tris–HCl, 100mM

NaCl and 1mM EDTA) and dialyzed overnight against 4 l
of water at 48C (as above). The polymers were divided into
two fractions: one fraction was stored at �208C to
preserve the amount of cytosine glycols, denoted as
freshly oxidized polymer; and the other fraction was
incubated at 378C in 10mM Tris–Cl (pH 7.0), 100mM
NaCl and 1mM EDTA for 4 days to completely trans-
form cytosine glycols into 5-hydroxycytosine, denoted as
heat-treated polymer. Enzymatic excision of cytosine
products from DNA was examined in a mixture of
oxidized polymer (50 mg) and Endo III (1 mg) in 50 ml of
100mM sodium phosphate (pH 7.4). Before starting the
reaction, the mixture was dialyzed 45min against 100mM
sodium phosphate at 48C to remove glycerol. At this
point, equal amounts of four stable isotopes (+3 amu)
were added as internal standards, which included
5-hydroxycytosine, 5-hydroxyuracil, and the cis and
trans isomers of uracil glycols. The enzymatic reaction
was terminated by the addition of 10 volumes of cold
acetone, followed by storage at �208C and centrifugation
at 13 200 g for 30min to precipitate polymers and protein.
The supernatant was removed and dried under vacuum.
Modified nucleobases were trimethylsilylated and sub-
jected to GC/MS analysis, as described above.

Kinetics of excision by Endo III

To vary the concentration of substrate, the oxidation of
poly(dG-dC) was carried out at different concentrations of
KMnO4 (0.1–2mM). The amount of total damage
(cytosine glycol and 5-hydroxycytosine) was estimated in
each sample by enzymatic digestion and HPLC/EC
analysis of 5-hydroxycytosine nucleoside. As before, the
excision of cytosine glycol and 5-hydroxycytosine from
oxidized poly(dG-dC) was determined by comparing fresh
polymer that contains cytosine glycol with heat-treated
polymer that contains 5-hydroxycytosine. In this case,
however, the release of cytosine glycol and 5-hydroxycy-
tosine was monitored by HPLC/EC, which requires
relatively small amounts of substrate compared to GC/
MS analysis. The velocity of excision (pmol/min/ng
protein) at a given substrate concentration was calculated
from the average release of cytosine glycol and
5-hydroxycytosine after incubation with Endo III for
15, 30, 45min at 378C). Immediately before analysis, the
samples were filtered through a 3000MW cutoff filter to
remove Endo III and the filtrate was incubated for 1 h
at 378C to convert cytosine glycols to 5-hydroxycytosine.
Kinetic parameters (Km and Vmax) were determined by
Hanes plots of the data [concentration of substrate/
velocity (y-axis) vs concentration of substrate (x-axis)]
according to Equation (1).

½lesion�

v
¼

½lesion�

Vmax
þ

Km

Vmax
1

where [lesion] is the concentration of either cytosine glycol
or 5-hydroxycytosine, Vmax is the maximum enzymatic
reaction velocity, v is the initial reaction velocity and Km

is the Michaelis–Menten constant.
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RESULTS

Oxidation of poly(dG-dC) and poly(dI-dC) by KMnO4

The oxidation of alternating heteroduplexes containing
cytosine was achieved using KMnO4 (Reaction I,
Figure 1). Under these conditions, <1% of the total
cytosine was oxidized giving yields of damage in the range
of 1–10 modifications per 1000 nonmodified cytosine. The
formation of cytosine and uracil glycols in polymers was
linear as a function of reaction time (0–4 h) and KMnO4

concentration (0.1–2mM). The yield of products increased
with ionic strength of the reaction mixture (0–3M NaCl).
This effect may be attributed to electrostatic repulsion
between the negative charges of DNA and the attacking
permanganate anions (25). It should also be noted that
the oxidation of polymers by KMnO4 gives a uniform
distribution of damage. Although KMnO4 is known to
react 10–20-fold more efficiently with single stranded
compared to double stranded regions (25), the fact that
the formation of damage was linear as a function of time
of exposure indicates that the percentage of single-
stranded regions in polymers was negligible.
Furthermore, pre-incubation of polymers with S1 nuclease
to remove single-stranded or looped sequences did not
affect the yield of cytosine and uracil glycols, indicating
that the oxidation of cytosine takes place in double-
stranded regions of the polymers.

Analysis of cytosine and uracil glycols in DNA

Direct analysis of cytosine glycols in DNA was not
possible because they undergo dehydration to
5-hydroxycytosine (Reaction II) or deamination to uracil
glycols (Reaction III) when DNA is hydrolyzed to

monomers (Figure 1). Thus, we developed a number of
methods to indirectly measure cytosine glycols from
oxidized polymers. The first step in these methods
involved the release of cytosine glycols from the polymers.
This was achieved by either treatment with hot formic acid
which hydrolyses the polymer to its component nucleo-
bases or mild enzymatic digestion with P1 nuclease and
alkaline phosphatase which hydrolyzes the polymers into
its component 2-deoxyribose nucleosides. In addition,
cytosine glycols and other cytosine oxidation products,
5-hydroxycytosine and uracil glycols, were excised from
polymers by treatment with purified Endo III. The
modifications were subsequently detected by either GC/
MS (for nucleobases) or HPLC/EC (for nucleobases
and nucleosides; Figure 2). In the case of formic acid
hydrolysis, cytosine glycols are quantitatively converted to
5-hydroxycytosine without any detectable deamination
and thus, the measured 5-hydroxycytosine represents
the sum of cytosine glycols and 5-hydroxycytosine.
Likewise, uracil glycols are quantitatively converted to
5-hydroxyuracil under these conditions.
The initial amount of cytosine glycols in oxidized

poly(dG-dC) and poly(dI-dC) was determined by acid
hydrolysis and HPLC/EC analysis (Figure 2a). In these
analyses, we assume that neither 5-hydroxycytosine nor
5-hydroxyuracil exist in freshly oxidized polymers because
both of these products have a relatively low oxidation
potential and if formed, they are likely immediately
oxidized during treatment with KMnO4 (26,27).
Thus, the amount of cytosine glycols in freshly
oxidized polymers is equal to the amount of measured
5-hydroxycytosine. In contrast, the amount of cytosine
glycols decreased in heat-treated polymers with an
increase in uracil glycols (Figure 2a). Although cytosine
glycols and 5-hydroxycytosine are indistinguishable in
these analyses, we assume that the difference between the
total of cytosine glycol and 5-hydroxycytosine (measured
as 5-hydroxycytosine) before and after heating equals the
amount of cytosine glycols that has converted to uracil
glycol. After incubating freshly oxidized polymer at 378C
for several half-lives, we assume that the polymer
no longer contains cytosine glycol and that the amount
of 5-hydroxycytosine as measured by acid hydrolysis
equals 5-hydroxycytosine in the polymer.
An alternative method to measure cytosine glycols in

DNA involves enzymatic hydrolysis with P1 nuclease
and alkaline phosphatase, followed by the detection of
5-hydroxycytosine and 5-hydroxyuracil nucleosides by
HPLC/EC (not shown). Using this method, it was found
that the amount of 5-hydroxycytosine nucleoside was the
same as that of 5-hydroxycytosine obtained by acid
hydrolysis and HPLC/EC analysis. Although thymine
glycols are known to inhibit cleavage of the phosphodi-
ester bond by P1 nuclease (28,29), this does not likely
affect the digestion of DNA containing cytosine glycols
because they undergo dehydration to 5-hydroxycytosine
during digestion (i.e. 5-hydroxycytosine does not inhibit
digestion). Interestingly, there was no detectable forma-
tion of 5-hydroxyuracil nucleoside in freshly oxidized
polymers by enzymatic digestion and HPLC/EC analysis.
This result indicates that 5-hydroxyuracil is not a product
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Figure 1. Formation and decomposition of cytosine glycols. Cytosine
(1) was oxidized to cytosine glycols (2) by KMnO4 (Reaction I;
Figure 1). Cytosine glycols (2) decomposed by either dehydration to
5-hydroxycytosine (3; Reaction II) or deamination to uracil glycols
(4; Reaction III). During acid hydrolysis of DNA, cytosine glycols
(2) and uracil glycols (4) are converted to 5-hydroxycytosine (3) and
5-hydroxyuracil (5), respectively (Reactions II and IV; Figure 1). Thus,
the amount of 5-hydroxycytosine obtained by acid hydrolysis corres-
ponds to the sum of cytosine glycols (2) and 5-hydroxycytosine (3),
whereas the amount of 5-hydroxyuracil (5) corresponds to the sum of
uracil glycols (4) and 5-hydroxyuracil (5).
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of cytosine oxidation in polymers by KMnO4. In other
words, the entirety of 5-hydroxyuracil observed in
oxidized polymers by the method of acid hydrolysis and
GC/MS analysis may be attributed to the formation of
uracil glycols (uracil glycols are quantitatively converted

to 5-hydroxyuracil during acid hydrolysis but not during
enzymatic digestion at neutral pH; Reaction IV, Figure 1).
Furthermore, we did not detect 5-hydroxyuracil nucleo-
side in heat-treated polymers, indicating that uracil glycols
do not undergo dehydration to 5-hydroxyuracil in double-
stranded DNA under neutral conditions.

On the basis of acid hydrolysis and GC/MS analysis,
the major products observed from the oxidation of
poly(dG-dC) and poly(dI-dC) by KMnO4 were 5-hydro-
xycytosine and 5-hydroxyuracil (estimated to be 10-fold
greater than other known oxidation products of cytosine
and guanine). There was no indication for the formation
of other products, including 5,6-dihydroxyuracil (dialuric
and isodialuric acid), 5-hydroxyhydantoin, or alloxan.
Thus, we conclude that cytosine glycols (measured as
5-hydroxycytosine) and uracil glycols (measured as
5-hydroxyuracil) are the main oxidation products of
poly(dG-dC) and poly(dI-dC) by KMnO4.

Decomposition of cytosine glycols in oxidized polymers

The thermal decomposition of cytosine glycols was
examined in oxidized polymers by incubation of the
polymers at 378C (Figure 3). The loss of cytosine glycols
was accompanied with a corresponding gain of uracil
glycols, consistent with the deamination of cytosine
glycols to uracil glycols in oxidized polymers (Reaction
III, Figure 1). The rates of decomposition and
growth were the same (k of 0.10 h�1 or half-life of 6.5 h;
Figure 3a). In addition, the size of cytosine glycol loss and
uracil glycol gain was comparable, with values of 540 and
350 damages per 1000 nonmodified cytosine, respectively.
Taking the average of both values [(540+350)/2], the
percentage of dehydration and deamination of cytosine
glycols in poly(dG-dC) was estimated to be 86%
[(3270� 445)/3270)] and 14% (100% – 86%), respectively.
The decomposition of cytosine glycols was also examined
in oxidized poly(dI-dC) (not shown). In contrast to
cytosine glycols in poly(dG-dC), the corresponding life-
time in poly(dI-dC) was 2-fold shorter and the percentage
of dehydration was 85%. The decomposition of cytosine
glycols in poly(dG-dC) was studied at different pH and
salt concentrations (Figure 3b). Interestingly, the rate of
decomposition of cytosine glycols was 2-fold greater in
acid (pH 5.5) compared to neutral solutions (pH 7 and 8)
and markedly increased 3–4-fold in going from 0.15M
to 2.0M NaCl.

The decomposition of cytosine glycols in poly(dG-dC)
and poly(dI-dC) was examined in strong alkali (phosphate
buffer; EDTA; pH 12). For these studies, it was necessary
to add EDTA to the reaction in order to protect
5-hydroxycytosine against secondary oxidation which is
a problem at high pH (26). When oxidized polymers were
treated at pH 12, the amount of cytosine glycols in
polymers dropped by �20% of initial values. In compar-
ison, uracil glycols in polymers completely disappeared
after 2 h of treatment at high pH. The behavior of uracil
glycols was nearly identical to that reported for thymine
glycols in oxidized plasmid DNA (30). The inability to
completely destroy cytosine glycols in polymers may be
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Figure 2. Analyses of cytosine oxidation products. (a) HPLC/EC
analysis of 5-hydroxycytosine (3) and 5-hydroxyuracil (5). Top
chromatogram–standard compounds; middle chromatogram–freshly
oxidized poly(dG-dC) subjected to acid hydrolysis; bottom chromato-
gram–heat treated oxidized poly(dG-dC) subjected to acid hydrolysis.
Products 3 and 5 were detected by electrochemical detection with
the oxidation potential at 75mV and 350mV, respectively. (b) GC/MS
analysis of 5-hydroxycytosine (3), 5-hydroxyuracil (5) and uracil glycols
(4a and 4b). The samples were prepared from polymers by either acid
hydrolysis or incubation with Endo III followed by trimethylsilylation
of the resulting nucleobases. The most abundant ion in the mass spec-
trum was chosen for selective ion monitoring (molecular ion �15 amu,
unless indicated): 5-hydroxycytosine (3, m/z 328); 5-hydroxyuracil
(6, m/z 329); trans uracil glycol (4a, m/z 245, ion fragment) and cis
uracil glycol (4b, m/z 245, ion fragment). The peak at 27min was an
impurity. c) Quantitation of 5-hydroxycytosine (3), released from
oxidized poly(dG-dC) by Endo III, was achieved by GC/MS analysis
with selective ion monitoring. The amount of 5-hydroxycytosine was
determined from the ratio of natural product released by Endo III to
the corresponding isotopically labeled 5-hydroxycytosine (+3 amu),
which was added before the addition of enzyme. The chromatogram
depicts the excision of the 5-hydroxycytosine (3) from freshly oxidized
poly(dG-dC) (left) and heat-treated polymer (right).

288 Nucleic Acids Research, 2008, Vol. 36, No. 1



attributed to the efficient dehydration of cytosine glycols
to 5-hydroxycytosine at high pH (12).

Excision of cytosine glycols by Endo III

The excision of cytosine glycols from oxidized polymer by
Endo III was studied by comparing the profile of excision
products from freshly oxidized polymers, which contained
cytosine glycols, with that from heat-treated polymers,

which contained 5-hydroxycytosine. For this purpose,
each oxidized polymer was divided into two aliquots. The
first aliquot was kept at 48C to preserve cytosine glycols
within the polymer, whereas the other aliquot was
incubated at 378C to transform initial cytosine glycols to
5-hydroxycytosine and uracil glycols. The amount of
damage in each sample was determined by acid hydrolysis
and HPLC/EC analysis. From these analyses, the amount
of cytosine glycol (assuming no 5-hydroxycytosine) in
freshly oxidized poly(dG-dC) was 2.2, whereas the amount
of 5-hydroxycytosine (assuming no cytosine glycols) in the
correspondingly heated polymer was 1.7 lesions per 103

nonmodified cytosine (Table 1). This corresponds to
a ratio of dehydration to deamination of 78%:22%
respectively, in agreement with our decomposition studies.
The release of cytosine oxidation products from

oxidized polymers by Endo III was estimated by GC/
MS analysis using isotopic dilution to correct for losses of
product during sample preparation (Figure 2b and c;
Table 1). The results revealed the release of 4.8-fold more
cytosine glycols (measured as 5-hydroxycytosine) from
freshly oxidized poly(dG-dC) compared to the release of
5-hydroxycytosine from heated polymer (Table 1). Similar
results were observed for poly(dI-dC) with a 3.2-fold
difference in the efficiency of excision for cytosine glycols
(Table 1). The smaller effect observed for poly(dI-dC)
polymer may be explained in part by the transformation
of cytosine glycols to 5-hydroxycytosine in freshly
oxidized poly(dI-dC) before or during reaction with
Endo III due to the shorter lifetime of cytosine glycols
in poly(dI-dC) (3 h) compared to in poly(dG-dC) (6.5 h).
The percent excision of cytosine glycols was comparable

to that of uracil glycols using Endo III and freshly
oxidized poly(dG-dC) (17.8% compared to 23.3%;
Table 1). This suggests that cytosine and uracil glycols
are comparable substrates for Endo III. In GC/MS
analysis, three oxidation products of uracil were observed
in the supernatant of Endo III-polymer reactions. The
major product was cis uracil glycol (51%), followed by
5-hydroxyuracil (36%) and trans uracil glycol (13%),
where the percentage corresponds to the average yield of
each product divided by the total yield of deamination
products (Table 1). The predominant release of cis uracil
glycol is consistent with the formation of cis products by
KMnO4 oxidation. For example, the yield of cis glycol is
several fold greater than that of the corresponding trans
glycol from KMnO4 oxidation of thymine derivatives
(31–33). The presence of trans uracil glycol and
5-hydroxyuracil in Endo III/DNA polymer mixtures
may be attributed to the transformation of cis uracil
glycols during the preparation of samples for GC/MS
analysis; for example, a similar profile of the three
products was obtained by trimethylsilyation and GC/MS
analysis of purified cis uracil glycol.

Excision of cytosine glycols by Endo III (kinetic studies)

It was difficult to study the kinetics of excision for Endo
III/polymers by acid hydrolysis and GC/MS because of
the relatively large amount of polymer required for
accurate determination of the products (50 mg of polymer
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Figure 3. Thermal decomposition of cytosine glycols in oxidized
poly(dG-dC). Decomposition was carried out in phosphate buffer
(25mM, pH 7.0) containing 0.15 NaCl and 1mM EDTA. Analysis of
cytosine glycols (solid circles) and uracil glycols (solid squares) was
carried out by acid hydrolysis and HPLC/EC. The dashed line
represents the best fit of data to an exponential function [y= y0+ be
(�t/k)], where y0 and y are the yield of product at time zero and at
specific times of incubation (t), respectively, k is the rate of
decomposition or growth and b is a constant. From these analyses,
the rate of decomposition of cytosine glycols was �0.11 h�1 whereas the
growth of uracil glycols was 0.10 h�1 (n=7; r25 0.94). Repeated
experiments gave similar rates of decomposition and growth. (b) Top
panel: decomposition of cytosine glycols as a function of pH (5–8)
in phosphate buffer (25mM) at a fixed concentration of NaCl (0.15M);
bottom panel: decomposition of cytosine glycols as a function of salt
concentration (0.15–2M) in phosphate buffer at pH 7.0 (25mM,
pH 7.0). Rates were estimated from the best fit of data to the above
exponential function (n=7; r25 0.97).
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per timepoint). Thus, we developed a more sensitive
method to monitor the excision of cytosine glycols and
5-hydroxycytosine from Endo III/polymer mixtures using
HPLC/EC (see Materials and Methods). In this method,
the excision of cytosine glycols and 5-hydroxycytosine was
measured by removing the substrate and enzyme, con-
verting cytosine glycols to 5-hydroxycytosine in the
supernatant, followed by the analysis of 5-hydroxycyto-
sine by HPLC/EC. The rate of excision (velocity) for each
substrate depended on the concentration of damage of
oxidized polymer according to Michaelis–Menten kinetics
(Figure 4). The Vmax was 4.8-fold higher for cytosine
glycols compared to 5-hydroxycytosine, whereas the Km

was 2.4-fold higher for cytosine glycols (Table 2). Thus,
the ratio (Vmax/Km) was �2-fold higher for cytosine
glycols than 5-hydroxycytosine. The excision of cytosine
glycols compared to that of 5-hydroxycytosine was higher
than 2-fold in previous experiments (Table 1) because the
substrate concentration was close to enzyme saturation.

No excision of cytosine glycols by Fpg enzyme

The possibility that Fpg enzyme excises cytosine
glycols from oxidized poly(dG-dC) was examined by
analysis of enzyme–DNA supernatants as a function of
time of incubation, as carried out for Endo III. From
these analyses, no release of cytosine glycols was
observed from freshly oxidized polymer even at 10-fold
higher concentration of enzyme compared to that used for
Endo III (not shown). In comparison, Fpg enzyme
efficiently hydrolyzed 8-oxo-7,8-dihydroguanine from
poly(dG-dC) when exposed to H2O2 and Fe2+ in order
to produce this damage at comparable levels to that of
cytosine glycols in KMnO4-oxidized polymer. Thus,
we conclude that cytosine glycols within oxidized
poly(dG-dC) are not substrates for Fpg. In addition,
there was no detectable excision of 5-hydroxycytosine
from oxidized polymer when the polymer was heated
before the addition of enzyme to convert cytosine glycols
to 5-hydroxycytosine; thus, 5-hydroxycytosine in oxidized
polymer are also not substrates for Fpg. The lack of
excision of 5-hydroxycytosine by Fpg is consistent with
an early report using gamma-irradiated calf-thymus
DNA and GC/MS analysis (34); however, two later
studies reported the excision of 5-hydroxycytosine from
synthetic oligonucleotides (35,36). The reason for this
discrepancy is not clear. One possibility is that oligonu-
cleotides containing 5-hydroxycytosine undergo second-
ary oxidation under certain conditions to transform into
potential substrates for excision by Fpg [i.e. isodialuric
acid; (31)].

Table 1. Excision of cytosine and uracil oxidation products for oxidized poly(dG-dC) and poly(dI-dC) by Endo III

Damage
cytosinea

(2 or 3)

Percent
excisionb

(2 or 3)

Damage
uracila

(4a)

Percent
excisionb

(4a,4b,5)

trans-Uracil
glycol (4a)

cis-Uracil
glycol (4b)

5-Hydroxy
uracil (5)

Poly-(dG-dC) fresh 180� 13 17.8� 1.1 58.9� 10.4 23.3� 1.7 4.1� 0.3 11.5� 1.0 7.6� 0.3
Poly-(dG-dC) heatedc 141� 13 3.8� 0.3 84.0� 4.8 24.5� 1.1 1.6� 0.6 13.3� 0.2 9.6� 0.2
Ratio 4.75 0.95
Poly-(dI-dC) fresh 433� 9 14.0� 0.8 127.5� 3.7 27.1� 1.2 4.2� 0.1 13.5� 0.7 9.3� 0.4
Poly-(dI-dC) heatedc 378� 21 4.4� 0.4 128.3� 5.9 36.4� 1.2 4.1� 0.2 18.2� 0.3 14.0� 0.7
Ratio 3.18 0.74

aInitial damage in pmol for 50 mg of polymer was estimated by acid hydrolysis and HPLC/EC analysis (Figure 2). 180 pmol/50mg=2.2 lesions
per 103 nonmodified cytosine assuming an average molecular weight of 308.6 for poly(dG-dC).
bPercent excision of initial damage.
cPolymer was pre-incubated at 378C to transform cytosine glycols (2) to 5-hydroxycytosine (3).
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Figure 4. Plots of reaction velocity (v) vs substrate concentration. The
substrate was either cytosine glycols (solid circles) or 5-hydroxcytosine
(open circles) within freshly oxidized poly(dG-dC) or freshly oxidized
and then heated polymer, respectively. The red line represents the best
fit of data to an exponential function.

Table 2. Kinetic parameters for the excision of cytosine glycols and

5-hydroxycytosine from oxidized poly(dG-dC) by Endo III

Substrate Km (mM) Vmax(pmol/min/ng) Vmax/Km

5-hydroxycytosine 0.19 0.00024 (0.000015) 0.0013 (0.00031)
cytosine glycol 0.45 0.00116 (0.000062) 0.0026 (0.00025)

Kinetic parameters were derived from graphs in Figure 4 using the
Hanes equation (see Methods and Materials) with the following
statistical profile (n=10; r2> 0.98; P< 0.0001). Numbers in parenth-
eses indicate SE calculated from linear regression.
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DISCUSSION

The oxidation of DNA bases by KMnO4 follows the
order: thymine> cytosine> guanine> adenine (32). The
difference in the rate of oxidation between thymine
and cytosine varies from 10- to 30-fold for monomers
and 30- to 45-fold for single-stranded oligonucleotides and
plasmid DNA (25,32,33,37–39). In contrast to pyrimi-
dines, purines are much less reactive. The rate of reaction
of KMnO4 with guanine nucleoside is at least 5-fold less
than that with cytosine nucleoside under neutral condi-
tions (38). The least reactive DNA base, i.e. adenine,
resists oxidation by KMnO4 even under harsh conditions
(39). Although the oxidation of inosine by KMnO4 has
not been reported, the reactivity of this base is likely
comparable to that of adenine in view of the similarities of
their structure and oxidation potential. Therefore, cyto-
sine residues in both poly(dG-dC) and poly(dI-dC) are the
principle targets (>80%) of oxidation by KMnO4. A
number of DNA base oxidation products was reported
from KMnO4 oxidation of denatured plasmid DNA using
acid hydrolysis and GC/MS analysis (40). Although most
of the damage occurred at thymine, the authors reported
some damage at cytosine, including 5-hydroxycytosine,
5,6-dihydroxyuracil (dialuric or isodialuric acid) and
5-hydroxyhydantoin (40). In contrast, we only observed
the formation of cytosine glycols (measured as
5-hydroxycytosine) and uracil glycols (measured as
5-hydroxyuracil) by acid hydrolysis and GC/MS. The
discrepancies between the two studies may be attributed to
differences in experimental conditions; in particular, the
oxidation of plasmid DNA in the previous study was
carried out with single-stranded DNA, which is more
susceptible to oxidation than double-stranded DNA.

The presence of cytosine glycols in poly(dG-dC)
and poly(dI-dC) is supported by the transformation of
cytosine products (cytosine glycols to uracil glycols) as a
function time and the marked difference in the excision of
products by Endo III between freshly and heated
polymers. In oxidized poly(dG-dC), cytosine glycols
(measured as 5-hydroxycytosine) decreased with a
half-life of 6.5 h whereas uracil glycols (measured as
5-hydroxyuracil) increased with similar kinetics (Figure 3).
Although direct analysis of cytosine glycols is not possible,
the only explanation for the concomitant loss of measured
5-hydroxycytosine and gain of measured 5-hydroxyuracil
is the deamination of cytosine glycols to uracil glycols.
The amount of measured 5-hydroxycytosine reaches a
plateau in oxidized polymers after incubation at 378C,
indicating that 5-hydroxycytosine does not undergo
deamination to 5-hydroxyuracil. In addition, the effects
of pH and salt concentration on the decomposition of
cytosine glycols in oxidized polymers were very similar to
those observed for cytosine glycol nucleoside in aqueous
solution (12). The presence of cytosine glycols in oxidized
polymers was also supported by the difference in the
excision of cytosine oxidation products by Endo III
between freshly oxidized and heat-treated polymer
(Table 1). The main excision product in freshly oxidized
polymers was cytosine glycols whereas the main product
in heat-treated samples was 5-hydroxycytosine. Thus, the

difference in the excision of products from freshly oxidized
and heated polymer by Endo III excision arises from the
transformation of polymer containing a good substrate,
i.e. cytosine glycols, to one containing a relatively poor
substrate, i.e. 5-hydroxycytosine.
Our analysis indicated that uracil glycol but not

5-hydroxyuracil was produced in oxidized poly(dG-dC)
and poly(dI-dC) and that 5-hydroxyuracil did not form
even after extensive incubation at 378C. Thus, we conclude
that uracil glycols do not undergo dehydration to
5-hydroxyuracil in polymers (Reaction IV; Figure 1). In
comparison, pyrimidine photohydrates (6-hydroxy-5,
6-dihydrocytosine and 6-hydroxy-5,6-dihydrouracil)
appear to undergo dehydration to uracil within photo-
irradiated polymers, e.g. poly(dA-dU) and poly(dG-dC),
although the activation energy for the dehydration of
uracil photohydrate is much higher than that for cytosine
photohydrates (41,42). The lack of dehydration of uracil
glycols to 5-hydroxyuracil in polymers suggests that there
may be alternative pathways to explain the formation
of 5-hydroxyuracil from the free radical oxidation of
DNA; for example, the formation of 5-hydroxyuracil by
the elimination of H2O2 from intermediate hydroper-
oxides (4,43).
The present work indicates that the excision of cytosine

glycols is comparable to that of uracil glycols and that
both of these substrates are more efficiently excised
in comparison to 5-hydroxycytosine (Tables 1 and 2).
The difference in excision between glycols and
5-hydroxycytosine is consistent with previous studies of
pyrimidine glycols. For example, Wallace and co-workers
(16,35) reported a 2.3-fold difference in the relative
efficiency (Vmax/Km) for uracil glycols compared to
thymine glycols, while the excision of thymine glycols
was 7-fold greater than that of 5-hydroxycytosine.
The same difference between thymine glycols and
5-hydroxycytosine was also reported by Cadet and
co-workers (36). In comparison, the same trend albeit
with a smaller difference in excision (1–2 fold) was
reported for uracil glycols and either 5-hydroxycytosine
or 5-hydroxyuracil (44). The kinetics for the excision of
cytosine glycols compared to 5-hydroxycytosine are
largely determined by the difference in the Vmax of
excision, which is consistent with the greater susceptibility
of cytosine glycols toward acid or base catalyzed
N-glycosidic bond cleavage.
Although the relative rates of excision of several

products have been compiled for Endo III and various
DNA substrates, they have failed to distinguish between
the excision of cytosine glycols and 5-hydroxycytosine
(23,45). In the present study, the excision of cytosine
glycols and 5-hydroxycytosine was determined by com-
parison of the rates of excision from freshly oxidized and
heated polymers. These analyses permit the separation
and comparison of the excision of cytosine glycols, uracil
glycols and 5-hydroxycytosine (Table 1). The relatively
high efficiency of excision for cytosine glycols suggests that
Endo III and homologous enzymes in yeast and mamma-
lian cells are active in the repair of cytosine glycols. The
removal of cytosine glycols is critical because they
undergo deamination to uracil glycols, which probably
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have a higher mutagenic potential and efficiently generate
GC!AT transitions.
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Québec.

Conflict of interest statement. None declared.

REFERENCES

1. Valko,M., Leibfritz,D., Moncol,L., Cronin,M.T.D., Mazur,M.
and Telser,J. (2007) Free radicals and antioxidants in normal
physiological functions and human diseases. Int. J. Biochem.
Cell B., 39, 44–84.

2. Henle,E.S. and Linn,S. (1997) Formation, prevention, and repair
of DNA damage by iron/hydrogen peroxide. J. Biol. Chem., 272,
19095–19098.

3. Bjelland,S. and Seeberg,E. (2003) Mutagenicity, toxicity and repair
of DNA base damage induced by oxidation. Mutat. Res.-Fund.
Mol. M., 531, 37–80.

4. Wagner,J.R., Decarroz,C., Berger,M. and Cadet,J. (1999) Hydroxyl
radical-induced decomposition of 20-deoxycytidine in aerated
aqueous solutions. J. Am. Chem. Soc., 121, 4101–4110.

5. Schaaper,R.M. and Dunn,R.L. (1991) Spontaneous mutation in
the Escherichia coli lacI gene. Genetics, 129, 317–326.

6. Zhang,S.L., Glickman,B.W. and de Boer,J.G. (2001) Spontaneous
mutation of the lacl transgene in rodents: absence of species, strain,
and insertion-site influence. Environ. Mol. Mutagen., 37, 141–146.

7. Albertini,R.J. (2001) HPRT mutations in humans: biomarkers for
mechanistic studies. Mutat. Res.-Rev. Mutat., 489, 1–16.

8. Tkeshelashvili,L.K., McBride,T., Spence,K. and Loeb,L.A. (1991)
Mutation spectrum of copper-induced DNA damage. J. Biol.
Chem., 266, 6401–6406.

9. Wang,D., Kreutzer,D.A. and Essigmann,J.M. (1998) Mutagenicity
and repair of oxidative DNA damage: insights from studies using
defined lesions. Mutat. Res.-Fund. Mol. M., 400, 99–115.

10. Vermulst,M., Bielas,J.H., Kujoth,G.C., Ladiges,W.C.,
Rabinovitch,P.S., Prolla,T.A. and Loeb,L.A. (2007) Mitochondrial
point mutations do not limit the natural lifespan of mice. Nat.
Genet., 39, 540–543.

11. Wagner,J.R., Hu,C.C. and Ames,B.N. (1992) Endogenous oxidative
damage of deoxycytidine in DNA. Proc. Natl Acad. Sci. USA, 89,
3380–3384.

12. Tremblay,S., Douki,T., Cadet,J. and Wagner,J.R. (1999)
20-Deoxycytidine glycols, a missing link in the free radical-
mediated oxidation of DNA. J. Biol. Chem., 274, 20833–20838.

13. Daviet,S., Couve-Privat,S., Gros,L., Shinozuka,K., Ide,H.,
Saparbaev,M. and Ishchenko,A.A. (2007) Major oxidative
products of cytosine are substrates for the nucleotide incision
repair pathway. DNA Repair, 6, 8–18.

14. Katafuchi,A., Nakano,T., Masaoka,A., Terato,H., Iwai,S.,
Hanaoka,F. and Ide,H. (2004) Differential specificity of human and
Escherichia coli endonuclease III and VIII homologues for
oxidative base lesions. J. Biol. Chem., 279, 14464–14471.

15. Masaoka,A., Matsubara,M., Hasegawa,R., Tanaka,T., Kurisu,S.,
Terato,H., Ohyama,Y., Karino,N., Matsuda,A. et al. (2003)
Mammalian 5-Formyluracil-DNA glycosylase. 2. role of SMUG1
uracil-DNA glycosylase in repair of 5-formyluracil and other
oxidized and deaminated base lesions. Biochemistry, 42, 5003–5012.

16. Purmal,A.A., Lampman,G.W., Bond,J.P., Hatahet,Z. and
Wallace,S.S. (1998) Enzymatic processing of uracil glycol, a major
oxidative product of DNA cytosine. J. Biol. Chem., 273,
10026–10035.

17. Kreutzer,D.A. and Essigmann,J.M. (1998) Oxidized, deaminated
cytosines are a source of C –> T transitions in vivo. Proc. Natl
Acad. Sci. US A, 95, 3578–3582.

18. Feig,D.I., Sowers,L.C. and Loeb,L.A. (1994) Reverse chemical
mutagenesis: identification of the mutagenic lesions resulting from
reactive oxygen species-mediated damage to DNA. Proc. Natl Acad.
Sci. USA, 91, 6609–6613.

19. Purmal,A.A., Kow,Y.W. and Wallace,S.S. (1994) Major oxidative
products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil,
exhibit sequence context-dependent mispairing in vitro. Nucleic
Acids Res., 22, 72–78.

20. Wallace,S.S. (2002) Biological consequences of free radical-damaged
DNA bases. Free Radic. Biol. Med., 33, 1–14.

21. An,Q., Robins,P., Lindahl,T. and Barnes,D.E. (2005) C to T
mutagenesis and gamma-radiation sensitivity due to deficiency in
the Smug1 and Ung DNA glycosylases. EMBO J., 24, 2205–2213.

22. Moschel,R.C. and Behrman,E.J. (1974) Oxidation of nucleic acid
bases by potassium peroxodisulfate in alkaline aqueous solution.
J. Org. Chem., 39, 1983–1989.

23. Wagner,J.R., Blount,B.C. and Weinfeld,M. (1996) Excision of
oxidative cytosine modifications from gamma-irradiated DNA by
Escherichia coli endonuclease III and human whole-cell extracts.
Anal. Biochem., 233, 76–86.

24. Wagner,J.R. (1994) Analysis of oxidative cytosine products in DNA
exposed to ionizing radiation. J. Chim. Phys. PCB, 91, 1280–1286.

25. Hansler,U. and Rokita,S.E. (1993) Electrostatics rather than
conformation control the oxidation of DNA by the anionic
reagent permanganate. J. Am. Chem. Soc., 115, 8554–8557.

26. Wolfe,J.L., Kawate,T., Sarracino,D.A., Zillmann,M., Olson,J.,
Stanton,V.P. and Verdine,G.L. (2002) A genotyping strategy based
on incorporation and cleavage of chemically modified nucleotides.
Proc. Natl Acad. Sci. USA, 99, 11073–11078.

27. Rivière,J., Bergeron,F., Tremblay,S., Gasparutto,D., Cadet,J. and
Wagner,J.R. (2004) Oxidation of 5-hydroxy-20-deoxyuridine into
isodialuric acid, dialuric acid, and hydantoin products. J. Am.
Chem. Soc., 126, 6548–6549.

28. Weinfeld,M., Soderlind,K.J. and Buchko,G.W. (1993) Influence of
nucleic acid base aromaticity on substrate reactivity with enzymes
acting on single-stranded DNA. Nucleic Acids Res., 21, 621–626.

29. Box,H.C., Budzinski,E.E., Evans,M.S., French,J.B. and
Maccubbin,A.E. (1993) The differential lysis of phosphoester bonds
by nuclease P1. Biochim. Biophys. Acta, 1161, 291–294.

30. Ide,H., Kow,Y.W. and Wallace,S.S. (1985) Thymine glycols and
urea residues in M13 DNA constitute replicative blocks in vitro.
Nucleic Acids Res., 13, 8035–8052.

31. Simon,P., Gasparutto,D., Gambarelli,S., Saint-Pierre,C., Favier,A.
and Cadet,J. (2006) Formation of isodialuric acid lesion within
DNA oligomers via one-electron oxidation of 5-hydroxyuracil:
characterization, stability and excision repair. Nucleic Acids Res.,
34, 3660–3669.

32. Bui,C.T. and Cotton,R.G. (2002) Comparative study of
permanganate oxidation reactions of nucleotide bases by
spectroscopy. Bioorg. Chem., 30, 133–137.

33. Hayatsu,H. (1996) The 5,6-double bond of pyrimidine nucleosides,
a fragile site in nucleic acids. J. Biochem., 119, 391–395.

34. Boiteux,S., Gajewski,E., Laval,J. and Dizdaroglu,M. (1992)
Substrate specificity of the Escherichia coli Fpg protein
(formamidopyrimidine-DNA glycosylase): excision of purine lesions
in DNA produced by ionizing radiation or photosensitization.
Biochemistry, 31, 106–110.

35. Hatahet,Z., Kow,Y.W., Purmal,A.A., Cunningham,R.P. and
Wallace,S.S. (1994) New substrates for old enzymes. 5-Hydroxy-
20-deoxycytidine and 5-hydroxy-20-deoxyuridine are substrates for
Escherichia coli endonuclease III and formamidopyrimidine DNA
N-glycosylase, while 5-hydroxy-20-deoxyuridine is a substrate for
uracil DNA N-glycosylase. J. Biol. Chem., 269, 18814–18820.

36. D’Ham,C., Romieu,A., Jaquinod,M., Gasparutto,D. and Cadet,J.
(1999) Excision of 5, 6-dihydroxy-5, 6-dihydrothymine, 5,
6-dihydrothymine, and 5-hydroxycytosine from defined sequence
oligonucleotides by Escherichia coli endonuclease III and Fpg
proteins: kinetic and mechanistic aspects. Biochemistry, 38,
3335–3344.

37. Lambrinakos,A., Humphrey,K.E., Babon,J.J., Ellis,T.P. and
Cotton,R.G. (1999) Reactivity of potassium permanganate and
tetraethylammonium chloride with mismatched bases and a simple
mutation detection protocol. Nucleic Acids Res., 27, 1866–1874.

292 Nucleic Acids Research, 2008, Vol. 36, No. 1



38. Nawamura,T., Negishi,K. and Hayatsu,H. (1994)
8-Hydroxyguanine is not produced by perman-
ganate oxidation of DNA. Arch. Biochem. Biophys., 311,
523–524.

39. Jones,A.S., Ross,W.G., Takemura,S., Thompson,W.T. and
Walker,T.R. (1964) The nucleotide sequence in deoxyri-
bonucleic acids part VI: the preparation and reactions of
permenganate-oxidised deoxyribonucleic acid. J. Chem. Soc.
373–378.

40. Akman,S.A., Doroshow,J.H. and Dizdaroglu,M. (1990) Base
modifications in plasmid DNA caused by potassium permanganate.
Arch. Biochem. Biophys., 282, 202–205.

41. Boorstein,R.J., Hilbert,T.P., Cadet,J., Cunningham,R.P. and
Teebor,G.W. (1989) UV-induced pyrimidine hydrates in DNA

are repaired by bacterial and mammalian DNA glycosylase
activities. Biochemistry, 28, 6164–6170.

42. Boorstein,R.J., Hilbert,T.P., Cunningham,R.P. and Teebor,G.W.
(1990) Formation and stability of repairable pyrimidine
photohydrates in DNA. Biochemistry, 29, 10455–10460.

43. Wagner,J.R., van Lier,J.E., Berger,M. and Cadet,J. (1994)
Thymidine hydroperoxides - structural assignment, conformational
features, and thermal decomposition in water. J. Am. Chem. Soc.,
116, 2235–2242.

44. Wang,D. and Essigmann,J.M. (1997) Kinetics of oxidized
cytosine repair by endonuclease III of Escherichia coli.
Biochemistry, 36, 8628–8633.

45. Dizdaroglu,M., Bauche,C., Rodriguez,H. and Laval,J. (2000)
Biochemistry, 39, 5586–5592.

Nucleic Acids Research, 2008, Vol. 36, No. 1 293


