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	 Results:	 A total of 504 genes were found to be consistently and differentially regulated based on 3 microarray data-
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ules that were closely related with the M phase, desmosome assembly, and response to hormone stimulus. 
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ulated by has-miR-424 and has-miR-204, respectively. CCND2 and CCNA2 were cell-cycle-associated genes, 
which were regulated by hsa-miR-324-3p, hsa-miR-146a and hsa-miR-145.

	 Conclusions:	 Cell cycle and focal adhesion were dysregulated in ccRCC, which were associated with the expression of CCND2, 
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Background

Renal cell carcinoma (RCC) is a type of solid tumor derived from 
the renal epithelium, which accounts for 80–85% of all renal 
cancers [1]. Clear cell renal cell carcinoma (ccRCC) is the most 
common type of RCC and characterized by complex histologi-
cal changes and metastatic potential. Among the various sub-
types of RCC, ccRCC is closely associated with poor outcomes 
and cancer-related deaths [2]. Most ccRCCs are diagnosed spo-
radically. Although marked advancement has been achieved in 
RCC treatment, ccRCCs are refractory to conventional chemo-
therapy. It has been proposed that a good understanding of 
the preoperative characteristics of renal cancers may improve 
the therapeutic management and prognosis [3,4].

Although the pathogenesis of ccRCC has not been fully eluci-
dated, oncogenic metabolism and epigenetic reprogramming are 
the central features of ccRCC progression and development. DNA 
microarray technology and high-throughput sequencing have 
been widely used in cancer profiling and identifying biomarkers 
for cancers [2,5,6]. Sato et al. performed an integrated molecular 
study of ccRCC by whole-genome/exome and RNA sequencing 
and found that p53-related pathways and mRNA processing were 
significant in ccRCC [7]. In another integrated molecular study, 
the PI(3)K/AKT pathway was proposed to be the target for ccRCC 
treatment [8]. It has been reported that ccRCC is characterized by 
the loss expression of Von Hippel-Lindau (VHL) tumor suppressor 
gene which is implicated in angiogenesis, apoptosis, and glycol-
ysis [9,10]. Hakimi et al. performed metabolomic profiling com-
bined with transcriptomic expression profiling of ccRCC, sug-
gesting that the dysregulation of oxidative phosphorylation and 
amino acid metabolism was involved in ccRCC development [11].

Currently, the management for ccRCC is recommended based 
on the histology of tumor cells [12]. The cytoreductive ne-
phrectomy is recommended to patients in early stage disease, 
and treatment with bevacizumab (combined with interferon), 
sunitinib and pazopanib has been proposed to have efficacy 
as first line treatment for ccRCC patients. A number of stud-
ies have revealed that ccRCC is characterized by metabolic re-
programming. Drugs targeting metabolic reprogramming have 
been suggested to be novel treatment for ccRCC and their ef-
ficacy has been evaluated under clinical trials.

Expression profiling studies can identify the target genes or 
pathways for disease treatment. A recent study of bioinfor-
matics analysis revealed that chemokine signaling, and the 
complement and coagulation cascade were key pathways in 
ccRCC [13]. Yang et al. performed multi-tool joint analysis and 
suggested that TF and B4GALNT1 were associated with ccRCC 
metastasis and were prognostic biomarkers [14]. It is neces-
sary to validate the specific genes or pathways screened based 
on the microarray data or sequencing profiles by experiments.

In our study, we performed an integrated analysis of microar-
ray datasets related with ccRCC from 3 independent studies. 
All 3 studies compared the gene expression profiles of ccRCC 
tumor samples with normal tissues. We performed interstudy 
validation of differentially expressed genes (DEGs) from 3 in-
dependent datasets and reconstructed the gene and pathway 
network. We expected that inter-validated sets of dysregulat-
ed genes and pathways could provide clues for understand-
ing ccRCC.

Material and Methods

Microarray dataset collection

Three microarray datasets related to ccRCC were retrieved from 
the publicly available Gene Expression Omnibus (GEO) [17] 
database (http://www.ncbi.nlm.nih.gov/geo/) at the National 
Center for Biotechnology Information (NCBI), including 
GSE6344 [18,19], GSE781 [20], and GSE53000 [21]. The GSE6344 
dataset included 10 ccRCC tumor tissues and 10 paired normal 
tissues. The GSE781 dataset contained 9 ccRCC tumor sam-
ples and 8 normal tissue samples. These samples were mea-
sured based on the platform of GPL96 [HG-U133A] Affymetrix 
Human Genome U133A Array. The GSE53000 dataset, consist-
ing of 56 ccRCC tumor samples and 6 normal samples, were 
produced based on the platform of [HuGene-1_0-st] Affymetrix 
Human Gene 1.0 ST Array.

Data preprocessing

The raw data of 3 Affymetrix microarrays were download-
ed and preprocessed using R 3.4.1 oligo package version 3.6 
(http://www.bioconductor.org/packages/release/bioc/html/oli-
go.html), which included background correction and gene ex-
pression pattern normalization [22].

Genes with differential expression

The DEGs in multiple datasets were analyzed using MetaDE.
ES function in MetaDE package version 1.0.5 (23) in R 3.4.1 
(https://cran.r-project.org/web/packages/MetaDE). Briefly, the 
gene expression value of the individual gene under different 
platforms was subjected to a heterogeneity test. Genes with 
consistent expression in 3 datasets were collected according to 
tau2=0 and Q Pval >0.05. The differential expression of genes 
between tumor tissues and normal tissues were tested by 
P-value and adjusted by false discovery ratio (FDR). Genes with 
FDR <0.05 were considered differentially expressed. The fold 
change (FC) of gene expression in the individual dataset was 
calculated. Genes with consistent expression and Log2|FC| >0.5 
in all 3 datasets were collected.
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Then, the genes of interest were subjected to Gene Ontology 
(GO) function and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis based on the Fisher’s 
exact test by the database for Annotation, Visualization and 
Integrated Discovery (DAVID) [24] online tool (https://david.
ncifcrf.gov/). FDR <0.05 was set as the cutoff value.

Protein–protein interaction (PPI) network

The interactions of proteins encoded by DEGs were retrieved 
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) [25] version 10.5 (https://string-db.org/). 
The protein pairs with interaction score >0.8 were collected. 
The PPI network was visualized using Cytoscape [26] 3.6.1 
(http://www.cytoscape.org/).

PPI network structure analysis

For the scale-free properties of the PPI network, the topolo-
gy of the network was analyzed, including the node degree, 
betweenness centrality (BC), and closeness centrality (CC). 
The node degree indicated the number of links of a highly con-
nected node to other nodes. BC of nodes is widely analyzed 
in a large complex network based on shortest paths [27]. BC 
was calculated using the following formula:
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sst indicates the shortest path between s and t, and sst (v) is 
the number of links to node v. BC ranges from 0 to 1. The close-
ness to 1 indicates the high centrality measure.

CC is defined as the closeness of a given node from all other 
nodes [27] and calculated as follows:
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V indicates the node set, t is a node in the node set, and dG(V,T) 
is the sum of the distance of paths. CC ranges from 0 to 1, 
and the closeness to 1 indicates the high centrality measure.

Module analysis

Genes that are clustered to one module may have a similar 
biological function. The modules of PPI network were mea-
sured using Cytoscape plugin Molecular Complex Detection 
(Mcode). The cutoff degree was set to 2, cutoff node score 
was set to 0.2 and K-core was set to 2. The functions of mod-
ules were annotated using Biological Network Gene Ontology 
plugin with adj P<0.05.

Prediction of ccRCC-related miRNA

The ccRCC-related microRNA (miRNA) were retrieved from the 
Renal Cancer Gene Database (RCDB) [28] (http://www.juit.ac.in/
attachments/jsr/rcdb/homenew.html). The experiment validat-
ed targets of ccRCC-related miRNAs were downloaded from 
miRWalk2 database [29] (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2/). The DEGs that overlapped with miRNA 
targets were selected for ccRCC miRNA-DEG target regulatory 
network construction. The genes of interest in the regulatory 
network were subjected to GO function and KEGG pathway 
analysis using the DAVID online tool.

ccRCC-related pathway network construction

The KEGG pathways related with ccRCC were retrieved from 
the Comparative Toxicogenomics Database 2017 update [30] 
(http://ctd.mdibl.org/) with the keywords of clear cell renal 
cell carcinoma. The pathways that significantly enriched by 
miRNA targets were highlighted for ccRCC-related pathway 
network construction.

Results

Identification of DEGs in ccRCC tumor tissues compared 
with normal ones

After the expression data were normalized, a total of 504 
DEGs (169 downregulated genes and 335 upregulated genes) 
were identified by MetaDE package based on three datasets.

To understand the molecular functions of DEGs, GO function 
and KEGG pathway analysis were performed. The downreg-
ulated genes were significantly enriched in 31 GO and path-
way terms including 8 GO-Biological Process (BP) terms, 12 
GO-Cellular Component (CC) terms, 4 GO- Molecular Function 
(MF) terms, and 7 KEGG pathways. The upregulated genes were 
closely related to 11 GO-CC functions, 8 GO-MFs, and 7 path-
ways. The detailed information is shown in Figure 1. The over-
represented pathways of downregulated genes mainly includ-
ed hsa00020: citrate cycle (TCA cycle), hsa03320: peroxisome 
proliferator-activated receptor (PPAR) signaling pathway, and 
hsa00071: fatty acid metabolism. The dysregulated path-
ways involving upregulated genes mainly included hsa04610: 
complement and coagulation cascades, hsa04666: Fc gamma 
R-mediated phagocytosis, and hsa04110: cell cycle.

PPI network

As shown in Figure 2, the PPI network comprising of 621 edg-
es connecting 257 gene nodes was constructed. There were 
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hsa00010: Glycolisis/Gluconeogenesis
hsa00330: Argnine and proline metabolism

hsa00071: Fatty acid metabolism
hsa03320: PPAR signaling pathway

hsa00250: Alanine, aspartate and glutamine metabolism
hsa00280: Valine, leucine and isoleucine degradation

hsa00020: Citrate cycle (TCA code)
GO: 0016769~transferase activity, transferring nitrogenous group

GO: 0009055~electron carrier activity
GO: 0050662~coenzyme binding

GO: 0048037~cofactor binding
GO: 0005626~insoluble fraction
GO: 0045177~apical part of cell

GO: 0005624~membrane fraction
GO: 0031980~mitochondrial lumen
GO: 0005759~mitochondrial matrix

GO: 0000267~cell fraction
GO: 0031966~mitochondrial membrane

GO: 0031967~organelle envelope
GO: 0031975~envelope

GO: 0005740~mirochondrial envelope
GO: 0005739~mitochondrion

GO: 0044429~mitochondrial part
GO: 0008610~lipid biosynthetic process

GO: 0006091~generation of precursor metabolites and energy
GO: 0006071~glycerol metabolic porcess
GO: 0006766~vitamin metabolic process

GO: 0019400~alditol metabolic process
GO: 0046395~carboxylic acid catabolic process

GO: 0016054~organic acid catabolic process
GO: 0055114~oxidation reduction

0 5 10 15 20
Gene count

KEGG
MF
CC
BP
-log10 (FDR)

25 30 35

hsa04062: Chemokine signaling pathway
hsa04060: Cytokine–cytokine receptor ineraction

hsa04110: Cell cycle
hsa04514: Cell adhesion molecules (CAMs)

hsa04512: ECM-receptor interaction
hsa04666: Fc gamma R-mediated phagocytosis

hsa04610: Complement and coagulation cascades
GO: 0005083~small GTPase regulator activity

GO: 0046893~protein dimerization activity
GO: 0004175~endopeptidase activity

GO: 0005529~sugar binding
GO: 0008289~lipid binding

GO: 0032403~protein complex binding
GO: 0030246~carbohydrate binding

GO: 0005509~calcium ion binding
GO: 0005578~proteinaceous extracellular matrix

GO: 0031012~extracellular matrix
GO: 0005626~insoluble fraction

GO: 0005624~membrane fraction
GO: 0044420~extracellular matrix part

GO: 0043235~receptor complex
GO: 0005615~extracellular space

GO: 0044421~extracellular region part
GO: 0005576~extracellular region

GO: 0044459~plasma membrane part
GO: 0031226~intrinsic to plasma membrane

GO: 0005887~integral to plasma mebrane
GO: 0002253~activation to immune response

GO: 0042110~T cell activation
GO: 0002526~acute inflammatory response

GO: 0022610~biological adhesion
GO: 0007155~cell adhesion

GO: 0048584~positive regulation of response to stimulus
GO: 0002684~positive regulation of immune system process

GO: 0009611~response to wounding
GO: 0006954~inflammatory response

GO: 0006952~defense response
GO: 0006955~immune response

0 10 20
Gene count

KEGG
MF
CC
BP
-log10 (FDR)

30 40 50 60 70 80 90 100

A

B

Figure 1. �The significant GO function and pathways for downregualted genes (A) and upregulated genes (B). The downregulated 
and upregulated genes were subjected to GO function and pathway enrichment analysis by Fisher’s exact test. Red – KEGG 
pathway; yellow – molecular function; green – cell component; blue – biological process. GO – gene ontology; KEGG – Kyoto 
Encyclopedia of Genes and Genomes.

e919965-4
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Han Y.P. et al.: 
Meta-analysis of gene expression profiles of ccRCC

© Med Sci Monit, 2020; 26: e919965
META-ANALYSIS

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



59 downregulated genes and 198 upregulated genes in the 
PPI network.

PPI network topology analysis

Based on 3 topological parameters, the hub genes with high 
centrality in the PPI network were mined. As shown in Table 1, 
the top 10 hub genes are presented, including CDK1, QSOX1, 
CCNA2, and AURKB.

Module analysis

With the application of Mcode, 6 function modules were obtained 
in the PPI network (Figure 3). The detailed information of mod-
ules is shown in Table 2. Module 1 was the most significant clus-
ter (score=6) with 13 nodes and 78 edges. Function annotation 
indicated that module 1–6 were closely related to 13, 9, 13, 10, 
12, and 12 GO-BP terms, respectively, including M phase, coagu-
lation, signaling, desmosome assembly, protein modification by 
small protein conjugation, and response to hormone stimulus.

1

23
Degree

log2 FC

–4 5

Figure 2. �PPI network. The differentially expressed genes were mapped to proteins based on STRING database. PPI network was 
visualized using Cytoscape software. Green – downregulated genes; red – upregulated genes. The size of node indicates 
the node degree. PPI – protein–protein interaction; STRING – Search Tool for the Retrieval of Interacting Genes/Proteins.

Gene Betweenness centrality Closeness centrality Degree LogFC

CDK1 0.148 0.283 23 1.391

QSOX1 0.083 0.294 22 0.978

CCNA2 0.056 0.266 21 1.083

AURKB 0.018 0.248 18 0.674

CCNB1 0.024 0.252 18 0.719

MAD2L1 0.006 0.244 16 0.904

TF 0.045 0.271 16 1.004

BUB1B 0.009 0.244 16 1.203

C3AR1 0.048 0.273 16 1.560

FGG 0.053 0.282 15

Table 1. Top 10 hub genes based on netweenness centrlity, closeness centrality and degree.
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ccRCC-associated miRNA regulatory network

Based on the information of RCDB, there were 60 records of 
ccRCC-related miRNAs. Combined with the miRNA targets re-
corded in the miRWalk2 database, the miRNA regulatory net-
work with 20 miRNA-DEG target interactions was construct-
ed (Figure 4). After function and pathway analysis, the gene 

targets in the miRNA regulatory network were mainly enriched 
in 16 GO-BP terms and 2 pathways, including cell cycle phase 
(GO: 0022403), hemopoiesis (GO: 0030097), immune system 
development (GO: 0002520), focal adhesion (hsa04510), and 
cell cycle (hsa04110) pathway (Table 3).

Cluster Score (Density*#Nodes) Node Edges Node IDs

1 6 13 78
CENPF, CCNA2, KIF20A, PTTG1, MAD2L1, CDK1, BUB1B, KIF4A, 
NDC80, PRC1, CCNB1, DLGAP5, AURKB

2 5 11 55
TIMP1, TF, STC2, SPARCL1, SERPINA1, QSOX1, PRSS23, FGG, 
FBN1, CSF1, APOL1

3 4.5 10 45
C3AR1, APLNR, S1PR1, GRM8, GPR183, GPSM3, FPR1, CXCL13, 
CCL20

4 3 7 21 DOCK2, CHIT1, OLFM4, CTSZ, JUP, LCN2, FRK

5 3 7 21 FBXO2, UBA5, LRRC41, RBCK1, TRIM9, MGRN1, ASB9

6 2.571 7 18 COL4A5, COL1A1, COL5A1, CASP8, SDC1, PLOD3, COL4A2

Table 2. Detailed information of modules in PPI network.

M1 M2 M3

M4 M5 M6

Figure 3. �Modules in PPI network. The modules in PPI network were analyzed using Cytoscape plugin Molecular Complex Detection 
(Mcode). With cutoff degree ³2, cutoff node score ³0.2 and K-core ³2, 6 modules were obtained. Green – downregulated 
genes; red – upregulated genes. The size of node indicates the node degree. PPI – protein–protein interaction.

e919965-6
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Han Y.P. et al.: 
Meta-analysis of gene expression profiles of ccRCC

© Med Sci Monit, 2020; 26: e919965
META-ANALYSIS

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



ccRCC-associated pathway network

There were 191 ccRCC-related pathways in the CTD data-
base, among which focal adhesion (hsa04510) and cell cy-
cle (hsa04110) were overrepresented by miRNA-target genes 
including CCND2, ITGB4, KDR, and CCNA2. As shown in 
Figure 5, the ccRCC-associated pathway network was visualized. 

Has-miR-424 targeting KDR, has-miR-204 targeting ITGB4, and 
has-miR-324-3p targeting CCND2 were involved in the focal 
adhesion pathway. CCND2 regulated by hsa-miR-324-3p and 
CCNA2 regulated by has-miR-146a and hsa-miR-145 were en-
riched in the cell cycle pathway.

Category Term Count P value

Biology Process GO: 0022403~cell cycle phase 5 0.0015

GO: 0030097~hemopoiesis 4 0.0030

GO: 0050678~regulation of epithelial cell proliferation 3 0.0035

GO: 0002520~immune system development 4 0.0046

GO: 0022402~cell cycle process 5 0.0046

GO: 0051301~cell division 4 0.0056

GO: 0000279~M phase 4 0.0075

GO: 0000278~mitotic cell cycle 4 0.0104

GO: 0007049~cell cycle 5 0.0140

GO: 0030334~regulation of cell migration 3 0.0187

GO: 0040012~regulation of locomotion 3 0.0237

GO: 0051270~regulation of cell motion 3 0.0239

GO: 0007067~mitosis 3 0.0305

GO: 0000280~nuclear division 3 0.0305

GO: 0000087~M phase of mitotic cell cycle 3 0.0315

GO: 0048285~organelle fission 3 0.0328

KEGG Pathway hsa04510: Focal adhesion 3 0.0079

hsa04110: Cell cycle 2 0.0258

Table 3. Signficant GO functions and pathways for DEGs in miRNA regulatory network.

Figure 4. �The ccRCC associated miRNA 
regulatory network. The ccRCC-
related miRNAs were retrieved from 
the Renal Cancer Gene Database and 
DEGs that overlapped with miRNA 
targets were selected for ccRCC 
miRNA-DEG target regulatory network 
construction. Green – downregulated 
genes; red – upregulated 
genes; yellow – miRNAs. 
ccRCC – clear cell renal cell 
carcinoma; miRNA – microRNA; 
DEGs – differentially expressed genes.
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Discussion

ccRCC is the most common subtype of RCCs, which has been 
highlighted by the poor prognosis and metastatic potential. 
The molecular genetic profile of ccRCC has not been clarified. 
The increasing availability and development of DNA microar-
ray technology has facilitated cancer profiling studies. In this 
study, we performed an integrated analysis of 3 independent 
microarray datasets related to ccRCC and provided the targets 
for future research and therapy for ccRCC.

With the application of an interstudy cross-validation approach, 
a cohort of 504 genes was identified to be consistently dys-
regulated in ccRCC based on 3 independent microarray datas-
ets. The pathway analysis showed that hsa00020: citrate cycle 
(TCA cycle), hsa03320: PPAR signaling pathway, and hsa04110: 
cell cycle were the significant pathways dysregulated by DEGs 
in ccRCC. Similar findings were found in the differentially ex-
pressed proteins in RCC tissues compared with normal tis-
sues based on proteomics-based approaches [31]. In a previ-
ous study, TCA cycle and PPAR signaling pathways were found 

to be the important enriched pathways in 596 differentially 
expressed proteins in RCC using 3 available pathway analy-
sis tools. Evidence from a recent study also showed that the 
PPARa gene was a diagnostic and prognostic biomarker for 
ccRCC [32], which supports the significant role of PPAR signal-
ing pathway in ccRCC. All these aforementioned findings con-
firmed that our findings were significant. In addition, a previous 
study that mined published cancer-related microarray datasets 
identified that the differentially regulated genes played a crit-
ical role in cell cycle control [33], as measured by the pathway 
analysis of DEGs in this study. Moreover, hsa04110: cell cycle 
and hsa04510: focal adhesions were found to be the ccRCC-
related pathways that overlapped with the enrichment path-
ways of GO categories. It has been reported that the cell cycle 
regulator B-cell translocation gene 2 (BTG2) was dysregulat-
ed in ccRCC, which played a key role in RCC development [34]. 
A pathway-based candidate gene evaluation study suggest-
ed that the cell cycle was the most significant pathway im-
plicated with CCND 2 gene associated with lung cancer [35]. 
Our data showed that CCND2 and CCNA2 were the cell-cycle-
associated genes in ccRCC, which were upregulated in tumor 
samples compared with normal tissues. The D-type cyclins 
were cell-cycle-related proteins, which were involved in G1/S 
phase transition [36]. CCND2 is a D-type cyclin gene, which is 
found to be upregulated in various cancers and implicated in 
cell proliferation and cell cycle control [37]. The overexpres-
sion of CCND2 has been shown to promote cell proliferation 
and cell cycle progression in non-small cell lung cancer (NSCLC) 
cells [38]. In a recent study, Luo et al. identified CCND1 to be 
a potential prognostic biomarker of ccRCC by bioinformatic 
analysis [39]. Similar to CCND2, CCND1 is another member of 
D-type cyclin genes which is a protooncogene involved in cell 
cycle regulation. Thus, we speculated that CCND2 plays a key 
role in cancer development.

The increased levels of cell cycle associated genes are stabi-
lized due to downregulation of specific miRNAs. MiR-146a-5p 
was found to inhibit cell cycle in a NSCLC cell line by target-
ing CCND2 expression [38]. MiR-154 inhibits cell proliferation 
in prostate cancer by suppressing CCND2 expression [40]. Our 
data showed that hsa-miR-324-3p plays a regulatory role in 
the cell cycle of ccRCC by targeting CCND2. It is reported that 
hsa-miR-324-3p is a specific miRNA in ccRCC relative to papil-
lary RCC by miRNA profiling analysis [41]. Generally, hsa-miR-
324-3p may play a tumor suppressor role in ccRCC by target-
ing CCND2.

Furthermore, CCNA2 was found to be the hub gene with high 
centrality in the PPI network. CCNA2, regulated by hsa-miR-
146a and hsa-miR-145, was significantly associated with the 
cell cycle pathway. The cyclins of the CCNA family genes were 
implicated in G2-M transition and CCNA2 played a regulatory 
role in proteolytic control of cell cycle progression during M 

Figure 5. �The ccRCC associated pathway network. The pathways 
closely related with ccRCC were retrieved from 
the Comparative Toxicogenomics Database, 
among which the pathways overlapped with 
those enriched by miRNA targets were used for 
pathway network constructed. Red – upregulated 
genes; yellow – miRNAs; blue – ccRCC associated 
pathways. ccRCC – clear cell renal cell carcinoma; 
miRNA – microRNA.
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phrase [42]. A TCGA and GEO-based study suggested that the 
downregulation of hsa-miR-146a had tumor suppressive ef-
fects on hepatocellular carcinoma [43]. CCNA2 has been identi-
fied to be the target for miR-145-5p in prostate cancer cells by 
bioinformatic and function analysis [44]. The overexpression of 
miR-145-5p has been reported to inhibit prostate cancer cell 
proliferation [45]. Thus, hsa-miR-146a and hsa-miR-145 may 
inhibit the cell cycle pathway in ccRCC by targeting CCNA2.

The focal adhesion pathway plays a key role in cell prolifera-
tion, survival, and migration and has been suggested as the 
therapeutic target for cancer [46,47]. Kinase insert domain 
receptor (KDR) is required for vinculin assembly in focal ad-
hesion plaque [48]. ITGB4 (integrin b4), as a member of inte-
grin genes, is involved in tumor cell migration and has been 
supported to be the prognostic marker for colon cancer [49]. 
The increased expression of ITGB4 is related to cell growth, 
survival, and proliferation and predicts the development of re-
nal cancer [50]. In this study, hsa-miR-424 and hsa-miR-204 
are found to be associated with focal adhesion by targeting 
KDR and ITGB4, respectively. Regulation of hsa-miR-424 and 
hsa-miR-204 expression may control ccRCC development by 
mediating the focal adhesion pathway.

Although our findings may provide new perspective in un-
derstanding the pathogenesis of ccRCC and discovery of nov-
el therapy, there were some limitations in our study. Firstly, 
only 3 microarray datasets were included in our study and the 
dataset size was relatively small. Besides, for the limitation of 
materials, we cannot provide further functional validation of 
the critical genes identified in our study. Thus, lacking exper-
imental validation was a limitation in this study.

Conclusions

Cell cycle and focal adhesion were found to be the signifi-
cant pathways in ccRCC, which were generated by overlap-
ping the information in CTD and pathway enrichment. CCNA2 
and CCND2 were the cell-cycle-associated genes, and KDR and 
ITGB4 were the focal-adhesion-associated genes. Regulation 
of the expression of miRNAs may provide insights to ccRCC 
research and therapy in the near future.
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