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    Introduction 
 Chromosome segregation requires dynamic interactions be-

tween kinetochores and spindle microtubules. Recent evidence 

has suggested that the core microtubule-binding site of the 

kinetochore is comprised of the KNL-1 – Mis12 complex Ndc80 

complex network (for review see  Tanaka and Desai, 2008 ). This 

widely conserved set of interacting proteins is important for 

chromosome segregation in all systems analyzed. In vitro re-

constitution experiments have indicated the presence of two 

distinct microtubule-binding activities within this set of pro-

teins: the first in the Ndc80/Nuf2 heterodimer of the four-

 subunit Ndc80 complex ( Cheeseman et al., 2006 ;  Wei et al., 

2007 ) and the second in KNL-1 ( Cheeseman et al., 2006 ). Rotary 

shadowing EM, atomic force microscopy, and hydrodynamic 

studies of bacterially reconstituted Ndc80 complex have shown 

that this complex forms an  � 550- Å  long rod-shaped structure 

with globular domains on both ends ( Ciferri et al., 2005 ;  Wei et al., 

2005 ). The globular domains are formed by the N termini of 

Ndc80 and Nuf2 at one end and the N termini of Spc24 and 

Spc25 at the other end. Stretches of coiled coil immediately fol-

low the N terminus of each of the four proteins in the complex. 

Antiparallel interaction of the coiled coils leads to the highly 

elongated shape of the heterotetrameric complex ( Ciferri et al., 

2005 ;  Wei et al., 2005 ). Electron tomography of the kinetochore 

microtubule interface in cells has revealed a fi brous structure 

with multiple individual fi bers contacting a single microtubule 

( Dong et al., 2007 ). These fi bers may represent the Ndc80 com-

plex in its native context at the kinetochore. Measurements in 

budding and fi ssion yeast have indicated that fi ve to eight Ndc80 

complexes are present per kinetochore – microtubule attach-

ment site ( Joglekar et al., 2006 ,  2008 ). Collectively, these results 

suggest that multivalent associations between fi brous Ndc80 

complexes extending out of the kinetochore and spindle micro-

tubules are important for establishing dynamic kinetochore –

 microtubule interactions. 

 Structural studies of the globular domain of the human 

Ndc80 subunit have revealed that residues 81 – 196 comprise a 

calponin homology (CH) domain ( Wei et al., 2007 ), a motif that 

was initially described in actin-binding proteins and more re-

cently in the microtubule-binding proteins CLAMP and EB1 

T
he four-subunit Ndc80 complex, comprised of 

Ndc80/Nuf2 and Spc24/Spc25 dimers, directly 

connects kinetochores to spindle microtubules. The 

complex is anchored to the kinetochore at the Spc24/25 

end, and the Ndc80/Nuf2 dimer projects outward to bind 

to microtubules. Here, we use cryoelectron microscopy 

and helical image analysis to visualize the interaction of 

the Ndc80/Nuf2 dimer with microtubules. Our results, 

when combined with crystallography data, suggest that 

the globular domain of the Ndc80 subunit binds strongly 

at the interface between tubulin dimers and weakly at the 

adjacent intradimer interface along the protofi lament 

axis. Such a binding mode, in which the Ndc80 complex 

interacts with sequential  � / � -tubulin heterodimers, may 

be important for stabilizing kinetochore-bound micro-

tubules. Additionally, we defi ne the binding of the Ndc80 

complex relative to microtubule polarity, which reveals 

that the microtubule interaction surface is at a consider-

able distance from the opposite kinetochore-anchored 

end; this binding geometry may facilitate polymeriza-

tion and depolymerization at kinetochore-attached micro-

tubule ends.
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the binding of Ndc80/Nuf2 relative to the polarity of the micro-

tubule lattice. We grew microtubules of known polarity from 

centrosomes attached to EM grids and decorated these with the 

Ndc80/Nuf2 heterodimer. Examination of the negatively stained 

asters revealed that the arrowheads formed by the Ndc80/Nuf2 

dimer point toward the centrosome ( Fig. 1 ). Thus, the coiled-

coil region of the heterodimer projects toward the plus end of 

the microtubule. In the heterotetrameric complex, this geometry 

of binding would force the Spc24/25 subunits to extend away 

from the microtubule plus end, where they likely bind to the 

 kinetochore scaffold protein KNL-1 via their globular domains. 

This result is consistent with experiments comparing Spc24 and 

Ndc80/Hec1 localization at kinetochores in vertebrate cells using 

high resolution light microscopy ( DeLuca et al., 2006 ). It is 

noteworthy that, given the length of the Ndc80 complex ( � 550  Å ), 

this binding geometry provides room at the microtubule plus 

end for polymerization and depolymerization reactions that are 

known to accompany chromosome movement in vivo. 

 Ndc80/Nuf2 interaction with 
the microtubule 
 We next used EM and helical image analysis to investigate the 

interaction between the Ndc80 complex and the microtubule 

lattice. A preliminary examination of images of Ndc80/Nuf2 

dimer – decorated microtubules ( Fig. 2 A ) revealed two signifi cant 

features. First, diffraction patterns from fully decorated micro-

tubules showed little evidence of 80- Å  diffraction ( Fig. 2 B ). 

( Hayashi and Ikura, 2003 ;  Dougherty et al., 2005 ;  Slep and 

Vale, 2007 ). A recent crystal structure of an engineered, trun-

cated Ndc80 complex revealed that the globular domain of Nuf2 

also folds into a CH domain ( Ciferri et al., 2008 ). The two CH 

domains of Ndc80 and Nuf2 are organized in an unusual ar-

rangement relative to actin-binding tandem CH domain proteins 

( Ciferri et al., 2008 ). A basic 80 – amino acid – long N-terminal 

region of Ndc80 is fl exible, missing from the crystal structures, 

and critical for microtubule binding ( Wei et al., 2007 ). This re-

gion is the major site of regulation on the Ndc80 complex by 

aurora B kinase ( Cheeseman et al., 2006 ;  DeLuca et al., 2006 ), 

which plays a central role in correcting improper chromosome –

 microtubule connections. Phosphorylation by aurora B reduces 

the affi nity of the complex for microtubules ( Cheeseman et al., 

2006 ;  Ciferri et al., 2008 ), and this is presumably part of the 

mechanism for aurora B – dependent removal of incorrect kineto-

chore – microtubule attachments in vivo. Consistent with this idea, 

mutation of aurora B target sites in the N-terminal region of 

Ndc80 leads to chromosome missegregation in human cells 

( DeLuca et al., 2006 ). 

 Negative stain EM of microtubules decorated with Ndc80 

complexes has revealed that the complex binds to the lattice with 

the coiled-coil rods projecting away from the microtubule at vari-

able angles ( Cheeseman et al., 2006 ). Based on this geometry of 

binding, the microtubule-binding site of the Ndc80 complex is 

thought to reside in the globular CH domains of Ndc80 and Nuf2 

and in the basic tail of Ndc80 ( Wei et al., 2007 ;  Ciferri et al., 

2008 ). This is supported by the observations that the microtubule 

binding of the complex is localized to the Ndc80/Nuf2 hetero-

dimer and does not require the Spc24/25 heterodimer ( Cheeseman 

et al., 2006 ;  Wei et al., 2007 ) and by mutational analysis of a con-

served face of the paired CH domains ( Ciferri et al., 2008 ). These 

prior studies established that the Ndc80 complex is centrally im-

portant in kinetochore – microtubule interactions and provided 

a framework for characterizing its microtubule-binding activity. 

Here, we directly visualize the footprint of the Ndc80/Nuf2 

heterodimer on the microtubule lattice using cryo-EM. Addition-

ally, we defi ne the relationship between complex-binding geome-

try and microtubule polarity using centrosomal asters. The results 

reveal alternating strong and weak binding at every tubulin – tubulin 

interface along the microtubule protofi lament and also indicate 

the presence of ordered regions that extend away from the micro-

tubule. The binding geometry relative to the polymer ’ s polarity is 

consistent with the requirement that kinetochore – microtubule at-

tachments leave room for tubulin subunit addition and removal. 

We discuss these fi ndings in light of crystallography data to sug-

gest models for the interaction mechanism of the Ndc80 complex 

with microtubules. 

 Results and discussion 
 Ndc80/Nuf2 decoration of 
centrosomal asters 
 In the experiments described here, we used bacterially ex-

pressed  Caenorhabditis elegans  NDC-80/Nuf2 HIM-10  heterodimers 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200804170/DC1;  Cheeseman et al., 2006 ). We fi rst analyzed 

 Figure 1.    Orientation of the Ndc80/Nuf2 dimer relative to the polarity 
of the microtubule lattice.  Negatively stained centrosome-nucleated micro-
tubule asters decorated with the Ndc80/Nuf2 dimer (A and C). Boxed 
areas are magnifi ed in B and D. + and  �  signs indicate microtubule polarity. 
Bars, 50 nm.   
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reveals alternating strong and weak ( � 80- Å  long) rod-shaped 

densities associated with each tubulin monomer along a proto-

fi lament. The characteristic moir é  pattern in this projection can be 

used to infer microtubule polarity ( Chretien et al., 1996 ). The 

rods make an angle of  � 60 °  with the microtubule surface, and, 

like the less well-ordered high radius coiled-coil regions, lean 

toward the plus end. A three-dimensional map calculated from 

fi ve helical 16-protofi lament microtubules, although of lower qual-

ity because of the limited number of images, confi rmed the major 

features seen in the 15-protofi lament map (unpublished data). 

 Features of the three-dimensional EM map 
 When the three-dimensional map is contoured such that only 

well-ordered regions are visualized ( Fig. 3, A – C ), densities that 

likely correspond to the N-terminal domains of the Ndc80/Nuf2 

dimer and their connection to the tubulin protofi lament are 

clearly apparent. A longitudinal slice through the map ( Fig. 3 B ) 

depicts two asymmetrical densities protruding orthogonally 

 � 80  Å  from adjacent tubulin monomers at an angle of  � 60 ° . 

Most striking is an alternating pattern of strong and weak densities 

bridging sequential tubulin – tubulin interfaces along the proto-

fi lament axis. At this contour level, the coiled-coil rod of the 

Ndc80/Nuf2 dimer is not observed; the densities appear to merge 

 � 80  Å  away from the microtubule surface. The lack of well-

ordered density beyond this point suggests fl exibility that is re-

fl ected in the variable angle of the rods observed on individual 

decorated microtubules. 

 When we contoured the three-dimensional map to visual-

ize less-ordered regions, weak densities at a signifi cant distance 

( � 130  Å ) from the microtubule surface were apparent ( Fig. 3, 

D – F ). To determine whether these weak densities were part of 

the map and not just noise, we generated projections of a raw 

image as well as for the three-dimensional map and used these 

to identify the radial positions of the density peaks (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200804170/DC1; 

 Whittaker et al., 1995 ). We confi rmed overlap between the ra-

dial distance of the density peaks found in the raw image and 

that of the fi nal three-dimensional map, indicating that these 

weaker densities refl ect ordered regions away from the micro-

tubule surface. Microtubule binding of the Ndc80 complex exhib-

its cooperativity ( Cheeseman et al., 2006 ;  Ciferri et al., 2008 ), 

and a sequential  “ zippering ” -type reaction that occurs off the 

microtubule axis by interactions between adjacent coiled coils 

may contribute to the cooperativity and be represented in the maps 

as the weak density at a higher radius. Although speculative, 

such a proposal should be testable using truncations and artifi -

cial dimerizing coiled coils in future work. 

 Interpretation of the strong densities 
associated with the microtubule surface 
in the three-dimensional EM map 
 To help interpret the densities close to the microtubule surface, 

we docked a model of the high resolution polymerized form of 

the tubulin dimer into the electron density map ( Fig. 4 A ). This 

enabled observation of the contact points between the densities 

corresponding to the Ndc80/Nuf2 globular domains and the 

microtubule lattice. Given the resolution of the map, it is diffi cult 

If each  � / � -tubulin heterodimer bound a single Ndc80/Nuf2 

 dimer, as is the case for the kinesin motor domain, a strong 80- Å  

layer line would be present in the diffraction pattern. The ab-

sence of an 80- Å  layer line indicates that Ndc80/Nuf2 binds 

with the same spacing as individual  � - or  � -tubulin monomers. 

Second, similar to previous observations in negative stain EM 

( Cheeseman et al., 2006 ), cryo-EM images of microtubules 

decorated with Ndc80/Nuf2 ( Fig. 2 A ) show relatively straight 

fi bers (most likely the coiled-coil region) extending from the 

microtubule with a range of angles ( � 20 – 60 ° ). Because only 

the parts of Ndc80/Nuf2 that are rigidly attached to the lattice 

will be visible after averaging and image analysis, we could not 

visualize the entire heterotetrameric complex. Structural infor-

mation associated with domains that are not reproducibly posi-

tioned with respect to the microtubule lattice, the variously angled 

fi bers, is lost during averaging. 

 To visualize the parts of Ndc80/Nuf2 fi rmly attached to the 

microtubule, we averaged data from 13 helical 15-protofi lament 

Ndc80/Nuf2 dimer – decorated microtubules to obtain a three-

dimensional map. A projection view of the map ( Fig. 2, C and D ) 

 Figure 2.    Interaction of the Ndc80/Nuf2 dimer with the microtubule lattice.  
(A) An example of a vitrifi ed microtubule decorated with the Ndc80/Nuf2 
dimer. (B) A typical diffraction pattern (positions of 4- and 8-nm layer 
lines are marked). (C) A projection view of the three-dimensional map. 
(D) A magnifi ed view of the boxed area in the three-dimensional map in C 
confi rms the binding of the Ndc80/Nuf2 dimer to both  � - and  � -tubulin. 
Arrows point to the protruding density of the Ndc80/Nuf2 dimer in A and D. 
+ and  �  signs indicate microtubule polarity. Bar, 85 nm.   
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representing the N-terminal tail and CH domain of the Ndc80 

subunit, and the weak density representing the Nuf2 CH domain. 

An electrostatic interaction between the basic tail of Ndc80 and 

the acidic C termini of  � / � -tubulin is important for binding, as 

deletion of this tail ( Wei et al., 2007 ) or subtilisin treatment of 

taxol-stabilized microtubules, which cleaves the acidic C termini 

of tubulin, compromises Ndc80 complex binding to microtubules 

in vitro (Fig. S3, available at http://www.jcb.org/cgi/content/full/

jcb.200804170/DC1;  Ciferri et al., 2008 ). Thus, examination of 

the densities close to the microtubule surface suggested two dis-

tinct mechanisms (alternating strong or weak binding versus a 

two-headed interaction) for how the Ndc80 complex associates 

with the microtubule lattice. 

 Discriminating models for interaction 
of the Ndc80 complex with microtubules 
by combining the three-dimensional EM 
map with crystallography data 
 We next attempted to fi t the crystal structure of the Ndc80/Nuf2 

globular regions ( Ciferri et al., 2008 ) into the three-dimensional 

EM density map to discriminate between the two models for how 

the Ndc80 complex binds to microtubules. We did not obtain a fi t 

compatible with the two-headed model, in which the conserved 

faces of the Ndc80 and Nuf2 CH domains are docked onto adja-

cent tubulin – tubulin interfaces ( Fig. 4 A  and Video 1, available 

at http://www.jcb.org/cgi/content/full/jcb.200804170/DC1). 

Specifi cally, signifi cant predicted density from the interface be-

tween the two CH domains is not present in the three-dimensional 

map ( Fig. 4 A , arrow 1), and signifi cant density in the three-

dimensional map is unaccounted for when the crystal structure 

is docked in this confi guration ( Fig. 4 A , arrow 2; and Video 1). 

to unambiguously distinguish between the intradimer and 

polymerization-dependent interdimer tubulin – tubulin interfaces 

along a protofi lament. However, the best alignment between our 

map and a map of microtubule-bound kinesin-14 ( Endres et al., 

2006 ) indicates that the strong density binds near the inter-

face between two different tubulin dimers (interdimer;  Fig. 4 A ) 

in a similar fashion to kinesins ( Sosa et al., 1997 ;  Highsmith et al., 

2001 ), and the weaker density binds near the adjacent intradimer 

interface along the protofi lament (the two densities are  � 35  Å  

apart;  Fig. 4 A ). Although it is possible that the alignment be-

tween maps is off register by one tubulin monomer, association 

of the strong density with the interdimer interface is supported 

by the lack of a signifi cant affi nity of the Ndc80 complex for 

un polymerized tubulin dimer in vitro (unpublished data). In either 

scenario, unlike for kinesin, binding is observed near both intra- 

and intertubulin dimer interfaces ( Fig. 4 A ). This comparison with 

kinesin binding further suggests that it is unlikely for the Ndc80 

complex and a kinesin family protein to simultaneously associate 

at the interdimer interface on a microtubule protofi lament. 

 The asymmetry in densities along the protofi lament axis 

observed in the three-dimensional map can be interpreted in two 

ways. First, the alternating pattern could represent strong bind-

ing of an Ndc80/Nuf2 dimer at a polymerization-dependent in-

terdimer interface and weak binding to the adjacent intradimer 

interface along the protofi lament axis. In this model, the ob-

served pattern is caused by a difference in affi nity at the sequen-

tial tubulin – tubulin interfaces. A second distinct model, which 

seems more favorable given the dual CH domain structure of the 

globular domains of Ndc80/Nuf2, is that the alternating densities 

represent a two-headed interaction of the Ndc80 complex along 

sequential tubulin – tubulin interfaces, with the strong density 

 Figure 3.    Surface representations of side and top views of the Ndc80/Nuf2 dimer – microtubule complex.  The side views are oriented such that the plus end 
of the microtubule is at the top of the page. All views were colored using a cylinder radius that depicts the tubulin density as green and the Ndc80/Nuf2 
dimer density as blue ( Pettersen et al., 2004 ). Side and top views in A – C are contoured such that only the strongest, well-ordered density regions are 
visualized. Side and top views in D – F are contoured to show both strong and weak densities. Two sequential asymmetrical densities are clearly visible in 
the longitudinal slices, B and E, from the respective contoured views of the three-dimensional map, A and D. Top views of the slices are shown in C and F. 
Bars, 25 nm.   
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The proposal for strong or weak binding with the geometry shown 

in  Fig. 4 B  contrasts with mutational analysis showing that altering 

the charge on the conserved surface of the Nuf2 CH domain re-

duces microtubule-binding affi nity ( Ciferri et al., 2008 ). One pos-

sible means to reconcile these observations is that the introduced 

mutations affect interactions between adjacent Ndc80 com-

plexes and cooperativity of binding instead of direct contacts 

with the polymer surface. 

 In summary, a comparison of the crystal structure of the 

Ndc80/Nuf2 globular regions (lacking the basic tail) and the 

three-dimensional EM maps indicates that a two-headed mech-

anism of association with the microtubule lattice involving both 

the CH domains of Ndc80 and Nuf2 is unlikely. Instead, it ap-

pears that there is strong binding to the polymerization-dependent 

interdimer interface and weaker binding to the adjacent intra-

dimer interface; the strong binding appears to be mediated by the 

In contrast, the crystal structure fi ts well into the strong density 

in the EM map with the Ndc80 CH domain docked close to the 

microtubule surface and the Nuf2 CH domain away from the lat-

tice ( Fig. 4 B  and Video 2). This fi t favors a model in which the 

binding interface for both the strong and weak densities is com-

prised exclusively by the N-terminal region of Ndc80, including 

the basic tail and CH domain, and the strong or weak densities 

arise from differing affi nities for the sequential interfaces. It is 

possible that the weaker binding at the intradimer interface repre-

sents only an electrostatic interaction of the basic tail of Ndc80 

with the acidic tail of tubulin, whereas the strong binding at the 

interdimer interface represents both an electrostatic interaction 

and a docking of the CH domain of Ndc80 onto specifi c features 

of the interdimer interface. A combination of electrostatic and a 

docking interaction has been previously observed with the kine-

sin-3 (Kif1A/Unc-104) subfamily ( Okada and Hirokawa, 2000 ). 

 Figure 4.    Interaction site of the Ndc80/Nuf2 dimer on the microtubule lattice.  (A and B) A model of a microtubule protofi lament made from the tubulin 
dimer (PDB 1TUB) was docked into a single protofi lament cut from the Ndc80/Nuf2 microtubule EM map. The crystal structure of an engineered, truncated 
Ndc80 complex was used for fi tting into the remaining density in either a two-headed (A) or an alternating strong- or weak-binding (B) confi guration. The 
red bracket demarcates an  � / � -tubulin heterodimer based on the favored confi guration in which the strong density overlaps the kinesin-binding site (red 
dashed line) at the interdimer interface. The + and  �  signs indicate microtubule polarity;  � -tubulin of each  � / � -tubulin heterodimer points toward the plus 
end. Lysines in Ndc80 and Nuf2, whose mutation to alanine or glutamate reduced microtubule-binding affi nity ( Ciferri et al., 2008 ), are indicated by 
yellow spheres; the black sphere marks the methionine preceding the fi rst residue of Ndc80 (amino acid 80) in the crystal structure. For the two-headed 
model in A, the gray arrows labeled 1 and 2 highlight missing density and extra, unaccounted for density, respectively. For the strong or weak model in B, 
weak binding is schematized using light shading.   
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Electron micrographs of the decorated microtubules preserved in vitreous 
ice were recorded in low dose conditions ( < 10 electrons/ Å  2 ) at a magnifi -
cation of  � 38,000 and a nominal defocus between 1.5 and 2  μ m. Electron 
micrographs were evaluated using an optical diffractometer to identify dec-
orated microtubules with appropriate defocus and astigmatism. The selected 
micrographs were digitized on a scanner (Phodis SC; Carl Zeiss, Inc.) with 
a 7- μ m pixel size. Groups of 3  ×  3 pixels were averaged, giving a pixel 
size of 21  μ m on the micrographs or 5.39  Å  on the specimen. 

 Three-dimensional maps 
 Three-dimensional maps were calculated using Phoelix essentially as de-
scribed previously ( Whittaker et al., 1995 ). Surface representations of 
side and top views of the 15-protofi lament map shown in  Fig. 3  were pro-
duced with use of the Chimera software package (Resource for Biocomput-
ing, Visualization, and Informatics;  Pettersen et al., 2004 ). To obtain an 
accurate estimate of the length and angle at which the connected densities 
of Ndc80/Nuf2 dimer protrudes from the microtubule, we selected a sec-
tion cut perpendicular to the three-dimensional map with clearly defi ned 
densities corresponding to the tubulin monomers and the connected densi-
ties. To determine the relationship between the Ndc80/Nuf2 dimer and 
the microtubule, we docked a model of the high resolution polymerized 
form of the tubulin dimer (PDB 1TUB) into the electron density as described 
previously by  Nogales et al. (1999) . To verify the positioning of kinesin 
versus the Ncd80/Nuf2 dimer, we overlapped a model of the crystal 
structure of Ncd-600k (PDB 1N6M) bound to the tubulin dimer (PDB 1TUB) 
as described previously by  Endres et al. (2006)  with our Ncd80/Nuf2 
map ( Fig. 4 A , red dashed line). To combine the EM densities with the 
crystal structure of a truncated, engineered Ndc80 complex (PDB 2VE7), 
we used the Ndc80/Nuf2 heterodimer (amino acids 80 – 285 of hNdc80 
and 4 – 169 of hNuf2) to manually dock the structure into the densities in 
different confi gurations. 

 Online supplemental material 
 Fig. S1 shows schematics of the primary structures of  C. elegans  Ndc80 
and Nuf2. Fig. S2 compares radial position of density peaks between the 
three-dimensional EM map and a raw image. Fig. S3 shows that subtilisin 
cleavage of microtubules signifi cantly reduces binding of the Ndc80 com-
plex. Video 1 shows a three-dimensional view of the EM density map into 
which the Ndc80/Nuf2 crystal structure has been placed in the two-
headed confi guration. Video 2 shows a three-dimensional view of the EM 
density map into which the Ndc80/Nuf2 crystal structure has been fi tted 
into the strong density in a confi guration in which the Nuf2 CH domain is 
off the microtubule lattice. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200804170/DC1. 
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a microtubule, there would be signifi cant room (approximately 

fi ve tubulin dimers long) for tubulin dimers to add and subtract 

at the end, assuming that the docking site on the kinetochore is 

restricted to the globular domains of Spc24 and Spc25. Three-

dimensional maps of the tubulin – Ndc80 complex – binding inter-

face are most consistent with the N-terminal region of Ndc80 

binding strongly between two tubulin heterodimers and weakly 

at the interface of the same tubulin heterodimer. The CH domain 

of Nuf2 may contribute to binding cooperativity by interacting 

with an adjacent complex. The binding of the Ndc80 complex at 

an interdimer interface along the tubulin protofi lament could sta-

bilize microtubule attachment at the kinetochore and may also 

allow it to act as a coupler to dynamic microtubules. The pres-

ence of weaker densities distant from the microtubule surface 

suggests the presence of interactions away from the microtubule 

that may also contribute to the cooperativity of binding. These 

fi ndings provide the basis for future studies of the interaction be-

tween the Ndc80 complex and microtubules. 

 Materials and methods 
 Microtubules polymerized in vitro are composed of variable numbers 
of protofi laments. Under the assembly conditions used here, 5 – 10% of the 
microtubules contain 15 and 16 protofi laments and can be identifi ed in 
images by their diameter and by the characteristic moir é  pattern resulting 
from the protofi lament supertwist ( Fig. 2 B ). To identify the polarity of the 
microtubules decorated with the Ndc80/Nuf2 dimer head, we followed 
the method described previously by  Hoenger and Milligan (1996) . Centro-
somes (provided by M. Moritz, University of California, San Francisco, 
San Francisco, CA) were adsorbed to carbon-coated electron microscope 
grids, a tubulin solution at a concentration of  � 1 mg/ml in BRB80 (80 mM 
Pipes, pH 6.8, 1 mM MgCl 2 , and 1 mM EGTA). 2 mM GTP and 0.25 mM 
taxol were incubated at 37 ° C in a humid chamber for 7 min. After aster 
formation (centrosomes with nucleated microtubules), the grids were washed 
with BRB80, incubated at room temperature with the Ndc80/Nuf2 dimer 
for 2 min, negatively stained with 1% uranyl acetate, and examined in the 
electron microscope. 

 Cryo-EM and image analysis 
 Microtubules were polymerized at 5 mg/ml in 80 mM Pipes, pH 6.8, 3 mM 
MgCl 2 , 16% (vol/vol) DMSO, and 2 mM GTP at 34 ° C for 30 min; 0.25 mM 
taxol was subsequently added, and incubation was continued for 30 min. 
The polymerized microtubules were left overnight at room temperature be-
fore use. Microtubules were diluted four to eight times with BRB80 before 
applying to plasma cleaned C-fl at grids. The Ndc80/Nuf2 dimer (0.5 mg/ml 
in BRB80) was added to the microtubules by double blotting; the fi rst 3- μ l 
droplet of protein was partially blotted off before the second 3- μ l of protein 
was added. The second protein droplet was incubated on the grid for 1 – 2 
min before blotting and vitrifying in liquid ethane according to standard 
methods described previously ( Dubochet et al., 1988 ) or by using a Vitro-
bot (FEI; humidity chamber set at 90%, and blot times between 3 – 4 s with 
an offset of  � 1). The specimens were examined with an electron micro-
scope (CM200FEG; FEI) operating at 120 kV using a cryoholder (GATAN). 
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