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The relationship between tumor initiation and tumor progression can follow a linear projection in which all tumor cells are equally
endowed with the ability to progress into metastasis. Alternatively, not all tumor cells are equal genetically and/or epigenetically,
and only few cells are induced to become metastatic tumor cells. The location of these cells within the tumor can also impact
the fate of these cells. The most inner core of a tumor where an elevated pressure of adverse conditions forms, such as necrosis-
induced inflammation and hypoxia-induced immunosuppressive environment, seems to be the most fertile ground to generate
such tumor cells with metastatic potential. Here we will call this necrotic/hypoxic core the “aggressiveness niche” and will present
data to support its involvement in generating these metastatic precursors. Within this niche, interaction of hypoxia-surviving cells
with the inflammatory microenvironment influenced by newly recruited mesenchymal stromal cells (MSCs), tumor-associated
macrophages (TAMs), and other types of cells and the establishment of bidirectional interactions between them elevate the
aggressiveness of these tumor cells. Additionally, immune evasion properties induced in these cells most likely contribute in the
formation and maintenance of such aggressiveness niche.

1. Introduction

Tumor cells disseminate from primaries following a complex
and stepwise process involving invading surrounding tissues,
intravasation, and survival in the circulation, extravasation,
and survival in a distant and foreign metastatic sites [1].
These monumental tasks require that tumor cells undergo
several changes, such as transitioning from epithelial to
mesenchymal (EMT), to be able to detach from primary
site’s extracellular matrix (ECM), migrate and invade sur-
rounding tissues, and develop strategies to resist anoikis
and the sheer forces within the circulatory system [2, 3].
Understanding these mechanisms and events that help gen-
erate such cells will benefit the design of therapies targeting
disseminating cells and prevent cancer metastasis. Here, we
propose an “aggressiveness niche” minimally defined as the
necrotic/hypoxic core in tumors, within which recruited and
activated mesenchymal stem cells (MSCs), tumor-associated

macrophages (TAMs), and other stromal and inflammatory
cells through bidirectional interactions entrain tumor cells to
become metastasis precursors. These interactions also help
generate conducivemicroenvironment for such entrainment.

2. The Role of Necrosis-Induced Inflammation
in Aggressiveness Niche Formation

In aggressive tumors, the rate of proliferation exceeds that of
neoangiogenesis leading to necrosis, especially within tumors
cores. Unlike apoptotic cells, necrotic cells do not signal
to nearby phagocytes to engulf and recycle them. Instead,
intracellular content, including damage-associatedmolecular
pattern (DAMP) materials, spills into the microenvironment
leading to increase in inflammation within these cores.

High mobility group binding (HMGB1) protein is well-
studied DAMP normally bound to chromatin [4]. HMGB1
can be passively released from necrotic, autophagic, and
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Figure 1: HMGB1 and inflammation. The forces contributing to the passive release and the active secretion of HMGB1 from tumor cells
within the aggressiveness niche.

apoptotic cells [5, 6] or actively secreted from oncogene-
activated tumor cells [7] (Figure 1). Modifications such
as methylation, glycosylation, ribosylation, and acetylation
promote release from chromatin and the cytokine function
of HMGB1 [8–11].

Extracellular HMGB1 binds in either autocrine or
paracrine manner to several cell surface receptors, including
receptor for advanced glycation end products (RAGE) and
toll-like receptors (TLRs) [12–15]. Binding to these receptors
activates proinflammatory signaling pathways, such as the
NF-𝜅B, IFN regulatory factor-3 (IRF3), phosphoinositide
3-kinase (PI3K), and inflammasome to induce proinflam-
matory cytokine release into the microenvironment [16,
17]. Therefore, extracellular HMGB1 sustains an inflamma-
tory microenvironment within tumors that supports tumor
growth, invasion, and metastasis [18–22]. Indeed, several
studies showed that inhibiting HMGB1-RAGE or HMGB1-
TLR4 interactions suppresses inflammation, tumor growth,
and metastasis in animal models [18, 23]. Additionally, in
the clinic, expression of RAGE or TLR4 is closely associated
with invasion and metastasis [21, 22]. Accordingly, neu-
tralizing HMGB1 antibody or RAGE knockdown inhibited
tumor angiogenesis and metastasis in vitro and in vivo [22].
Furthermore, chemotherapies promote cell death in tumors
concurrently with sequestration of HMGB1 in the nucleus,
preventing its release even if necrotic death ensues.

Another powerful factor spilled out of necrotic cells is
ATP [24]. ATP activation of the P2X7 purinergic receptor
on tumor cells in autocrine or paracrine fashion leads to
fall in the intracellular potassium level, which triggers the
oligomerization of the “inflammasome” [25]. The inflamma-
some contains proteins, such as cryopyrin or nucleotide-
binding domain and leucine-rich repeat containing protein
3 (NLRP3) and procaspase 1. The inflammasome processes
procaspase 1 into an active cysteine protease “caspase 1” [26].

Caspase 1 then binds and cleaves IL-1𝛽 precursor converting
it to the active secreted form [27]. Caspase 1 is constitutively
active in highly metastatic human cancers, especially those
with mutation in cryopyrin [28, 29]. The activation of
inflammasomes and their downstream targets contribute to
innate and adaptive immunologic defense mechanisms by
the regulation of several different and partially opposing
pathways [30].

The adaptive immune system is divided into CD4+ and
CD8+ T-cell lineages. Activation throughuniqueT-cell recep-
tors (TCRs) and costimulation by antigen-presenting cells
(APCs), such as dendritic cells (DCs), rapidly enhance T-cells
proliferation and differentiation into effector cells. Effector
CD4+ T-cells develop as interferon-𝛾 (IFN-𝛾) producing
T helper cells (Th

1
), IL-4/IL-13 producing Th

2
cells, IL-10

producing regulatory T (Treg) cells, and IL-17 producing
Th
17

cells. CD8+ T-cells are mainly considered cytotoxic T
lymphocytes (CTLs) and produce cytotoxic granules that kill
cancerous cells. Extracellular HMGB1 induces apoptosis in
DCs, thus suppressing CD8+ T-cells function and enhancing
Treg function and diminishing host anticancer immunity
within the necrotic core [31, 32], which lead to tumor
progression [33]. Extracellular IL-1𝛽 induces accumulation
of myeloid-derived suppressor cells (MDSCs) that impairs
NK cells development and functions in vitro and in vivo
[34]. MDSCs contribute to tumor progression and growth
by suppressing antitumor immune responses via blocking
CD4+ and CD8+ T-cells activation [35]. Taken together, these
findings highlight the potential important role of necrosis
in the development of the aggressiveness niche, in which
an inflammatory environment provides an immune evasion
response leading to cancer progression. In fact, recent clinical
trial showed great efficacy for the anti-IL-1𝛽 monoclonal
antibody “anakinra” [36].
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3. The Role of Hypoxia-Induced Adaptation in
Aggressiveness Niche Formation

In a fast-growing tumor, the diffusion distance from the
existing vascular supply increases resulting in hypoxia [37,
38]. Hypoxia affects tumors in many ways including enhanc-
ing cell growth rate, neovascularization, metastasis, and
resistance to treatment.

In cancer tissues, large areas of hypoxic tissue and con-
centration of the hypoxic markers, such as CAIX and HIF-
1𝛼 exist around necrotic regions. HIF-1 family of basic helix-
loop-helix transcription factors includesHIF-1𝛼, HIF-2𝛼, and
HIF-3𝛼 [39]. OnlyHIF-1𝛼 is destabilized and degraded under
normoxic conditions, whereas, under hypoxic conditions, it is
stabilized and translocated to the nucleus to heterodimerize
with the constitutively expressed HIF-1𝛽 [40, 41]. The HIF-
1𝛼-HIF-1𝛽 complex through binding to HIF response ele-
ments (HREs) in the promoter regions of important adaptive
genes activates their transcription [42–46].

Hypoxia also promotes metabolic shift and lowers the
pH within the aggressiveness niche impeding the adaptive
immune response and acts to recruit immune suppressive
cells, such as MDSCs, Tregs that significantly reduce CD4+

T-cell proliferation, CD8+ T-cell, and natural killer (NK)
cells cytotoxicity [47–50]. The anaerobic conditions within
the aggressiveness niche ferment the pyruvate produced by
glucose metabolism in tumor cells into acidic lactate, which
helps altering the metabolism in the niche in what is called
“Warburg effect” [51]. TheWarburg effect also suppresses the
maturation of antigen-presenting cells (APCs) that activate
näıve T-cells [52]. Taken together, these findings highlight
the potential important role of hypoxia in generating an
immune suppressive microenvironment and together with
the necroticmicroenvironmentmaintain an immune evasion
response that promotes cancer progression.

4. The Role of MSCs in Aggressiveness
Niche Formation

MSCs are primitive cells mobilized from the bone marrow
to sites of hematopoiesis, inflammation, injury, and solid
tumors [53–56]. Within these sites MSCs differentiate to
give rise to cells of many lineages, including muscle, bone,
fat, and cartilage lineages [57, 58]. Recent data also point
to the fact that, within tumors, MSCs can differentiate into
carcinoma-associated fibroblasts (CAFs) [59–66]. CAFs’ role
in enhancing tumor growth, progression, metastasis, and
therapeutic resistance has been shown in many cancers [67–
69].

The aggressiveness niche resembles, to a great extent,
tissues undergoing chronic inflammation [70]. This causes
immune response leading to homing of MSCs to aggressive-
ness niche in response to chemotactic factors, such as the
monocyte chemotactic protein-1 (MCP-1) [71], cyclophilin B,
the hepatoma-derived growth factor (HDGF) [72], and IL-6
[73], and activation of intracellular signaling inMSCs, such as
STAT3. Cancer cells, especially those with cancer stem-like
cells (CSCs) activity [74, 75], such as triple negative breast
cancer cells (TNBCs), secret effector cytokines, including

IFN-𝛾, TNF-𝛼, and IL-1𝛽 that activate MSCs immuno-
suppressive role [76, 77]. Activated MSCs then produce
many immune-modulatory molecules such as hepatocyte
growth factor (HGF), transforming growth factor-𝛽 (TGF-𝛽),
prostaglandin E2 (PGE2), IL-10, and inducible nitric oxide
synthase (iNOS) [78–82]. These cytokines suppress IFN-𝛾
production fromTh

1
, promote IL-4 secretion fromTh

2
, and

increase T-cells polarizationmore towards TGF-𝛽-expressing
Treg cells, rather than IL-17-expressingTh17 cells [78–82], thus
generating immunosuppressive environment that promotes
tumor cells aggressiveness within the niche.

Furthermore, MSCs express the major histocompatibility
complex (MHC) class I but lack class II MHC along with
the costimulatory molecules CD80, CD86, and CD40 [83,
84]. MSCs can suppress T-cell proliferation and activa-
tion in response to allogeneic antigens [82], inhibit B-cell
proliferation, differentiation, and antibody generation [85],
interfere with DCs maturation and function [86, 87], recruit
CD8+Foxp3+CD25+ Treg, and promote their proliferation.
Taken together, these studies demonstrate the profound
effect of MSCs in exacerbating tumor progression through
bidirectional interactions with tumor cells [67] or indirectly
through effects on the tumor microenvironment [63, 66].

5. The Role of TAMs in Aggressiveness
Niche Formation

Monocytes also originate from the bone marrow, where they
enter the peripheral blood and infiltrate into tumors [88].
In breast cancers, nearly half the tumor mass consists of
tumor-associated macrophages (TAMs). In tumors, TAMs
accumulation associates with disease progression and is
often correlated with poor prognosis [89]. Within tumors,
monocytes can differentiate into specialized phagocytes
M1-macrophages that engulf and digest dead and tumor
cells or into pro-tumor M2-polarized macrophages. M1-
macrophages primed by IFN-𝛾 could be activated by tumor
necrosis factor-𝛼 (TNF-𝛼) or by activation of toll-like recep-
tors (TLRs) via exposure to microbes or microbial products
such as bacterial LPS [90]. M1-polarized macrophages could
also function as antigen-presenting cells [91] and secrete high
levels of inhibitory interleukin-12 (IL-12) and IL-23 cytokines
[92]. On the other hand, in the presence of cytokines, such as
IL-4 and IL-13, macrophages differentiate into immunosup-
pressive M2-macrophages characterized by IL-10 production
that promotes tumor progression [90, 93].

Like MSCs, TAMs generally accumulate in hypoxic
areas of the tumor. MSCs skew macrophages towards the
M2-polarization in vivo leading to increase in IL-10 pro-
duction and decreased proinflammatory cytokine and NO
production in tumors, which leads to immunosuppressive
environment instead of initiating T-cell-mediated immune
responses within tumors [79, 86]. Prostaglandin E2 (PGE2)
constitutively produced by humanMSCs suppresses IL-6 and
TNF-𝛼 expression in macrophages. In addition, neutralizing
antibodies to IL-6 and granulocyte macrophage-colony stim-
ulating factor (GM-CSF) showed that these cytokines syn-
ergistically promote human gingiva-derived MSC-mediated
promotion of the M2 phenotype in macrophages [89–93].
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Other immune system entities such as mast cells, neu-
trophils, NK cells, and dendritic cells (DCs) contribute to
breast tumor progression, especially through the release of
proinflammatory cytokines. MSCs also reduced inflamma-
tion promoted by mast cells and were resistant to cyto-
toxicity by NKs. Neutralization of PGE2 and transforming
growth factor-𝛽 (TGF-𝛽), both thought to contribute toMSC
immunosuppression, overrode MSC-mediated suppression
ofNKproliferation.MSCs also interfere withDCmaturation,
IL-12 production, and migration to lymph nodes in vivo,
leading to insufficient T-cell priming in the lymph nodes [31].

6. Concluding Remarks

There is a complicated interplay between cancer and the
host immune system. Understanding this interplay and the
mechanisms by which tumors evade immune control should
identify new and innovative therapeutic strategies. Reversing
these immune evasion strategies could strengthen the adop-
tive immune system as a promising tool for cancer therapy.
Additionally, understanding all the mechanisms tumors use
to establish growth and subsequently metastasize, in part
through evasion of immune surveillance, for example, the
role of MSCs in such evasion, could help in generating
combinatorial therapies that provide therapeutic efficacy by
preventing the suppressive effect of MSCs and activating the
antitumor effect of the immune system. It should be noted,
however, that experimental evidences that support the notion
that cells within the niche are those that form the metastasis
are still lacking.
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