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Over the past decade, advancements in next generation sequencing technology have placed personalized genomic medicine upon
horizon. Understanding the likelihood of disease causingmutations in complex diseases as pathogenic or neutral remains as amajor
task and even impossible in the structural context because of its time consuming and expensive experiments. Among the various
diseases causingmutations, single nucleotide polymorphisms (SNPs) play a vital role in defining individual’s susceptibility to disease
and drug response. Understanding the genotype-phenotype relationship through SNPs is the first and most important step in drug
research and development. Detailed understanding of the effect of SNPs on patient drug response is a key factor in the establishment
of personalized medicine. In this paper, we represent a computational pipeline in anaplastic lymphoma kinase (ALK) for SNP-
centred study by the application of in silicopredictionmethods,molecular docking, andmolecular dynamics simulation approaches.
Combination of computationalmethods provides away in understanding the impact of deleteriousmutations in altering the protein
drug targets and eventually leading to variable patient’s drug response. We hope this rapid and cost effective pipeline will also serve
as a bridge to connect the clinicians and in silico resources in tailoring treatments to the patients’ specific genotype.

1. Introduction

The vast amounts of data available from whole genome
sequencing represent a challenge in the analysis, often requir-
ing automated methods for annotation and prioritization
of the variants. In attaining this milestone, profiling the
most common single nucleotide polymorphisms (SNPs) by
computational approach became powerful and inexpensive
enough to jumpstart the personalized genomics area [1–4].
SNPs are not only considered as markers in constructing
genetic maps but also have the potential as direct functional
polymorphic variants involved within complex diseases, as
well as drug response. A majority of the nonsynonymous
SNPs (nsSNPs) associated with human disorders are caused

by alteration in structural stability [5, 6] or based on attractive
notion that these mutations directly disrupt the ligand inter-
actions sites [7–9]. The last decade has witnessed a tremen-
dous increase in the number of studies comprehensively
in understanding the genetic basis for interindividual drug
response variability [10, 11]. Understanding the underlying
mechanisms of phenotypic variability in drug response at the
protein level is foremost in the establishment of personalized
medicine [12].There is an urgent need to categorize the func-
tionally important nsSNPs as deleterious or disease causing
ones in a cost-efficient manner. More sophisticated fast and
cost effective in silico prediction methods are developed to
screen the degree of deleteriousness (affect protein function)
of an nsSNP based on sequence information and structural
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attributes and made available on the World Wide Web
[13–19]. Each algorithm has its own unique strengths and
weaknesses [1, 2]. Most of them utilize sequence, structure
information, or combination of both along physiochemical
properties of amino acids to classify them as pathogenic or
neutral (Table 1). Insight into the knowledge of the three-
dimensional structure (3D) of a gene product is a key
component in determining the impact of a mutation in
causing disease. 3D structural information provides valuable
information about the environmental changes uponmutation
with altered active sites, stability, and flexibility of the protein.
More than 88,000 macromolecular structures are deposited
in the protein data bank (PDB). To measure the adverse
effects of mutation on protein structure, it is necessary to
map the mutation and construct 3D models by homology
modeling methods. Recent advances in structural genomics,
modeling techniques, and drug discovery technologies also
make it possible to attempt structural interpretation of
drug-target interaction upon mutation and their differential
therapeutic responses [11, 20].

ALK, a receptor tyrosine kinase in the insulin receptor
superfamily, was initially identified in activated oncogenic
fusion forms, most common being the nucleophosmin ALK
in anaplastic large-cell lymphomas and paediatric cancer as
well as neuroendocrine tumors [21]. ALK consists of 1620
amino acids in which 1030 residues in the extracellular
region encompass multiple subdomains including an LDL-
A domain (low-density lipoprotein class A domain), a MAM
(meprin) domain, and a glycine-rich region.The cytoplasmic
portion contains 563 residues and includes the kinase cat-
alytic domain. This full-length form is implicated in malig-
nancies where ALK promotes tumorigenesis via activation by
autocrine and paracrine growth-promoting loops involving
the putative endogenous ALK ligands PTN (pleiotrophin)
and MK (midkine) [22]. Originally, truncated form of ALK
was first described in non-Hodgkin’s lymphoma with fusion
protein product of ALK and nucleophosmin (NPM). Later
on additional fusion partners of ALK were identified with
reports of variable expression of ALK in adenocarcinomas
of the lung, neuroblastomas, breast, and esophageal cancers
[23–25]. In familial neuroblastoma, mutations in ALK alter
the protein kinase domain (1116–1392), thereby leading to
constitutive activation of the receptor kinase and phospho-
rylation of downstream targets. This results in heightened
cell proliferation, invasion, and survival [26, 27]. Mutations
in protein kinase domain F1174 and R1275 are the most
frequently reported in neuroblastomas [28, 29]. The cells
harboring the F1174 and R1275 mutations in ALK proved
to be more sensitive towards small molecule inhibitors [28,
30]. Most recently crizotinib was approved for use in non-
small-cell lung carcinoma (NSCLC) patients asALK inhibitor
[3, 30]. Unfortunately, cancers have eventually developed
resistance to crizotinib. In 2010, Choi et al. [31] identified
two secondary mutations (C1156Y and L1196M) within the
kinase domain of ALK fusion protein, which confer marked
crizotinib resistance.

Till date, no combinatorial approach was undertaken
in ALK with the interplay of in silico prediction methods
along with molecular docking and molecular dynamics. This

insisted us to design in silico framework in the discovery
of new drugs or drug targets in ALK owing to the changes
brought by deleterious nsSNPs (Figure 1). As an initial step,
we listed out the deleterious nsSNPs in ALK based on
sequence-structural-based algorithms prediction scores of
SIFT [13], PolyPhen 2.0 [14], I Mutant 3.0 [15], SNAP [16],
SNPs&GO [17], PhD-SNP [18], and Align GVGD [19]. In the
next step, we conducted in silico functional analysis to iden-
tify the SNPs associatedwith regulatorymechanisms [32] and
posttranslational modification (PTM). Furthermore, in silico
mutational analysis was initiated by mapping the deleterious
mutations onto the available 3D structure with the help of
Swiss-PdbViewer [33]. An atomic level look at the protein
dynamics behavior was performed usingmolecular dynamics
simulation [34, 35] to reveal the impact of these mutations
on protein structure. Lastly binding affinity between the
crizotinib and the deleterious mutations was observed with
the aid of molecular docking study [36, 37]. We propose
that these findings could provide valuable hints in disease
diagnosis and treatment towards personalized medicine.

2. Materials and Methods

2.1. Dataset Used for SNP Annotation. Human ALK gene
information data was collected from Online Mendelian
Inheritance in Man (OMIM) [38] and Entrez Gene on
National Centre for Biological Information (NCBI). The
SNP information (protein accession number (NP), mRNA
accession number (NM), and SNP ID) was retrieved from
dbSNP [39] andUniProt databases [40]. Protein 3D structure
was obtained from protein data bank (PDB) [41].

2.2. Predicting Functional Context of Missense Mutation. The
functional context of nsSNPs in the coding region was
predicted using SIFT, PolyPhen 2, SNAP, SNPs&GO, and
PhD-SNP. SIFT provides the tolerance index score ranging
from 0 (deleterious) to 1 (neutral) of a particular amino acid
substitution to protein function based on the sequence align-
ments. PolyPhen 2 utilizes straightforward physical and evo-
lutionary comparative considerations to predict amino acid
substitutions on protein structure and function. PolyPhen 2
calculates and computes the difference in the PSIC (position-
specific independent count) score of the two variants. The
probabilistic score ranges from 0 (neutral) to 1 (deleterious),
and functional significance is categorized into benign (0.00–
0.14), possibly damaging (0.15–0.84), and probably damaging
(0.85–1). PhD-SNP is a single sequence SVMmethod (SVM-
sequence) that discriminates disease-related mutations from
neutral ones based on the local sequence environment of
a mutation. SNPs&GO is an SVM-based method which
utilizes functional gene ontology (GO) terms to predict the
disease-associated mutations from the protein sequence and
evolutionary information. Neural network-based screening
for nonacceptable polymorphisms (SNAP) utilizes sequence
information (secondary structure, solvent accessibility), flex-
ibility, functional effects, and conservation information from
various resources to predict the functional effect of each
nsSNP in a protein sequence as neutral or nonneutral
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Table 1: Summary of in silico prediction methods, molecular docking, and molecular dynamics simulation approaches in nsSNP analysis.

In silico prediction methods based on sequence,
structure information or combination of both Website URL

SIFT BLink http://sift.jcvi.org/www/SIFT BLink submit.html
PolyPhen 2 http://genetics.bwh.harvard.edu/pph2/
SNAP https://www.rostlab.org/services/snap/
MutPred http://mutpred.mutdb.org/
PANTHER http://www.pantherdb.org/tools/csnpScoreForm.jsp
nsSNP Analyzer http://snpanalyzer.uthsc.edu/
PhD-SNP http://snps.biofold.org/phd-snp/phd-snp.html
Auto-Mute http://proteins.gmu.edu/automute/
I-Mutant Suite http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
Align GVGD http://agvgd.iarc.fr/agvgd input.php
Mutation Taster http://www.mutationtaster.org/
Provean http://provean.jcvi.org/index.php
Fathmm http://fathmm.biocompute.org.uk/
SNPs3D http://www.snps3d.org/
topoSNP http://gila.bioengr.uic.edu/snp/toposnp/
CanPredict http://research-public.gene.com/Research/genentech/canpredict/
LS-SNP/PDB http://ls-snp.icm.jhu.edu/ls-snp-pdb/
KD4v http://decrypthon.igbmc.fr/kd4v/cgi-bin/home
Parepro http://www.mobioinfor.cn/parepro/
F-SNP http://compbio.cs.queensu.ca/F-SNP/
SNPeffect 4.0 http://snpeffect.switchlab.org/

Types of protein simulation

Molecular Dynamics Simulation Based on their interactions according to the equations of motion defined in
classical (i.e., Newtonian) mechanics

Langevin Dynamics Based on use of the Langevin equation as an alternative to Newton’s second
law

Brownian Dynamics Diffusional analogue of MD carried out through the numerical integration of
the Langevin equation

Monte Carlo Stochastic approach under given thermodynamic conditions such as
temperature and volume.

Simulated Annealing Find the minimum energy configuration of a system
QM/MM To study of biomolecular reaction mechanisms
Nondynamic Methods Conformational Sampling, Principal Component Analysis

Tool For MD
Gromacs http://www.gromacs.org/
NAMD http://www.ks.uiuc.edu/Research/namd/
AMBER http://ambermd.org/
CHARMM http://yuri.harvard.edu/

Tools for Modeling and Docking

Chemical structure representations
Zinc Database, ChEMBL, Chemspider, Bingo, JChem for Excel, ChemDiff,
Protein DataBank (PDB), Binding MOAD (Mother Of All Database),
CREDO, TTD, STITCH, SMPDB

Molecular Modeling CHARMM, GROMACS, Amber, SwissParam, Dundee PRODRG2 Server,
PDB2PQR Server, SwissSideChain

Homology Modeling Modeller, I-TASSER, LOMETS, SWISS-MODEL, SWISS-MODEL Repository,
Robetta

Binding site prediction MED-SuMo, CAVER, FINDSITE, sc-PDB, CASTp, Pocketome, 3DLigandSite,
metaPocket, PocketAnnotate

Docking Autodock, DOCK, GOLD, SwissDock, DockingServer, 1-Click Docking,
COPICAT, Computer-Aided Drug-Design Platform using PyMOL, Haddock

Visualizing Visual Molecular Dynamics, PyMOL, UCSF Chimera, Discovery studio
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Sequence analysis

Sequence analysis

Dataset
Uniprot, dbSNP,
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Figure 1: Flow chart for the proposed methodology.

and provides the information about the estimation about the
prediction reliability.

2.3. Predicting Protein Stability upon Mutation. Stability
change of a protein can be measured by computing the
change in its Gibbs-free energy upon folding. Substitution
of single amino acid in a protein sequence can result in a
significant change in the protein’s stability (ΔΔ𝐺); positive
ΔΔ𝐺 represents a destabilizing effect and the negative value
represents a stabilizing effect on mutation. We employed I-
Mutant 3.0 built by unsupervised classification using support
vector machine and trained on the most comprehensive
dataset derived from ProTherm [42] for the prediction of
protein stability change for nsSNPs. The energy difference
between native and the mutant protein was calculated based
on Gibbs-free energy value, and the predicted free energy
change was denoted by DDG value.

2.4. Biophysical Characterization of Altered Amino Acid.
Assessment of the putative deleterious effect of ALK vari-
ants was also performed with the evolutionary conserva-
tion method Align Grantham Variation Grantham Devi-
ation (Align-GVGD). To predict the impact of mutations
Align-GVGD combines the biophysical characteristic of each
altered amino acid and proteinmultiple sequence alignments
generated by T-coffee to classify the scores into seven cate-
gories C0, C15, C25, C35, C45, C55, and C65.The variant with
the score of C0 is designated as least likely to be deleterious
and C65 as most likely to be deleterious.

2.5. Functional Characterization of SNPs. The prediction of
the phenotypic risks and putative functional effects of a
given variant in the regulatory region were assessed using
function analysis and selection tool for single nucleotide
polymorphism (FASTSNP) [32]. We submitted input in the
query form of “Candidate gene” and selected the SNPs for
prioritization. FASTSNP utilizes eleven external web servers
to designate the twelve phenotypic risks and functional effects
along with the ranking system ranging from 0 (no effect)
to 5 (very high risk) for each SNP located in the coding
5, 3, and intronic region. We employed GPS 2.1 [43], Net-
NGlyc [44], and NetOGlyc 3.1 [45] to predict the functional
significance of SNP in phosphorylation, N-glycosylation,
and O-glycosylation sites. In GPS 2.1 version, we selected
medium level threshold to identify the phosphorylation sites.
NetNGlyc 1.0 server utilizes artificial neural networks to scan
the sequence information of Asn-Xaa-Ser/Thr sequences.
Meanwhile, NetOGlyc server uses neural network-based
method to predict the mucin type GalNAc O-glycosylation
sites in mammalian proteins.

2.6. In Silico Mutation Analysis. The crystal structure of
human ALK was obtained from the PDB (ID: 3L9P) to
generate the starting models for the simulation [46]. Missing
loops residues 1117–1122 were modelled using Falc loop [47].
We mapped the deleterious mutations ALK F1174L and
ALK R1275Q to their corresponding positions in the crystal
structure and mutated the proteins using Swiss-PdbViewer.
After mutation, the structure was subjected to optimization
and energy-minimized using GROMACS force field. Four
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different simulations were carried out that include the native
type and three mutated models.

2.7. Molecular Docking. We utilized AutoDock (V. 4.0) [36]
and Patchdock [37] for our molecular docking study. This
provides valuable insight into the interaction between the
native and mutant proteins of ALK with ligand crizo-
tinib. The structure of ligand crizotinib was generated from
smile strings followed by energy minimization. Similarly,
we obtained the crystal structure of ALK (PDB ID: 3L9P)
with resolution 1.80 Å from the protein data bank. AutoDock
program with the Lamarckian genetic algorithms (LGA)
was used to perform docking experiments. The Lamarckian
GA parameters used in the analysis consist of 30 indepen-
dent runs, population size of 150, a maximum number of
25,000,000 energy evaluations, number of generation 27,000,
mutation rate of 0.02, and a crossover rate of 0.8. Dockingwas
carried out with the grid size of 60, 60, and 60 along the 𝑋-,
𝑌-, and 𝑍-axis with 0.375 Å spacing. RMS cluster tolerance
was set to 2.0 Å. In order to increase the accuracy of the
docked poses by AUTODOCK, we performed docking anal-
ysis using PatchDock program. This uses molecular docking
algorithm based on structure geometry.The PatchDock algo-
rithm divides the Connolly dot surface representation of the
proteinmolecules into three classes, namely, convex, concave,
and flat patches [48, 49]. Then, complementary patches were
matched to generate the candidate transformations. Each of
the candidate transformation is additionally evaluated by a
scoring functionwhich considers both the atomic desolvation
energy and geometric fit [50]. Next, root mean square devia-
tion (RMSD) clustering is applied to the candidate solutions
to discard redundant solutions. The input parameters for the
docking are the PDB coordinate file of the protein and ligand
molecule. Three major steps are followed in the PatchDock
analysis: (i) surface patch matching, (ii) molecular shape
representation, and (iii) filtering and scoring.

2.8. Molecular Dynamics Simulation. MD simulation of the
complex was carried out with the GROMACS 4.5.4 package
using the GROMOS96 43a1 force field [51]. The lowest bind-
ing energy (most negative) docking conformation generated
by AutoDock was taken as initial conformation for MD
simulation.The topology parameters of proteins were created
by using the Gromacs program. The topology parameters of
crizotinib were built by the Dundee PRODRG server [52].
The complex was immersed in an octahedron box of simple
point charge (SPC) water molecules. Eight Na+counter-ions
were added by replacing water molecules to ensure the
overall charge neutrality of the simulated system. The native
and mutant complexes were energy-minimized initially by
steepest descent 10,000 steps, followed by conjugate gradient
method 10,000 steps. In order to equilibrate the system,
the solute was subjected to position-restrained dynamics
simulation (NVT and NPT) at 300K for 300 ps. Finally, the
full system was subjected to MD production run at 300K
temperature and 1 bar pressure for 20 000 ps.MD simulations
were repeated thrice in order to verify the reproducibility of
our study.

2.9. Principal Component Analysis. Theprincipal component
analysis is a technique that reduces the complexity of the
data and extracts the concerted motion in simulations that
are essentially correlated and presumably meaningful for
biological function. In the principal component analysis, a
variance/covariance matrix was constructed from the trajec-
tories after removal of the rotational and translational move-
ments. The calculation of the eigenvectors and eigenvalues
and their projection along the first two principal components
were carried out using essential dynamics (ED) method [53].
A set of eigenvectors and eigenvalues were identified by
diagonalizing thematrix.Themovements of the protein in the
essential subspace were identified by projecting the Cartesian
trajectory coordinates along themost important eigenvectors
from the analysis.

2.10. Analysis of Molecular Dynamics Trajectory. The trajec-
tory files were analyzed by using g rms, g rmsf, and g sas
GROMACS utilities in order to obtain the root-mean-square
deviation (RMSD), root-mean square fluctuation (RMSF),
and solvent accessibility surface area (SASA). Numbers of
distinct intermolecular hydrogen bonds formed during the
simulation were calculated using g h bond utility. Numbers
of hydrogen bonds are prominent, when donor-acceptor
distance is smaller than 3.9 nmanddonor-hydrogen-acceptor
angle is larger than 90 nm. The trajectory files of PCA
were analyzed through the use of g covar and g anaeig of
GROMACS utilities in order. The analysis of the secondary
structure elements of the protein was performed using the
program “do dssp,” which utilizes the DSSP program [54].

3. Results

3.1. SNPAnnotation. Dataset utilized in functional character-
isation of 149 nsSNPs in ALK was retrieved from dbSNP,
UniProt, and Ensembl databases. Among 149 nsSNPs, 78
nsSNPs were mapped to the cytoplasmic domain, 50 nsSNPs
to the protein kinase domain, and remaining 21 nsSNPs to the
ligand binding domain.

3.2. Prioritizing Functional SNPs. Numerous in silico predic-
tion tools with diverse algorithms were used to characterise
the functionally significant nsSNPs in ALK.The performance
of computational algorithms in identifying the deleterious
or neutral nsSNPs in ALK protein is given in Table S1
(see Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/895831). SIFT predicted 76
deleterious nsSNPs from a total of 149 missense mutations
that could bring about a change in the protein function.
PolyPhen 2.0 evaluates the location of the amino acid replace-
ment within the identified functional domains and 3D struc-
tures. PolyPhen 2.0 predicted 87 nsSNPs to be damaging.
SNAP was used to predict the overall severity of the missense
mutation based on neural network and improved machine
learning approach. SNAP predicted 60 nsSNPs as nonneutral
which could bring about a change in protein function.
SNPs&GO and PhD-SNP designated 35 and 36 nsSNPs as
disease. I Mutant 3.0 predicted 33 nsSNPs that could change



6 BioMed Research International

(a) (b) (c)

Figure 2: Residual interactions in the protein-drug interface was analyzed by Ligplot (a) Native (b) Mutant F1174L (c) Mutant R1275Q.

Table 2: SNPs in the regulatory region found to be functionally
significant by FASTSNP.

SNP ID (rs) Possible functional effects Risk Region
rs73920776 Promoter/regulatory region 1–3 5upstream
rs57277472 Promoter/regulatory region 1–3 5upstream
rs73920777 Promoter/regulatory region 1–3 5upstream
rs6727236 Promoter/regulatory region 1–3 5upstream
rs12151564 Promoter/regulatory region 1–3 5upstream
rs4666202 Promoter/regulatory region 1–3 5upstream
rs4666203 Promoter/regulatory region 1–3 5upstream
rs55793959 Promoter/regulatory region 1–3 5upstream
rs13404651 Promoter/regulatory region 1–3 5upstream
rs4666204 Promoter/regulatory region 1–3 5upstream
rs6731724 Promoter/regulatory region 1–3 5upstream

the stability of the protein upon mutation. Align GVGD
predicted the functional impact on protein as deleterious
59 nsSNPs. In order to prioritize the most potent nsSNPs
associated with ALK, the result obtained from the above in
silico methods was integrated into a single coherent frame-
work. By comparing the prediction scores obtained from all
the six in silico tools, 2 nsSNPs at positions ALK F1174L and
ALK R1275Q in the coding region were predicted to have a
functional effect on protein function and stability. FASTSNP
identified the nsSNPs that can influence the cellular and
molecular biological function, for example, transcriptional
and splicing regulation (Table 2). From our analysis, 11 SNPs
in 5 upstream and coding regions were found to have a role in
the promoter/regulatory region with a risk level of 1–3 upon
nucleotide change.

3.3. Docking Analysis. To investigate the impact of mutation
on the molecular functions of ALK protein, docking analysis
was carried out with a specific inhibitor crizotinib. Results

indicated that the mutations contribute to weaker interaction
with the drug, primarily due to loss of interactions of the
drug with surrounding residues. We utilised three com-
plexes, namely, native (ALK-crizotinib), F1174L (ALKF1174L-
crizotinib), and R1275Q (ALK R1275Q-crizotinib) for our
analysis. Table 3 displays the lowest calculated binding energy
value of ALK docked to the drug. Comparing the binding
free energy of ALK to the drug, mutant F1174L exhibited the
weakest interaction with the energy value of −7.34Kcal/mol
when compared to the mutant R1275Q (−8.07Kcal/mol)
and native complex (−9.21 Kcal/mol), respectively. Detailed
analysis showed that the crizotinib acquired an altered mode
of binding in both the mutant complexes. From Figure 2(a),
it is clear that in the native model, crizotinib forms hydrogen
bond with the active residues M1199 and Q1197 (Table 2).
All other contacts were hydrophobic, as noted in the crystal
structure [46]. In the mutant F1174L complex, the muta-
tion disrupts the local hydrogen bond between the protein
and drug; as a result, only one hydrogen bond is formed
(Figure 2(b)), whereas, in mutant R1275Q complex, one
hydrogen bond was formed and lost, when compared to the
native complex (Figure 2(c)). The change in the hydrophobic
contact in native and mutant complexes is elucidated in
Table 3. Validation of docking results is needed to optimize
the error and uniformity. Docking score and atomic contact
energy (ACE) of the native and mutant complexes were cal-
culated using Patch Dock (Table 4). Obtained results confirm
that native complex exhibited the highest docking score of
6894 and ACE value of −298.28 when compared to the other
twomutant complexes.This result signifies better conjugation
of inhibitor to the binding pocket of the receptor. Mutant
F1174L complex exhibited the least binding affinity towards
crizotinib, which was confirmed by the docking score of 5432
and ACE value of −144.17. These results were in concordance
with the results obtained from AutoDock.
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Table 3: Interactions of ALK native and mutant models with Crizotinib. AutoDock binding energy, nature of interaction, and participating
residues are listed. Distance between drug atoms and residues involved in hydrogen bond is noted.

Protein model Binding energy Hydrogen bonding Hydrophobic residues
(Kcal/mol) Residue Distance (Å)

Native
−9.21 Q 1197 2.80 Q 1146, 1196, A 1148, T 1258, L 1198, L L 1256,

G 1202, A 1200.M 1199 1.97

F1174L −7.34 Q 1197 3.07 L 1122, A 1148, M 1196, M 1199, A 1200, G 1201,
G 1202, R 1253, L 1256.

R1275Q −8.07 M 1199 3.01
L 1122, A1148, Q 1197, L 1196, Q 1197 L 1198, A
1200, G 1202, L 1256, R 1253, D 1203, N 1254, D

1270, L 1150.

Table 4: Docking results of ALK with crizotinib using Patchdock.

RET Score ACE
Native 6894 −298.28
F1174L 5432 −144.17
R1275Q 5790 −176.08

3.4. Simulation Study of Native and Mutant Complexes. The
results obtained from the above docking analysis provoked
us to explore the dynamic behaviour of native and mutant
complexes. We analysed the root mean square deviation
(RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg), solvent accessible surface area (SASA), number
of hydrogen bonds (NH), and secondary structure variation
between the native and mutant (F1174L and R1275Q) com-
plexes. Three independent simulations were carried out for
the native and mutant complexes for a total of simulation
time. We found that no significant drift occurred in amino
acid trajectories initiated from the native and mutant com-
plexes of three independent MD simulations. For all three
simulations, the protein structures could be aligned with C𝛼-
RMSD below 3.2 Å (Figure S1). Indeed, native and mutant
R1275Q complexes tend to reach a steady equilibrium, while
RMSD of the mutant complex F1174L was noticeably high.
Mutant complex F1174L remained distinguished throughout
the simulation resulting in maximum backbone RMSD of
∼0.41 nm. This difference in the deviation range explains
the change in stability of the mutant protein, which in
turn reflects the impact of substituted amino acid in the
protein structure.Themagnitude of fluctuation together with
a small deviation in average RMSD after the relaxation period
leads to the conclusion that the simulation produced stable
trajectory, thus providing a suitable basis for further analysis
(Figure 3(a)). As well as change in conformation, flexibility
of the structure can be altered by mutations. We calculated
the C𝛼-RMSF to measure overall flexibility of the native
and mutant complexes. Mutant F1174L complex shows a
conformational change in the protein structure (as indicated
in backbone RMSD) with increase in the C𝛼-RMSF being
also observed. This suggests that F1174L mutation affects the
binding of crizotinib and makes the backbone more flexible
to move. It is to be noticed that R1275Q mutation affects
the neighbouring residues at the maximum of ∼0.46 nm
fluctuation indicating a gain of flexibility due to mutation

(Figure 3(b)). Furthermore, the flexibility of mutant R1275Q
was found to be in consistent with the native ALK. This
might be due to the restriction caused by the surrounding
residues in the active site of protein due to mutation in ALK
protein. Overall, results suggest that there exists a significant
change of structural deviation in the mutant complex F1174L
when compared to the native. Tomeasure the compactness of
the hydrophobic core, solvent-accessible surface area (SASA)
was monitored throughout all simulations. Both the mutant
complexes indicate greater values of SASA (∼87 nm2) with
time when compared to the native protein (Figure 3(c)). A
major contributor to the increased exposure was the loss of
hydrophobic contacts between the residues activation loop
and C𝛼 helix. The radius of gyration (Rg) is defined as the
mass weighted root mean square distance of atoms from
their centre of mass. The competence, shape, and folding
of the overall ALK structure at different time points during
the trajectory can be seen in the plot of Rg (Figure 3(d)).
During the first 5 ns, native and both the mutant complexes
exhibited a similar pattern of Rg value, after which mutant
complex F1174L showed a higher deviation with Rg score of
∼2 nm. Despite the fact that mutant complex F1174L showed
deviation from its starting conformation, both the mutants
F1174L and R1275Q plateau around towards the end of the
simulation.The number of NH bonds formed between crizo-
tinib and protein models (native and mutant) during theMD
simulation was also calculated (Figures 4(a), 4(b), and 4(c)).
From our analysis, it is well revealed that native complex
forms more number of NH bond with crizotinib with an
average of ∼3NH bonds (Figure 4(c)), while the mutant
complex F1174L exhibited less number of intermolecular NH
bonds of an average of ∼1-2 (Figures 4(a) and 4(c)). More
intermolecular NH bonds in the native complex structure
might help to maintain its rigidity while less tendency of
the mutant involved in participating in hydrogen bonding
with solvent makes it more flexible. Additional information
on flexibility of ALK mutation was obtained by the analysis
of the time-course of change in the secondary structures
of native, F1174L, and R1275Q complexes during 20 ns MD
simulations using the DSSP program (Figure 5). The native
complex was stable over the 20 ns simulation and tends to
have a conserved secondary structure during the simulation
(Figure 5(a)), whereas the F1174L and R1275Q complexes
showed subtle conformational fluctuations during the 20 ns
simulation. Intermediate helix 3 (residue 1160–1173) of the
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Table 5: Calculated mean values for various properties, their
standard deviations, and the differences between the mean values
of native type and mutated ALK.

System Mean Standard
deviation

Difference
(Native-Mutant)

RMSD
Native 0.244 0.01
F1174L 0.33 0.08 0.086
R1275Q 0.285 0.03 0.041

RMSF
Native 0.14 0.04
F1174L 0.23 0.10 0.09
R1275Q 0.18 0.06 0.04

RG
Native 1.90 0.180
F1174L 1.96 0.193 0.06
R1275Q 1.93 0.189 0.03

SASA
Native 76.2 1.42
F1174L 82.9 1.91 6.7
R1275Q 81.8 1.86 5.6

native complex is disrupted (Figure 5(a)), and formation
of the coil is observed in F1174L, and R1275Q complexes
(Figures 5(b) and 5(c)). Rearrangements of secondary struc-
tural elements were observed between the residues (1264–
1284), where turns and strands were lost, and additional
helixes were formed in the structure. The C-terminal region
of the protein becomes highly distorted due to the loss of C-
terminal helix. To check the reliability of the simulations, we
compared the noise in simulation data with the difference
between native and mutant complex values. Table 5 includes
the mean values of the measured properties, their standard
deviations, and the differences between the mean values of
those properties in the native and mutant complexes. Table 5
results indicate the differences between the mean values
which are substantially greater than the standard deviation.
This suggests that the observed change in ALK-crizotinib due
to mutations is more reliable.

3.5. Principal Component Analysis. Eigen vectors with the
largest associated eigenvalues define the essential subspace
in which most of the protein dynamics occurs. On these
projections, we can visualize the cluster of stable states.
Two features are very apparent from these plots. Firstly the
clusters are well defined in native than mutant complexes.
Secondly, both the mutant complexes cover a larger region
of phase space particularly along PC1 plane compared to that
covered by native complex (Figure 6). Overall flexibility of
the protein complexes was further examined by the trace
of the diagonalized covariance matrix of the C𝛼 atomic
positional fluctuations. Trace of the covariance matrix value
of 11.395 nm2 was observed for the native complex and higher
value of 18.259 nm2 and 13.942 was observed in ALK F1174L

Table 6: Predication of various phosphorylations and glycosylations
sited in ALK.

Phosphorylation Glycosylation
NetPhos 2.0 GPS 2.0 Net N Glyc NetOglyc

Serine Threonine Tyrosine Tyrosine Arginine Threonine
31 505 240 90 169 1026
45 573 276 1059 244 1446
53 674 406 1278 324 1447
76 686 635 1282 411 1457
109 917 705 1283 445
114 1151 734 563
131 1307 772 571
196 1363 1078 709
205 1447 1092 808
211 1512 1096 863
225 1547 1507 864
226 1607 1604 886

986
1115
1504

Amino acid positions highlighted in bold were found to be experimentally
verified.

and ALK R1275Q mutant complexes. It is clear that mutant
complex ALK F1174L behaved entirely in a different manner
with trace of the covariance matrix value of 18.259 nm2 when
compared to other protein complexes. This confirms the
overall increased flexibility of mutant as compared to the
native protein complex at 300K.

3.6. Prediction of Posttranslational Modification Site. The
prediction of posttranslational modifications sites in human
ALK is presented in Table 6. These results show a high
glycosylation and phosphorylation potential in human ALK.
GPS 2.1 and NetPhos 2.0 predicted 41 sites where phospho-
rylation can occur. Similarly, analysis of glycosylation sites
using NetNGlyc and NetOglyc predicted arginine residue
at 15 different sites involved in N-linked glycosylation, and
4 threonine residues involved in O-linked glycosylation
sites. From the predicted results, three phosphorylation sites
at positions T1078, T1092, and T1604 were experimentally
verified [55].

4. Discussion

Analyzing the effects of nsSNP derived from the disease on
the functional property of a gene is advantageous to elucidate
the most important function towards the pathogenesis. A
detailed experimental analysis on the effect of nsSNPs in bio-
logical function is a daunting task. It is often time consuming
and laborious to study the molecular basis of diseases like
cancers, especially in cases where the number of mutations
is very high. By contrast, detailed and useful information
regarding the effect of nsSNP on protein structure and
function can be readily obtained by in silico methods [2,
4]. Prioritizing the most interesting and likely pathogenic
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Figure 3: Analysis of RMSD, RMSF, Rg, and SASA of native andmutant ALK-crizotinib complex at 20000 ps. (a) Time evolution of backbone
RMSDs of the native and mutant structures. (b) RMSF of the carbon alpha over the entire simulation. The ordinate is RMSF (nm), and the
abscissa is residue. (c) Rg of the protein backbone over the entire simulation. The ordinate is Rg (nm), and the abscissa is residue. (d) The
ordinate is SASA (nm2), and the abscissa is time (ns). The symbol coding scheme is as follows: native (green colour), mutant F1174L (red
colour), and R1275Q (blue colour).

cases for further experimental analysis is another important
application of the tested prediction methods. These methods
make their prediction based on protein sequence and/or
structural information as well as physiochemical property of
amino acid for phenotype prediction. Especially integrating
SNP information with protein 3D structure forms the basis
of individual variability in drug response [11]. As a result,
great strides have been attempted in understanding the struc-
tural details governing drug target interactions for recently
approved therapeutics agents. Crystallographic studies con-
vincingly demonstrate the important role of nsSNPs in pro-
tein flexibility and their efficacy for ligand binding. Expense
and the extensive labor required to generate them have led
to seek computational methods which can predict protein
motions. Molecular dynamics simulation analysis developed
in the late 1970s [56] seeks to overcome this limitation by
using simple approximations based on Newtonian physics to

simulate atomic motions, thus reducing the computational
complexity. Previous studies have employed the structural
information along with molecular dynamics to predict the
impact of mutations in proteins [57–61] and protein drug
complexes [62–66]. Indeed, quite numbers of studies have
shown good concordance between computational and exper-
imental measurements of macromolecular dynamics [57–
59]. With constant improvements in both computer power
and algorithm design, the attempts to identify the genetic
determinants of different drug responses across a population
to allow for the development of “individualized therapy”
are promising; molecular dynamics simulations are likely
to play an increasingly important role in the development
of novel pharmacological therapeutics. Thus, we can expect
that MD simulation would provide more reliable structural
information on ALKmutations.
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Figure 4: Analysis of intermolecular NH bond of native andmutant ALK-crizotinib complex at 20000 ps. Average number of intermolecular
hydrogen bonds in native and mutant versus time. (a) Native, (b) mutant F1174L, and (c) mutant R1275Q.

Application of in silicomethods with different algorithms
in pathogenicity or stability prediction is always debat-
able because of the discrepancy in their prediction scores
even when analyzing the same variant. Therefore, no single
method could be considered as the best and accurate for
prediction of a functional SNP. Hence, a combination of
methods based on evolutionary information and protein

structure and/or functional parameters was used in order to
increase the prediction accuracy. We utilized the experience
gained by various groups to examine the effects of mutations
and applicability of different in silico methods [67–72]. Our
study gained significance by identifying the level of structural
conformations changes with respect to the incorporation of
deleterious mutations in ALK protein. By comparing the
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Figure 5: Time evolution of the secondary structural elements of the protein at 300 k (DSSP classification). (a) Native, (b) mutant F1174, and
(c) mutant R1275Q.

results of all the in silico prediction tools used in our study,
two nsSNPs with positions F1174L and R1275Q were found
to be highly deleterious. Our findings also revealed that the
incorporation of different algorithms often serves as powerful
tools for prioritizing candidate functional nsSNPs. Native-
type phenylalanine 1174 lies at the C terminus �́� helix and its
side chain contributes to the small well-packed hydrophobic
core between �́�C and the activation loop. The reduction in
the size of the phenylalanine 1174 side chain will disturb the
packing, which may affect the structural integrity of ALK
tyrosine kinase domain. From the crystal structure, it is clear
that phenylalanine 1174 also interacts with phenylalanine
1271 which forms a crucial part of DGF motif, the aspartate
1270 which is involved in the ATP binding pocket. Also,

native-type residue forms salt bridge with glutamine 1160 and
aspartate 1276. Replacing 1174 with mutant leucine residue,
which is smaller, will create structural restraints thereby
affecting the ALK stability. The R1275 side chain contributes
to direct interaction between activation loop helix and the
�́�C helix, stabilizing the active conformation of active ALK
tyrosine kinase domain conformation. Mutation R1275 with
glutamine will disturb the activation loop thereby affecting
the stability of protein. Mutant glutamine is smaller than
native arginine, which may cause an empty space in the
core of the protein. It would be speculative, yet interesting,
to study the protein drug interaction and explicit solvent
behavior of proteinmodels in order to examine the difference
in stability and dynamics behavior of native and mutant



12 BioMed Research International

2D projection of trajectory

Pr
oj

ec
tio

n 
on

 ei
ge

nv
ec

to
r2

(n
m

)

Projection on eigenvector 1 (nm)

4

2

0

−2

−4

−6 −4 −2 0 2 4 6

Figure 6: Projection of the motion of the protein in phase space
along the first two principal eigenvectors at 300K.Native type (green
colour) versus F1174L (red colour) versus R1275Q (blue colour).

models. From docking analysis of ALK with crizotinib, it is
well revealed that both the mutations perturbed the binding
pocket quite significantly. The most notable change was seen
in F1174L mutation which was well supported by an increase
in binding energy and loss of hydrogen bond interaction
with the neighboring protein when compared to the native
protein. Many studies have mapped correlated motions and
their perturbations due to mutation or ligand binding onto
structures to link structural and thermodynamic changes
[57, 65, 66]. In our study, a clear understanding of stability
loss was seen in the RMSF, RMSD, SASA, and Rg plot which
were also accompanied by less number of intermolecular
NH bonds for F1174L when compared to native ALK and
mutant R1275Q. Less intermolecular NH bonds in F1174L
mutant structure might help to lose its rigidity and makes
it more flexible. Further, from our PCA study it is clear that
the mutant model F1174L has higher overall flexibility when
compared to the native protein. This deviation might be due
to disruption of secondary structure, which in turn affects
the protein folding thereby decreasing the stability of protein.
Therefore, we would suggest that F1174L mutation would
have a great impact on protein function which was in good
concordance with the results obtained by Mossé et al. [26].
We expect that the results from the current computational
approach on ALK with suitable validation in near future will
aid in understanding the effect of individual drug response
and also has the capability to create personalized tools for the
rapid diagnosis, prognosis and treatment of diseases.
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