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A B S T R A C T

Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying ther-
apeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information
of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure
and diffusion MRI), combined with high-throughput brain phenotyping—morphometry and structural con-
nectomics—and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia
clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive im-
pairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic
models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our
machine learning models trained on the morphometric and connectome estimates (number of fea-
tures= 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/
MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyper-
intensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or su-
perior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker
model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-
2 (n=60), the morphometry model showed similar performance with 69% accuracy compared with CSF bio-
marker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI,
FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classi-
fying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with
machine learning.

1. Introduction

There is an urgent, unmet need for clinically useful biomarkers of
risk for Alzheimer's disease (AD) based on non-invasive and affordable

measures suited for routine examination of individuals with subthres-
hold symptoms. Studies have focused on brain MRI-derived markers.
Cortical thinning and reduced hippocampal volumes based on struc-
tural MRI are known for markers for AD, but these structural estimates
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alone are insufficient for implementation at clinical settings because of
insufficient accuracy and generalizability (Teipel et al., 2015).
It is conceptualized that biomarkers of Aβ deposition or neurofi-

billary tangles become abnormal early, and then markers of neuronal
neurodegeneration or dysfunction show abnormality later in AD. These
markers of neurodegeneration, rather than those of Aβ or Tau protei-
nopathy, appear directly related to cognitive symptoms (Jack Jr. et al.,
2010). Neurobiology of AD relates to axonal and neuronal degeneration
followed by fibrillar lesions triggered by amyloid precursor protein-
initiated death-receptor mechanism and activation of tau (Holtzman
et al., 2011; Nikolaev et al., 2009). Initial axonal degeneration may lead
to grey matter tissue changes and finally to neuronal loss or atrophy
resulting in cognitive and functional impairment. Since diffusion MRI
uses water molecules as an endogenous tracer to probe tissue micro-
structure or properties (Beaulieu, 2002), it can detect subtle changes in
microstructure tissue properties in AD. Previous studies have shown
that decreased white matter integrity is associated with AD (Acosta-
Cabronero et al., 2010; Douaud et al., 2011; Zhang et al., 2009).
A potentially powerful application of diffusion MRI to AD research

is assessing axonal white matter tracts using tractography.
Tractography is a computational estimation of white matter tracts using
biophysical modeling of fiber orientations (Johansen-Berg and Behrens,
2006; Seehaus et al., 2013). Recent advances in computational methods
have enabled more rigorous estimation of white matter tracts
(Azadbakht et al., 2015; Ciccarelli et al., 2008; Shi and Toga, 2017;
Sporns, 2011). In AD, human imaging of APP and tau shows widespread
topography. Given this, when tractography is applied at the con-
nectome level, the resultant structural connectome estimates could be
useful for assessing axonal or white matter abnormalities across the
entire connectome. A few studies using tractography at the connectome
level have noted abnormal topological organization of structural con-
nectome in AD (Dai and He, 2014; Lo et al., 2010). However, it remains
untested whether and to what extent the structural connectomes carry
additional information that structural MRI and morphometry do not
present.
In this study, we addressed this issue using rigorous, data-driven

machine learning techniques in two independent datasets of moderate
sample sizes (211 elders for the first dataset [Korean National Health

Insurance Service Ilsan Hospital, South Korea] and 179 elders for the
second, generalizability dataset [ADNI-2]). In both data, using multi-
modal brain MRI (structural and diffusion MRI), we performed high-
throughput brain phenotyping, including automated morphometry and
white matter structural connectomics (probabilistic tractography) to
generate large-scale multi-modal, multi-parametric imaging-derived
phenotypes used as features in machine learning. A well-established,
rigorous analysis pipeline was applied to diffusion MRI to estimate
robust, individualized structure connectomes. We compared data-
driven machine learning classifiers trained on the individualized brain
connectome and morphometric estimates with benchmark models
(white matter hyperintensity) for the first Korean data and CSF bio-
markers for the second reproducibility ADNI-2 data) using derived
metrics.

2. Materials and methods

2.1. Participants

For the NHIS-IH Cohort, we used data from 211 seniors who visited
the dementia clinic at National Health Insurance Service Ilsan Hospital
(NHIS-IH), Goyang, South Korea from 2010 to 2015. This sample is a
randomly selected subset of the Ilsan Dementia Cohort, a retrospective
clinical cohort. Neurologists made a diagnosis based on possible AD and
Peterson's MCI criteria (Petersen, 2004), clinical history, a full battery
of neuropsychological evaluations (Seoul neuropsychological screening
battery) and MMSE (Mini-Mental State Examination). Those with vas-
cular changes were not excluded from the study as long as they had a
diagnosis of AD or MCI. Diagnosis is based on MMSE, CDR, and the
neuropsychological evaluations. Distinction between MCI and SMC was
based on the full battery of the neuropsychological evaluation (Seoul
Neuropsychological Screening Battery-Dementia Version)(Ahn et al.,
2010). To meet the diagnosis of MCI, an individual must show a neu-
ropsychological score 1 SD below the normal range at least one of the
nine domains of the full battery. Thus, all individuals with SMC show
neuropsychological scores within the normal range; they are thus
cognitively normal. Those with AD as a primary diagnosis and with
small vessel disease were noted as “AD with small vessel disease”.

Table 1
Participant dmographics.

NHIS-IH Cohort

AD
(N=110)

MCI
(N=62)

SMC
(N=36)

Test Statistics P value

Age,Mean (SD) 79.95 (6.61) 71.42 (8.62) 72.25 (6.99) F=32.72 P < 0.001

Sex
Female 74 38 32 χ2= 8.56 P=0.014
Male 36 24 4
Education 6.7 (5.2) 9.8 (4.6) 7.6 (4.9) F=6.541 P=0.011
MMSE 18.1 (0.53) 25.1 (0.36) 26.3 (0.37) F=151.9 P < 0.001
CDR 1.03 (0.57) 0.54 (0.13) 0.50 (0.11) F=79.38 P < 0.001

ADNI-2 Cohort

AD
(N=48)

MCI
(N=60)

HC
(N=71)

Test Statistics P value

Age,Mean (SD) 74.96 (8.59) 72.57 (6.62) 72.55 (5.66) F=3.11 P=0.08

Sex
Female 20 20 43 χ2=10.28 P=0.006
Male 28 40 28
Education 15.31 (2.87) 16.08 (2.68) 16.28 s(2.72) F=6.541 P=0.07
CDR 0.82 (0.24) 0.50 (0.00) 0 F=663.1 P < 0.001

NHIS-IH, National Health Insurance Service Ilsan Hospital; SD, standard deviation; MMSE, Mini Mental State Examination; CDR, the clinical Dementia Rating;
ADNI-2, Alzheimer's disease neuroimaging Initiative.
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Participants included 110 with the diagnosis of Alzheimer's disease
(AD; median age=82; interquartile intervals (Q3-Q1)=85–77), 64
with mild cognitive impairment (MCI; median age= 73; Q3-
Q1=77–66), and 37 subjective memory complaints (SMC; median
age= 74; Q3-Q1=78–72) (Table 1). To test the generalizability of our
approach, we also used structural and diffusion MRI from ADNI-2
(Alzheimer's Disease Neuroimaging Initiative). Demographical in-
formation is provided in Table 1. The institutional review board ap-
proved this study.

2.2. MRI acquisition

National Health Insurance Service Ilsan Hospital (NHIS-IH): We
collected the following multimodal MRI from all participants: T1-
MPRAGE: TE, 4.6 ms; matrix, 310× 480× 480; voxel size,
0.5× 0.5×0.5mm. T2-FLAIR; matrix= 320×240×240; voxel
size= 0.56×1.04×1.04. Diffusion MRI: matrix= 112×112×70;
voxel size= 1.9× 1.9× 2.0mm; the series included one image ac-
quired without diffusion weighting and with diffusion weighting along
40 non-collinear directions (b= 600 s/m−2). ADNI-2: T1-weighted
anatomical MRI and diffusion MRI. T1-MPRAGE: TE, min full echo;
matrix, 208× 240× 256; voxel size, 1× 1×1mm. Diffusion MRI:
matrix= 256×256×46; voxel size= 1.36× 1.36× 2.7mm; the
series included 5 image acquired without diffusion weighting and with
diffusion weighting along 41 non-collinear directions (b=1000 s/
m−2).

2.3. MRI analysis-structural MRI

The high-throughput computational analysis was conducted. First,
we estimated morphometric estimates using the Freesurfer image ana-
lysis pipeline (Fischl, 2012) (v6.0) based on T1 and T2-FLAIR images.
Morphometric measures (N=948 per subject) include volumes of the
hippocampal subdivisions, and thickness, surface area, and volume of
cortical/subcortical regions using two different atlases available in
Freesurfer (Desikan-Killiany atlas and Destrieux atlas). The technical
details of these procedures are described in previous studies (Desikan
et al., 2006; Destrieux et al., 2010; Fischl and Dale, 2000; Fischl et al.,
1999). In brief, the image processing includes motion correction, re-
moval of non-brain tissue, Talairach transformation, segmentation, in-
tensity normalization, tessellation of the grey matter-white matter
boundary, topology correction, and surface deformation. Deformation
procedures use both intensity and continuity information to produce
representations of cortical thickness. The maps produced are not re-
stricted to the voxel resolution and are thus capable of detecting sub-
millimeter differences between groups.

2.4. MRI analysis-diffusion MRI

We estimated the structurals connectome from structural and dif-
fusion MRI. Structural MRI was used to define seed and target nodes of
the connectome in each brain. We used the diffusion MRI analysis pi-
peline, MRtrix 3 (Tournier et al., 2004). The connectome measures
(33,698 features per subject) include counts of streamlines, a surrogate
measure of structural connectivity (Cha et al., 2015; Cha et al., 2017;
Cha et al., 2016), and mean length of streamlines given any two brain
regions based on multiple atlases. Diffusion-weighted magnetic re-
sonance imaging (DWI) was preprocessed using the following pipeline
in MRtrix 3. DWI was first denoised using a novel algorithm based on
random matrix theory that permits data-driven, non-arbitrary threshold
for Principal Component Analysis denoising; this method enhances the
DWI quality for quantitative and statistical interpretation (Veraart
et al., 2016). Denoised images then underwent eddy current and motion
correction (Andersson and Sotiropoulos, 2016), brain extraction from
three non-diffusion-weighted images (taking their median), and bias
field correction using N4 algorithm (N4ITK), an improved N3 method,

in Advanced Normalization Tools (Tustison et al., 2010). We then es-
timated fiber orientation distributions from each preprocessed image
using 2nd-order integration over fiber orientation distributions
(iFOD2). Based on the FODs, probabilistic tractography was performed
using constrained spherical devolution (CSD). We used a target
streamline count of 10 million across the whole brain. The tractograms
were filtered using spherical-deconvolution informed filtering of trac-
tograms (SIFT) with a target streamline count of 3 million. This method
permits mapping to streamline estimation back to individual's DWI and
updating a reconstruction to improve model fit. It renders the stream-
line counts connecting two brain regions proportional to the total cross-
sectional area of the white matter fibers connecting those regions, thus
enhancing streamline counts as a biologically plausible quantity, re-
presenting “structural connectivity”. Finally, from the filtered tracto-
grams, we generated a connectivity matrix in each participant using
brain parcellation and segmentation obtained from structural MRI from
the same person. In this way, our structural connectome estimates re-
flect individualized connectomes. We used two different atlases in
Freesurfer (Desikan-Killiany atlas (Desikan et al., 2006) and Destrieux
atlas (Destrieux et al., 2010). We used streamline counts as the primary
connectivity metric in this study as in a recent human infant imaging
study (van den Heuvel et al., 2015b), as well mean length as secondary
measures. A prior macaque study suggests the validity of streamline
counts as an indicator of fiber connection strength, with the number of
streamlines significantly correlating with tract-tracing strength in the
macaque brain (van den Heuvel et al., 2015a).

2.5. Machine learning classification

Given our goal to compare the classifiers trained on the distinct
multimodal brain phenotypes,rather than to find a novel machine
learning algorithm, we used the following three standard algorithms
that have been extensively used in the literature(Abraham et al., 2014;
Dimitriadis et al., 2018; Pellegrini et al., 2018): random forest, logistic
regression (LR) with L1 and L2 regularization, and support vector
machine (SVM) with a linear kernel. Also, given the majority of the
prior machine learning classification studies in the AD literature are
based on binary classification (Pellegrini et al., 2018), we chose binary
classification for better comparison. Machine learning models were
trained and cross-validated within each dataset separately. As a
common preprocessing step for machine learning estimators, we stan-
dardized the imaging derived phenotypes by removing the median and
scaling them according to the quantile range (i.e., between the 1st and
the 3rd quartile); this method is known to be robust to outliers. Model
training and validation were done using nested cross-validation to
avoid overfitting due to bias to training data (Cawley and Talbot, 2010;
Varoquaux et al., 2017). Nested cross-validation uses a series of train/
validation/test set splits: In the inner loop, we trained the model and
selected a set of hyperparameters using the training set, then optimized
the model with validation set; In the outer loop, we estimated gen-
eralization error of the underlying model using test sets. For feature
selection, we used the ‘forests of randomized trees’ method, an en-
semble method to combine the predictions of base estimators built with
a learning algorithm, and then tested whether additional PCA-based
dimensionality reduction improved the model or not. For hyper-para-
meter optimization, we used the grid search method, varying C para-
meter for SVM and LR classifier, and varying the number of estimators
and the minimum samples per leaf for random forest classifier. To
measure model performance, we used accuracy, sensitivity, specificity,
F1 score, and area under the curve (AUC) in receiver operating char-
acteristic (ROC). In diagnostic classification, we tested six different one-
versus-one binary classifications, AD (coded as 1) vs. SMC (coded as 0),
AD vs. MCI, MCI vs. SMC, AD only vs. AD with small vessel diseases, AD
only vs. MCI, AD only vs. SMC. All the ML analyses were done using
scikit-learn, a python library for machine learning (Abraham et al.,
2014).
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2.6. Benchmark models

We used existing biomarkers as benchmark models. First, white
matter hyperintensity in the Korean NHIS-IH cohort, and CSF bio-
markers in the ADNI-2 cohort. White matter hyperintensity measures
were estimated from T2-weighted FLAIR images using Wisconsin White
Matter Hyperintensities Segmentation Toolbox (Ithapu et al., 2014).
This method uses supervised machine learning methods to segment
hyperintense regions and generates normalized effective white matter
hyperintensity volume. Second, in ADNI-2 data, we used CSF bio-
markers (phosphorylated tau, total tau, AB, ratio of phosphorylated
tau/AB, ratio of total tau/AB), whose utility as biomarkers for diagnosis
of AD (Olsson et al., 2016), MCI, and progression to AD from MCI
(Hansson et al., 2006) has been studied. Furthermore, CSF biomarkers
are reported to precede symptom onset of MCI (Moghekar et al., 2013).

3. Results

3.1. Classification of AD and MCI

In the NHIS-IH Cohort, we tested machine learning classification
using the white matter structural connectomes and morphometric es-
timates in 211 elders at the dementia clinic at the Korean National
Health Insurance Service Ilsan Hospital. Age and sex alone showed
moderate accuracies: AD/SMC: accuracy= 0.77; MCI/SMC: accu-
racy=0.63; AD/MCI: accuracy=0.72. White matter hyperintensity
(WMH) served as a benchmark model, for it has been widely tested in
the literature.
In classification of AD vs. SMC, optimal classification performance

was shown in “morphometry+connectome” model (accuracy= 0.97,
95% CI=0.95–0.98) and “connectome” model (accuracy= 0.97, 95%
CI=0.96–0.98) (Table 2; Fig. 1A). These two models outperformed
“morphometry” (accuracy=0.87, 95% CI= 0.85–0.88) and WMH
benchmark models (accuracy=0.73, 95% CI=0.71–0.75). In classi-
fication of MCI vs. SMC, similar classification performance was ob-
served in “morphometry+connectome” (accuracy=0.82, 95%
CI=0.80–0.85) and “connectome” models (accuracy= 0.83, 95%
CI=0.81–0.85), compared with lower performance of “morphometry”
(accuracy=0.59, 95% CI= 0.57–0.60) and the WMH benchmark

models (accuracy= 0.57, 95% CI= 0.54–0.60). In classification of AD
vs. MCI, “morphometry+connectome” models showed a best accuracy
(accuracy=0.97, 95% CI=0.96–0.98), followed by “connectome”
model (accuracy=0.96, 95% CI=0.95–0.97), “morphometry” model
(accuracy=0.83, 95% CI=0.80–0.86), and the WMH benchmark
models (accuracy=0.66, 95% CI=0.64–0.69). Throughout all the
classifications, connectomes and morphometry showed greater diag-
nostic accuracies compared with the WMH benchmark.

3.2. Testing generalizability

We next tested the generalizability of the same multimodal brain
imaging-based machine learnings using ADNI-2 data. We included
participants in ADNI-2 data whose structural and diffusion MRI (base-
line) were collected. To compare the performance of our classifiers, we
used the invasive CSF biomarkers (p-tau, t-tau, Aβ42, p-tau/ Aβ42, t-
tau/ Aβ42) as a benchmark model. In classifying AD vs. HC, all the
MRI-based models showed similarly optimal performance around 0.88
accuracy (Table 2; Fig. 1B), outperforming the CSF benchmark model
(accuracy=0.75, 95% CI= 0.73–0.77). In classifying MCI vs. HC, all
the MRI-based models showed similar performance with accuracies
ranging from 0.64–0.67, outperforming the CSF benchmark (accu-
racy= 0.62, 95% CI=0.59–0.65). In classifying AD vs. MCI, all the
MRI-based models showed similar performance with accuracy ranging
from 0.66–0.71, outperforming the CSF benchmark (accuracy=0.54,
95% CI= 0.52–0.57) which is barely above chance. These results
showed, firstly, morphometry and connectome estimates manifested
equally good performance, and consistently exceeded the invasive CSF
biomarkers in classifying AD/MCI/HC; secondly, unlike the NHIS-IH
results, synergistic effects of combined morphometry and connectomes
were not observed using the same machine learning framework.

3.3. Testing utility for prognosis

Of the ADNI-2 data, we further tested the utility of our approach in
predicting the disease trajectory. Data from 60 elders were used, whose
baseline diagnosis was MCI and who were followed for at least two
years. Machine learning models trained on the same five CSF bench-
marks were used as a benchmark. In predicting progression from MCI to

Table 2
AUC performances of machine learning classifier using structural connectomes, morphometric brain features, and benchmarks.

NHIS-IH Cohort

AD
vs
SMC

MCI
vs
SMC

AD
vs
MCI

Morphosmetry
+ Connectome

0.99(0.99–1.00) ♠ 0.90(0.87–0.92) ♠ 0.99(0.98–1.00)♠

Connectome only 0.99(0.99–1.00) ♠ 0.90(0.88–0.92) ♠ 0.99(0.99–1.00) ♠
Morphometry only 0.88(0.86–0.90) 0.48(0.45–0.50) 0.85(0.82–0.88)
Benchmark only

(White Matter Hyperintensity)
0.67(0.64–0.70) 0.45(0.42–0.49) 0.61(0.57–0.64)

ADNI-2 Cohort
AD
vs
HC

MCI
vs
HC

AD
vs
MCI

Morphometry
+ Connectome

0.96(0.94–0.97) 0.70(0.67–0.73) 0.75(0.72–0.78)

Connectome only 0.95(0.94–0.96) 0.72(0.69–0.75)♠ 0.75(0.73–0.78)
Morphometry only 0.97(0.96–0.98)♠ 0.71(0.67–0.74) 0.79(0.76–0.81)♠
Benchmark only

(CSF Biomarkers)
0.79(0.77–0.82) 0.65(0.62–0.68) 0.56(0.53–0.59)

AUC, area under curve; NHIS-IH, National Health Insurance Service Ilsan Hospital; ADNI-2, Alzheimer's Disease Neuroimaging Initiative 2; SMC, subjective memory
complaints; MCI, mild cognitive impairment; AD, Alzheimer's disease; HC, healthy control. *All results show mean and standard deviation as mean and 95%
confidence interval in this table. ♠ indicates the best models for this classification. For all three classifications, random forest performed as the best classifier,
therefore, we only put random forest classifier performance results into this table.
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AD, “morphometry” model showed a highest accuracy (accu-
racy=0.69, 95% CI=0.65–0.73) among MRI-based models, similar to
the CSF benchmark model (accuracy= 0.70, 95% CI= 0.66–0.75).
(Table 3, Fig. 2). “Connectome” model showed a lower, but statistically
meaningful accuracy (accuracy=0.57, 95% CI=0.53–0.61). Com-
bining the two modalities of morphometry and connectomes (“mor-
phometry+connectome”) did not improve the prognosis accuracy
(accuracy=0.59, 95% CI=0.56–0.62), compared with “morpho-
metry” model.

4. Discussion

In this study, we used large-scale MRI-derived brain phenotypes
(morphometry and white matter structural connectomes) with machine
learning techniques to test AD and MCI diagnosis in two independent
Alzheimer's disease datasets. We also predicted disease progression to
AD from MCI. For high-throughput imaging analysis, we used a well-
established automated pipeline for morphometry and a pipeline to es-
timate rigorously individualized white matter structural connectomes.
Firstly, the models trained on morphometry and connectomes showed

Fig. 1. Classification of baseline diagnosis using connectomes and morphometric estimates. Panel (A), classification performances in the NHIS-IH Cohort (Korean
National Health Insurance Ilsan Hospital data). It showed higher diagnostic accuracy (area under the curve of the receiver-operator characteristics or AUC ROC) of
the machine learning model trained on the connectome and morphometric estimates, compared with the benchmark model trained on white matter hyperintensity.
Out of the three machine learning algorithms (random forest, support vector machine, and logistic regression), results from the best models are shown. Panel (B),
classification performances in the ADNI-2 Cohort. It showed the reproducible results of diagnostic accuracy of connectomes and morphometry. The combined models
show better performance in predicting AD from healthy controls and AD from MCI, and similar in predicting MCI from HC. Results from the best machine learning
algorithms are shown. Compared with the NHIS-IH Cohort, the reproducibility data shows less diagnostic accuracy presumably due to multiple sites and stricter
inclusion and exclusion criteria in ADNI than in the NHIS-IH study. WMH, white matter hyperintensity; Demo, demographics including sex, age, and education.
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the best accuracy in classifying AD, MCI, and SMC or HC in the single-
site data (ranging from 90% to 99% in AUC ROC; NHIS-IH, South
Korea) as well as the multi-site (ranging from 70% to 97% in AUC ROC;
ADNI-2, USA) “reproducibility” data. The models outperformed the
benchmark models significantly (e.g., white matter hyperintensity or
CSF biomarkers) and demographic model (including age, sex, and
education). Second, the model trained on connectome or morphometric
estimates showed moderate accuracies (ranging from 57% to 79%;
AUC) in predicting progression to AD in 60 elders with MCI in ADNI-2
data. These results show the utility of white matter structural con-
nectomes in addition to morphometry in detecting the abnormal brain
aging process in AD pathology.
A novel aspect of this study is to assess the utility of the dMRI-based

white matter structural connectomes in predictive modeling of AD in a

sufficiently large sample (n=211) and to validate it in an independent
cohort (n=179). In the NHIS-IH data, the “connectome” model and
“connectome and morphometry” model similarly show the optimal
classification of AD or MCI, outperforming the benchmark model of
white matter hyperintensity. Likewise, in the ADNI-2 generalizability
data, both “connectome” and “connectome and morphometry” models
show optimal classification accuracy, outperforming the CSF bench-
mark model. This finding is in line with the literature showing the as-
sociations of structural connectomes with potential AD pathology (e.g.,
topological disturbance based on graph theory) (Pereira et al., 2017)
and with healthy aging (Perry et al., 2015). Also, prior studies show the
potential utility of connectome estimates in predicting risk for AD, but
with a caveat of limited samples sizes (n < 30 (Wee et al., 2012; Zhu
et al., 2014)). Our study thus further demonstrate the potential prac-
tical utility and generalizability of the unbiased brain analytic approach
combined with data-driven machine learning, leveraging two in-
dependent data with greater sample sizes.
The classification results in the NHIS-IH data may further suggest an

important implication. The morphometry model fails to classify MCI
from SMC, whereas the connectome or combined model shows optimal
classification of 0.90 AUC. The gain of the connectome estimates in
classification is more pronounced in MCI/SMC classification than in
AD/SMC classification.
This might suggest a greater sensitivity of the white matter con-

nectivity estimates in detecting AD-related neurodegeneration com-
pared with grey matter morphometry. Literature shows the capability
of diffusion MRI-derived measures to detect subtle microscopic changes
in tissue properties or integrity (Acosta-Cabronero et al., 2010;
Beaulieu, 2002; Douaud et al., 2011; Zhang et al., 2009), whereas
structural MRI is typically used to estimate macroscopic properties,
namely volumes. However, this pattern is not seen in the ADNI-2 multi-
site data; this leads to an issue of data harmonization to deal with site
effects of MRI-derived estimates.
The connectome or combined model shows ~10% decrease in

model performance in the ADNI-2 multi-site data compared with the
NHIS-IH single-site data. It is possible that this decrease in performance
in the ADNI-2 data is related to the site variability in the dMRI. Indeed,
prior studies show persistent inter-site variability in dMRI even when
using similar types of scanners, pulse sequences or same field strength
(Fox et al., 2012; Mirzaalian et al., 2016). This is a challenging problem
because there are hardly any objective ways to assess harmonization of
dMRI data (e.g., a dynamic phantom optimized for dMRI). One po-
tential way to mitigate this variability issue across multiple data sources
is an analytical solution. A recent elegant study suggests an elegant
Bayesian method for post-acquisition harmonization of dMRI (Fortin
et al., 2017).
Another potential approach to the MRI harmonization is domain-

invariant machine learning. A recent seminal study (Ghafoorian et al.,
2017) of white matter hyperintensity segmentation in the brain shows a
successful application of “multi-source domain adaption”. That is, a
convolutional neural network trained on data from a single domain
(i.e., from a single scanner with a single acquisition protocol) was
successfully applied (retrained) to the same task with independent MRI
from different domains (i.e., different acquisition protocols and image
dimension from the same scanner). Given the recent rapid development
of the deep learning algorithms, Artificial Intelligence-based domain
adaptation may present a promising powerful method of the general-
izable and reproducible MRI-based analytics.
In predicting MCI-to-AD progression in the ADNI-2 data, the mor-

phometry model outperforms both connectome and combined models.
This may suggest that the grey matter morphometry provides more
useful information in predicting the AD trajectory than the connectome
estimates. However, given the smaller sample size (N=60) compared
with AD/MCI classification (N=119), in this analysis we suspect that
machine learning training and feature selection may be suboptimal for
the connectome model than for the morphometry model, because of the

Table 3
Performance in predicting MCI to AD progression in ADNI-2.

MCI-AD vs. Stable MCI

Morphometry only
(Best: LR+PCA+20 fold CV)

Accuracy 0.69 (0.65–0.73)*
Sensitivity 0.79 (0.74–0.83)
Specificity 0.69 (0.64–0.74)
AUC 0.79 (0.74–0.84)
Connectomes only

(Best: LR+PCA+20 fold CV)
Accuracy 0.57 (0.53–0.61)
Sensitivity 0.64 (0.58–0.69)
Specificity 0.53 (0.47–0.59)
AUC 0.62 (0.56–0.68)
Morphometry+Connectome

(Best: LR+PCA+10 fold CV)
Accuracy 0.59 (0.56–0.62)
Sensitivity 0.60 (0.56–0.63)
Specificity 0.68 (0.56–0.79)
AUC 0.65 (0.59–0.71)
Benchmark: CSF biomarkers

(Best: RF+ no PCA+10 fold CV)
Accuracy 0.70 (0.66–0.75)
Sensitivity 0.76 (0.72–0.81)
Specificity 0.71 (0.64–0.78)
AUC 0.76 (0.70–0.81)

ADNI-2, Alzheimer's Disease Neuroimaging Initiative 2; MCI, mild
cognitive impairment; AD, Alzheimer's disease; LR, logistic re-
gression; PCA, principal component analysis; CV, cross-validation.
*All results show Mean and standard deviation as mean and 95%
confidence interval in this table.

Fig. 2. Prediction of progression to AD from MCI using connectomes and
morphometric estimates. Using ADNI-2 data that has follow-up data after
baseline MRI scan, machine learning models were trained on the connectome
and morphometry estimates to predict MRI-to-AD progression in 60 elders with
MCI (mean follow-up years in stable MCI, 3.76 ± 0.98; range, 2.18–5.32).
Morphometry model showed the similar performance to that of CSF benchmark
model. Both the combined model and connectome model showed lower but
meaningful accuracy.
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significantly large number of features in the former (N=33,698) than
the latter (N=948). Similarly, while the morphometry model and
connectome model respectively showed statistically meaningful (above
chance) predictions, when combined, there was little improvement in
model performance. This indicates more rigorous methods to combine
models trained across multimodal brain imaging-derived phenotypes
may be required, such as ensemble methods (Zhang et al., 2011).
Limitations related to the NHIS-IH data include the significantly

greater age in the AD group compared with the MCI or SMC groups. It is
possible that a greater aging effect embedded on the brain phenotypes
may have made the classification of AD easier. However, in ADNI data
with the age-matched samples, classification performance
(AUC=0.97) was only slightly less than the NHIS-IH data
(AUC=0.99). This suggests that the patterns extracted from morpho-
metry and white matter connectomes may be specific to AD rather than
an age-related bias. Another limitation is the lack of healthy controls in
the NHIS-IH cohorts. In this retrospective cohort at the dementia clinic,
individuals with Subjective Memory Complaints are cognitively normal.
Nevertheless, this group might not be equivalent to healthy controls as
in the ADNI data. For example, there might be subtle differences in
brain health status between health individuals and cognitively normal
individuals with subjective memory complaints. Our study provides no
data to address this. However, even if there was a significant difference
between cognitively normal SMC in the NHIS-IH data and healthy
controls in the ADNI data, it would be a negative bias against the po-
sitive classification results. Also, given the fact that in clinical settings,
individuals seek for clinical service usually when they suspect symp-
toms, our results of classifying AD and MCI from individuals with SMC
may have a unique clinical utility in addition to the comparisons of AD
and MCI with healthy controls in the ADNI data.
In sum, this study lends support for the individualized white matter

structural connectomes, estimated from multimodal MRI (structural
and diffusion), in combination with machine learning techniques, as a
useful method to detect accurately AD-related neurodegeneration
across the whole brain in a data-driven manner.
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