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ORIGINAL ARTICLE

Immunomodulatory Cell Therapy Using αGalCer-
Pulsed Dendritic Cells Ameliorates Heart Failure 
in a Murine Dilated Cardiomyopathy Model
Masataka Ikeda , MD, PhD; Tomomi Ide , MD, PhD; Shouji Matsushima , MD, PhD; Soichiro Ikeda, MD, PhD;  
Kosuke Okabe, MD, PhD; Akihito Ishikita , MD; Tomonori Tadokoro , MD, PhD; Masashi Sada, MD; Ko Abe, MD;  
Midori Sato, BEng; Akiko Hanada, AS; Shinobu Arai, PhD; Kisho Ohtani , MD, PhD;  
Atsushi Nonami, MD, PhD; Shinichi Mizuno, MD, PhD; Sachio Morimoto , PhD; Shinichiro Motohashi, MD, PhD;  
Koichi Akashi, MD, PhD; Masaru Taniguchi, MD, PhD; Hiroyuki Tsutsui, MD, PhD

BACKGROUND: Dilated cardiomyopathy (DCM) is a life-threatening disease, resulting in refractory heart failure. An immune 
disorder underlies the pathophysiology associated with heart failure progression. Invariant natural killer T (iNKT) cell activation 
is a prospective therapeutic strategy for ischemic heart disease. However, its efficacy in nonischemic cardiomyopathy, such 
as DCM, remains to be elucidated, and the feasible modality for iNKT cell activation in humans is yet to be validated.

METHODS: Dendritic cells isolated from human volunteers were pulsed with α-galactosylceramide ex vivo, which were used as α-
galactosylceramide-pulsed dendritic cells (αGCDCs). We treated DCM mice harboring mutated troponin TΔK210/ΔK210 with αGCDCs 
and evaluated the efficacy of iNKT cell activation on heart failure in DCM mice. Furthermore, we investigated the molecular basis 
underlying its therapeutic effects in these mice and analyzed primary cardiac cells under iNKT cell-secreted cytokines.

RESULTS: The number of iNKT cells in the spleens of DCM mice was reduced compared with that in wild-type mice, whereas 
αGCDC treatment activated iNKT cells, prolonged survival of DCM mice, and prevented decline in the left ventricular ejection 
fraction for 4 weeks, accompanied by suppressed interstitial fibrosis. Mechanistically, αGCDC treatment suppressed TGF 
(transforming growth factor)-β signaling and expression of fibrotic genes and restored vasculature that was impaired in 
DCM hearts by upregulating angiopoietin 1 (Angpt1) expression. Consistently, IFNγ (interferon gamma) suppressed TGF-β-
induced Smad2/3 signaling and the expression of fibrotic genes in cardiac fibroblasts and upregulated Angpt1 expression 
in cardiomyocytes via Stat1.

CONCLUSIONS: Immunomodulatory cell therapy with αGCDCs is a novel therapeutic strategy for heart failure in DCM.

Key Words: α-galactosylceramide-pulsed dendritic cell ◼ chronic heart failure ◼ dilated cardiomyopathy ◼ immune system ◼ natural killer T cell

D ilated cardiomyopathy (DCM) is characterized by 
left ventricular dilatation and contractile dysfunc-
tion. It is a heterogeneous syndrome caused by 

numerous etiologies, including genetic mutations and 
acquired myocardial damage.1,2 Although its prog-
nosis is based on an underlying etiology, the overall 

outcomes remain poor with high morbidity and mortality 
despite the advances in standard medical therapy with 
β-blockers and renin-angiotensin-aldosterone system 
inhibitors.2 Hence, the development of new therapeu-
tics is imperative to improve outcomes for patients with 
DCM-heart failure (HF).
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The immune system is one of the most promising 
therapeutic targets in chronic HF.3 In the early 1990s, 
it was reported that circulating TNF-α (tumor necrosis 
factor-α) is elevated in patients with severe chronic HF.4 
Furthermore, animal studies showed that overexpressing 
TNF-α or administering it aggravates cardiac remodel-
ing and HF in mice,5,6 demonstrating that immune system 
plays the key role in HF progression.7,8 However, block-
ing TNF-α using infliximab (ATTACH Trial) or etanercept 
(RENEWAL) failed to demonstrate clinical benefits in 
patients with chronic HF.9,10 In addition, a nonspecific 
immunomodulatory therapy using celecade was not 
effective for patients with severe HF, categorized as New 
York Heart Association functional class III-IV chronic HF 
(ACCLAIM study).11 The efficacy of several therapeutic 
approaches targeting the immune system in HF was also 
evaluated.12–15 However, these studies were small and 
inconclusive, and thus immunomodulatory therapy for HF 
remains unestablished.

Natural killer T (NKT) cells, characterized by the 
expression of a specific (invariant) antigen receptor 
(Vα14Jα18 in mice and Vα24Jα18 in humans) and dis-
covered in the 1980s,16,17 are CD1d-restricted innate-
like immune cells that express both an natural killer cell 
marker and a unique antigen receptor, of which gene 
fragments are located in the T cell receptor (TCR) 
loci, but not used by conventional T cells. Although 
the endogenous physiological regulation of NKT cell 
activation remains unknown, α-galactosylceramide 
(αGalCer), identified as an exogenous NKT cell ligand, 
activates invariant NKT (iNKT) cells.18 Since the first 
4 amino acids of Jα18 of iNKT cell receptors, which 
are important for the recognition of αGalCer presented 
on human and mouse CD1d, are conserved between 
humans and mice,19 both human and mouse iNKT cells 
can be activated by αGalCer-pulsed antigen-presenting 
cells (APCs) of either mouse or human origin, demon-
strating their cross-species reactivity.20 Notably, iNKT 
cells, a major subset of NKT cells in mammals, secrete 
multiple cytokines, such as IFNγ (interferon gamma), 
IL-4 (interleukin-4), and IL-10 (interleukin-10), activate 
various immune cells, and thereby induce anti-tumor 
responses.21–23

Previously, we demonstrated that iNKT cell activa-
tion induced by αGalCer ameliorates cardiac remodel-
ing, improves survival following myocardial infarction, and 
reduces ischemia/reperfusion injury in mice.24,25 More-
over, we showed that anti-IL-10 receptor antibodies abol-
ish the cardioprotection induced by iNKT cell activation 
in these models, suggesting that the anti-inflammatory 
effect of IL-10 is a key mediator of the cardioprotec-
tion through iNKT cell activation against myocardial isch-
emic insults. However, the post–myocardial infarction 
HF model, referred to as ischemic cardiomyopathy, is 
intimately associated with necrosis-driven inflammation 
of the heart,26 and the efficacy of iNKT cell activation 

Nonstandard Abbreviations and Acronyms

αGalCer alpha-galactosylceramide
αGCDC  alpha-galactosylceramide-pulsed den-

dritic cell
APC antigen-presenting cell
DCM dilated cardiomyopathy
HF heart failure
IFNγ interferon gamma
IL-4 interleukin-4
IL-10 interleukin-10
iNKT invariant natural killer T
LV left ventricle
LVEF left ventricular ejection fraction
NKT natural killer T
TCR T cell receptor
TGF-β transforming growth factor-beta

WHAT IS NEW?
• Dilated cardiomyopathy is a fatal cardiomyopathy, 

resulting in refractory heart failure. The immune sys-
tem has been recognized as a prospective thera-
peutic target for severe heart failure, and invariant 
natural killer T cell activation may be a potential 
strategy for treating dilated cardiomyopathy.

• In this study, we showed that the 
α-galactosylceramide-pulsed dendritic cell is a 
potent modality for activating invariant natural killer 
T cells in the heart, and invariant natural killer T 
cell activation through alpha-galactosylceramide-
pulsed dendritic cell treatment prevents the decline 
of cardiac contractility, suppresses fibrosis, and 
improves survival in dilated cardiomyopathy mice.

• Mechanistically, invariant natural killer T cell acti-
vation promotes vasculogenesis and suppresses 
TGF-β (transforming growth factor-beta)-Smad 
signaling, and IFNγ (interferon-gamma) plays a key 
role in these processes.

WHAT ARE THE CLINICAL IMPLICATIONS?
• Despite the advances in medical and device thera-

pies, prognosis of patients with dilated cardiomy-
opathy remains poor, and the number of patients 
receiving heart transplantation or destination ther-
apy with a left ventricular assist device is increasing.

• Here, we demonstrate cell therapy with α- 
galactosylceramide-pulsed dendritic cells as a 
novel therapeutic modality through immune-modu-
lation via iNKT cell activation.

• Cell therapy with alpha-galactosylceramide-pulsed 
dendritic cell may be a new therapeutic strategy for 
patients with heart failure who have dilated cardio-
myopathy, and clinical studies investigating its effi-
cacy and safety are currently underway.
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pertaining to HF in nonischemic cardiomyopathy, such as 
DCM, remains unknown.

In addition, the long-term administration of αGalCer 
potentially causes lethal liver injuries and anergy, thereby 
limiting the possibility of directly administering αGalCer 
to humans.23,27 To overcome these limitations, APCs 
expressing CD1d, such as dendritic cells (DCs), can be 
pulsed ex vivo with αGalCer.23 The safety of using pre-
pared αGalCer-pulsed DCs (αGCDCs) in humans has 
been confirmed.28 Therefore, the use of αGCDCs might 
be considered a potential modality for clinically treating 
patients with HF. However, the efficacy of this approach 
needs to be fully elucidated in an animal HF model.

In this study, we investigated the efficacy of αGCDCs 
in activating iNKT cells and the mechanism underlying 
this process in a murine DCM model harboring mutated 
troponin TΔK210/ΔK210.

METHODS
A full description of the materials and methods can be found 
in the Supplemental Material. The authors declare that 
all supporting data are available within the article and its 
Supplemental Material.

Animal Study
All procedures involving animals and animal care proto-
cols were approved by the Committee on Ethics of Animal 
Experiments of the Kyushu University Graduate School of 
Medical and Pharmaceutical Sciences (A29-348, A19-029, 
and A21-032) and were performed in accordance with the 
Guideline for Animal Experiments of Kyushu University and 
the Guideline for the Care and Use of Laboratory Animals 
published by the US National Institutes of Health (revised in 
2011). BALB/c mice were purchased from Kyudo Co. Ltd. 
(Saga, Japan), and all mice, including DCM mice,29,30 were 
housed in a temperature- and humidity-controlled room and 
fed a commercial diet (CRF-1LID; Oriental Yeast Co. Ltd, 
Tokyo, Japan) with free access to water. The study design is 
described in the Supplemental Material.

Preparation of αGCDCs From Human 
Peripheral Blood
All procedures involving the preparation of αGCDCs were 
approved by the Kyushu University Hospital Ethics Committee 
(Permission numbers are 29-62, 30-571, 2019-498, 2020-
516, and 2021-381). The αGCDCs were prepared by perform-
ing apheresis on volunteers as described previously.31 Detailed 
methods are described in the Supplemental Material.

Statistical Analysis
Statistical analyses were performed using JMP16 software 
(SAS Institute, Cary, NC) and GraphPad Prism version 9.3.1 
(GraphPad Software, La Jolla, CA). Data are presented as 
mean±SD. Paired or unpaired Student t test, Dunnett test, and 
1 way-ANOVA followed by Tukey’s post hoc test were used. 
The ratiometric data were presented on a log-scale axis, and 

log-transformed data, obtained with log2 (x+1) data transforma-
tion, were analyzed using these statistical tests. The log-rank test 
was used for comparison among the 3 groups (PBS, CTRL-DC, 
and αGCDC groups), followed by log-rank test for calculat-
ing the statistical significance, hazard ratio, and CI between 2 
groups. Statistical significance of the results was set at P<0.05.

RESULTS
αGCDC Treatment Induces iNKT Cell Activation 
and Subsequent Immune Responses
The αGCDCs were produced by loading αGalCer on 
human APCs, including DCs, collected from the periph-
eral blood of volunteers via leukapheresis as previously 
described.31 We examined the dose-dependent effects of 
αGCDCs in the murine myocardium in vivo and found that 
the gene expression of invariant TCR (Vα14Jα18) and 
iNKT cell-secreted cytokines such as interferon-γ (Ifng), 
interleukin-4 (Il4), and interleukin-10 (Il10) was upregu-
lated (Figure S1A). Consistent with the upregulation of 
these genes, the corresponding transcription factors, Stat1 
and Stat6, were phosphorylated in a dose-dependent 
manner (Figure S1B and S1C). We used a higher dose 
(3×106 αGCDCs per DCM mouse) to achieve maximum 
effects on the myocardium in this study. In comparison 
with αGCDCs, the effect of IFNγ on Stat1 phosphoryla-
tion peaked and plateaued at a relatively lower dose of 
αGalCer (Figure S2A). Additionally, the phosphorylation of 
Stat1 with αGCDC treatment was stronger than that with 
αGalCer treatment, whereas the phosphorylation of Stat6 
in αGCDCs was equivalent to that under higher dose of 
αGalCer (Figure S2A). The transcriptional upregulation of 
invariant TCR (Vα14Jα18) and Il10 was not observed in 
mice treated with isolated APCs and control-DCs without 
αGalCer (CTRL-DCs), although the gene expression of 
Ifng and Il4 was slightly upregulated in mice treated with 
isolated APCs and CTRL-DCs, respectively (Figure S2B).

To examine the sustained effect of a single treatment 
with αGCDCs (3×106 cells in 50 μL PBS per mouse) on 
iNKT cell activation in mice, we analyzed BALB/c mice 
treated with αGCDCs on days 1, 4, 7, 14, and 28. The 
expression of invariant TCR in the myocardium peaked 
on day 4 (Figure 1A). Concomitantly, the number of iNKT 
cells in the spleen that were labeled with anti-CD3 anti-
bodies as well as αGalCer-loaded CD1d tetramers also 
increased on day 4 following αGCDC administration 
(Figure 1B and 1C). Consistent with the upregulation of 
invariant TCR expression in the myocardium, iNKT cell-
secreted cytokines in the myocardium peaked on day 
4 and reverted to nearly normal levels on day 14 (Fig-
ure 1D). However, a single administration of αGCDCs 
maintained the slight upregulation of Ifng, Il4, and Il10 (≈ 
5-, 2.5-, and 2-fold, respectively) even on day 28 follow-
ing treatment (Figure 1D). Stat6 phosphorylation, rep-
resenting the effect of IL-4, peaked on day 4, whereas 
Stat1 phosphorylation, representing the effect of IFNγ, 
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peaked on day 7 and continued until day 14 following 
the treatment (Figure S3A and S3B). In contrast, plasma 
IFNγ and IL-10 levels peaked on day 1 after the treat-
ment, whereas no significant response was observed for 
plasma IL-4 (Figure 1E).

The Number of iNKT Cells Is Reduced in DCM 
Mice
Echocardiograms showed severely impaired contrac-
tility and left ventricular dilatation in 5-week-old DCM 

Figure 1. Immune responses to α-galactosylceramide (αGalCer)-pulsed dendritic cell (αGCDC) treatment in the myocardium of 
BALB/c mice.
A, Gene expression of invariant T cell receptor (TCR; Vα14Jα18) in the myocardium of BALB/c mice following a single αGCDC treatment until 
day 28, measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR; n=3–4). B, Flow cytometry data of the spleens of 
BALB/c mice, following a single administration of PBS and αGCDCs, on day 4. CD1d-tetramer binding (PE)- and CD3 (allophycocyanin [APC])-
positive cells were defined as invariant natural killer T (iNKT) cells. C, Quantification of the percentage of iNKT cells to CD3-positive cells following 
a single αGCDC treatment (n=8). D, Gene expression of iNKT cell-secreted cytokines, such as IFNγ (interferon gamma; Ifng), IL-4 (interleukin-4; 
Il4), and IL-10 (interleukin-10; Il10), in the myocardium of BALB/c mice, after a single αGCDC treatment until day 28, measured using RT-qPCR 
(n=3–4). E, Plasma concentrations (pg/mL) of iNKT cell-secreted cytokines such as IFNγ, IL-4, and IL-10 in BALB/c mice after a single αGCDC 
treatment (n=3–4). Data are presented as mean±SD. Statistical significance was determined using Student t test (C) or Dunnett test (other panels).

https://www.ahajournals.org/doi/suppl/10.1161/CIRCHEARTFAILURE.122.009366
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mice (Figure 2A and 2B). Gene expression of invari-
ant TCR in the spleens of DCM mice was downreg-
ulated compared with that in WT mice (Figure 2C). 
Analysis using flow cytometry also showed a significant 
decrease in the number of invariant TCR+CD3+ cells, 
representing iNKT cells, in the spleens of DCM mice 
(Figure 2D and 2E).

αGCDC Treatment Maintains Systolic Function, 
Suppresses Myocardial Fibrosis, and Prolongs 
the Survival of DCM Mice
DCM mice were assigned to the PBS, CTRL-DC, and 
αGCDC groups; among them, echocardiographic 
parameters did not differ significantly at baseline (5 
weeks of age; Table S1). Overall survival was signifi-
cantly improved in DCM mice treated with αGCDCs, but 
not in the CTRL-DC group, compared with that in mice 
in the PBS group (survival rate: 47%, 53%, and 80% in 

the PBS, CTRL-DC, and αGCDC groups, respectively; 
hazard ratio, confidence interval, and P: 0.86, 0.43–
1.72, and P=0.665 for CTRL-DC versus PBS groups, 
0.31, 0.14–0.68, and P=0.007 for αGCDC versus PBS 
groups, and 0.36, 0.15–0.86, and P=0.025 for αGCDC 
versus CTRL-DC groups; Figure 3A). In surviving DCM 
mice, the mice treated with PBS or CTRL-DCs showed 
a decline in the left ventricular ejection fraction (LVEF) 
at 4 weeks after each treatment, whereas αGCDC treat-
ment significantly prevented this decline (%Change in 
LVEF: −7%, −10%, and 0% in the PBS, CTRL-DC, 
and αGCDC groups, respectively; Figure 3B and 3C), 
although there was no significant difference in the aver-
age of the echocardiographic parameters in the surviv-
ing mice among all groups (Table S2). The histological 
analysis showed that interstitial fibrosis in DCM mice 
was significantly suppressed in the αGCDC group com-
pared with that in the PBS and CTRL-DC groups (Fig-
ure 3D and 3E).

Figure 2. Characterization of dilated cardiomyopathy (DCM) mice (5 weeks old).
A, Representative echocardiographic images of wild-type (WT) and DCM mice. Horizontal scale indicates 100 ms‚ and vertical scale indicates 1 
mm. B, Left ventricular ejection fraction (LVEF, left) and left ventricular end-diastolic diameter (LVEDD, right) in WT and DCM mice (n=4). C, Gene 
expression of invariant T cell receptor (TCR; Vα14Jα18) in the myocardium of WT and DCM mice, measured using reverse transcription-quantitative 
polymerase chain reaction (n=8 and 6, respectively). D, Flow cytometry data of the spleens of WT and DCM mice. CD1d-tetramer binding (PE)- and 
CD3 (allophycocyanin [APC])-positive cells were defined as invariant natural killer T (iNKT) cells. E, Quantification of the percentage of iNKT cells to 
CD3-positive cells (n=15 and 14, respectively). Data are presented as mean±SD. Statistical significance was determined using Student t test.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCHEARTFAILURE.122.009366
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αGCDC Treatment Improves Contractile 
Function in DCM Mice 4 Days After Treatment
To further investigate the mechanistic basis underly-
ing the effect of αGCDC treatment on DCM mice, we 
analyzed DCM mice treated with αGCDCs on day 4 
and found that the expression of invariant TCR, Ifng, Il4, 
and Il10 was markedly upregulated (Figure S4A). The 
phosphorylation of Stat1 and Stat6 in the myocardium 

of DCM mice was also enhanced by αGCDC treatment 
(Figure 4A). Notably, the LVEF of DCM mice treated 
with αGCDCs was significantly higher than that of mice 
treated with PBS on day 4 following αGCDC treat-
ment (Figure 4B and 4C). A detailed analysis showed 
that the LVEF of DCM mice significantly improved in 
response to αGCDC treatment, whereas that of mice 
in the PBS group was slightly reduced on day 4 after 
PBS treatment (%Change in LVEF: −6% and 8% in the 

Figure 3. Chronic effect of α-galactosylceramide (αGalCer)-pulsed dendritic cells (αGCDCs) on dilated cardiomyopathy (DCM) in mice.
A, Survival of DCM mice, treated with PBS (n=34, enrollment; n=18, death), control (CTRL)-DCs (n=30, enrollment; n=14, death), and αGCDCs 
(n=30, enrollment; n=6, death) until day 28 following treatments. B, Individual changes in left ventricular ejection fraction (LVEF); DCM+PBS, n=9; 
DCM+CTRL-DC, n=10; DCM+αGCDC, n=19. C, Percent change in the LVEF from the beginning (5 weeks of age) to the end of the study (4 weeks 
after each treatment) in mice treated with PBS (n=9), CTRL-DCs (n=10), and αGCDCs (n=19). Echocardiographic data of some surviving mice 
(PBS, n=7; CTRL-DC, n=6; αGCDC, n=5) could not be obtained because of their death before or during echocardiography. D, Representative 
images of Picro-Sirius Red staining in wild-type (WT) and DCM mice treated with PBS, CTRL-DCs, and αGCDCs. The PBS+WT group was used 
as a control (CTRL). Scale bar‚ 100 µm. E, Quantification of fibrotic area per myocardium in WT mice treated with PBS (Control [CTRL], n=13) and 
DCM mice treated with PBS (n=12), CTRL-DCs (n=15), and αGCDCs (n=22). Data are presented as mean±SD. Statistical significance was 
determined using a log-rank test for A, a paired Student t test for B, and 1-way ANOVA with a post hoc test (Tukey) for C and E.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCHEARTFAILURE.122.009366
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PBS and αGCDC groups, respectively; Figure 4D and 
4E), although there was no significant difference in the 
average of the echocardiographic parameters, excluding 
the LVEF and FS, between mice in these groups (Fig-
ure 4C‚ Table S3). Furthermore, whereas Nppb expres-
sion was upregulated in the PBS-treated DCM mice, it 
was attenuated in the αGCDC-treated DCM mice (Fig-
ure 4F). On day 4 after αGCDC treatment, no difference 
in interstitial fibrosis was observed between the PBS-
treated and αGCDC-treated DCM mice (Figure S4B and 
S4C). In contrast, the upregulation of iNKT cell-secreted 
cytokines and the cardioprotective phenotypes of LVEF 
and Nppb gene expression were not observed in CTRL-
DC-treated mice, although Ifng gene expression was 

slightly upregulated in CTRL-DC-treated mice (Figure 
S5A through S5E‚ Table S4).

αGCDC Treatment Suppresses TGF-β Signaling 
and Improves the Vasculature Density in the 
Myocardium of DCM Mice
To comprehensively investigate the effects of αGCDCs 
on cardiac function and fibrosis in DCM mice, we per-
formed microarray analysis on the myocardium on day 4 
following treatment. We selected genes according to an 
algorithm (Figure S6A) and identified 277 genes (defined 
as cluster 2) whose expression was upregulated in 
DCM+PBS mice but suppressed in DCM+αGCDC mice. 

Figure 4. Acute effect of α-galactosylceramide (αGalCer)-pulsed dendritic cells (αGCDCs) on the cardiac function of dilated 
cardiomyopathy (DCM) in mice.
A, Phosphorylation of Stat1 and Stat6 in the myocardium on day 4 following αGCDC treatment. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as a loading control. B, Representative echocardiographic images of DCM mice at pretreatment and posttreatment (day 
4) with PBS and αGCDCs. Horizontal scale indicates 100 ms, and vertical scale indicates 1 mm. C, Left ventricular ejection fraction (LVEF) 
in DCM mice at pretreatment (Pre) and posttreatment (Post; day 4) with αGCDCs (n=8–10). D, Individual changes in LVEF; DCM+PBS, 
n=8; DCM+αGCDC, n=10. E, Percent change in the LVEF from the beginning (pretreatment) to the end of the study (day 4 following each 
treatment, posttreatment) in mice treated with PBS and αGCDCs (n=8–10). F, Gene expression of BNP (brain natriuretic peptide, Nppb) 
in the myocardium of wild-type (WT) and DCM mice on day 4 after αGCDC treatment, measured using reverse transcription-quantitative 
polymerase chain reaction (n=4–7). Data are presented as mean±SD. Statistical significance was determined using Student t test for C and E, 
paired Student t test for D, and 1-way ANOVA with a post hoc test (Tukey) for F.
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Moreover, we identified 117 genes (defined as cluster 
9) whose expression was downregulated in DCM+PBS 
mice but restored in DCM+αGCDC mice (Figure S6B). 
Gene ontology (GO) analysis of cluster 2 and 9 revealed 
that αGCDCs promoted vasculogenesis and suppressed 
the fibrotic response, particularly TGF-β (transforming 

growth factor-beta) signaling, in DCM mice (Figure 
S6C). Reverse transcription-quantitative polymerase 
chain reaction analysis revealed that αGCDC treatment 
suppressed the upregulation of fibrotic genes, such as 
connective tissue growth factor (Ctgf), Col1a, and Col3a, 
in the myocardium of DCM mice (Figure 5A). Although 

Figure 5. Fibrotic gene expression and vasculogenesis in dilated cardiomyopathy (DCM) mice on day 4 after α-
galactosylceramide (αGalCer)-pulsed dendritic cell (αGCDC) treatment.
A, Expression of fibrotic genes such as Tgfb1, Ctgf, Col1a1, and Col3a1 in the myocardium of wild-type (WT) and DCM mice on day 4 following 
αGCDC treatment (n=4–7). B, Western blot analysis of phosphorylated Smad2 and Smad3 in the myocardium of WT and DCM mice following 
treatment with αGCDCs on day 4 (n=3–10). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control. C, 
Quantification of the Western blotting results shown in B. D, Gene expression of angiopoietin 1 (Angpt1) and vascular endothelial growth factor 
(Vegfa) in the myocardium of WT and DCM mice following treatment with αGCDCs on day 4 (n=4–7). E, Capillary density in the myocardium 
of WT and DCM mice (n=4–7). Scale bar‚ 100 µm. Data are presented as mean±SD. Statistical significance was determined using 1-way 
ANOVA with a post hoc test (Tukey).
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αGCDC treatment did not suppress the upregulation 
of Tgfb1 expression (Figure 5A), the phosphorylation 
of Smad2 and Smad3 was suppressed in the myocar-
dium of αGCDC-treated DCM mice (Figure 5B and 5C). 
Taken together, these findings indicate that αGCDC 
treatment suppresses fibrosis by inhibiting Smad2 and 
Smad3 phosphorylation but not TGF-β expression. Fur-
ther detailed GO analysis revealed that αGCDC treat-
ment restored the downregulation of angiopoietin 1 
(Angpt1) in the myocardium of DCM mice (Figure 5D) 
but did not alter vascular endothelial growth factor A 
(Vegfa) expression. Consistent with the restoration of 
Angpt1 expression, αGCDC treatment also restored 
the myocardial capillary density, which was impaired in 
the hearts of DCM mice (Figure 5E). In contrast, these 
cardioprotective responses, such as fibrotic gene down-
regulation and Angpt1 upregulation, were not observed 
in CTRL-DC-treated DCM mice (Figure S7A and S7B).

IFNγ Suppresses TGF-β–Smad2/3 Signaling in 
Primary Fibroblasts
To further investigate the mechanisms underlying the 
suppression of the TGF-β–Smad signaling axis mediated 
by αGCDC treatment, we treated primary fibroblasts with 
major cytokines, specifically IFNγ, IL-4, and IL-10, which 
are secreted from iNKT cells. IFNγ and IL-4 induced 
Stat1 and Stat6 phosphorylation, respectively; however, 
IL-10 did not alter Stat3 phosphorylation (Figure S8A 
and S8B). IFNγ suppressed the expression of fibrotic 
genes, such as Ctgf, Col1a1, and Col3a1, whereas IL-4 
and IL-10 did not, suggesting that IFNγ is the candidate 
suppressor of TGF-β signaling (Figure S8C). Consistent 
with the findings in vivo, the phosphorylation of Smad2 
and Smad3 was significantly attenuated by IFNγ pre-
treatment (Figure 6A and 6B). Furthermore, the upregu-
lation of fibrotic genes by TGF-β was suppressed by IFNγ 
pretreatment in a dose-dependent manner (Figure 6C).

IFNγ Upregulates Angpt1 in Primary Cultured 
Cardiomyocytes
To identify the mechanisms by which αGCDC treatment 
upregulated Angpt1 expression, we treated cultured car-
diomyocytes with IFNγ, IL-4, and IL-10 and found that 
treatment with IFNγ and IL-4 led to the phosphorylation 
of Stat1 and Stat6, respectively, whereas treatment with 
IL-10 did not alter Stat3 phosphorylation (Figure S9A 
and S9B). Notably, treatment with IFNγ, but not IL-4 or 
IL-10, upregulated Angpt1 expression (Figure 7A), and 
the silencing of Stat1 abolished this upregulation (Fig-
ure 7B through 7D), indicating that αGCDC treatment 
promotes vasculogenesis via the IFNγ-Stat1-Angpt1 
axis. Based on the present findings, we have summarized 
the mechanistic basis of αGCDC treatment for chronic 
HF in DCM mice in Figure 8.

DISCUSSION
Our study on αGCDC treatment of DCM mice harboring 
mutated troponin TΔK210/ΔK210 revealed 3 major findings as 
follows: (1) the immune system, particularly iNKT cells, is 
impaired in DCM mice; (2) αGCDCs activate iNKT cells, 
ameliorate contractile dysfunction and interstitial fibrosis 
in the heart, and prolong the survival of DCM mice; and 
(3) IFNγ plays a key role in cardioprotection induced by 
αGCDCs by suppressing the TGF-β–Smad2/3 signaling 
pathway and upregulating Angpt1 expression.

Previously, we demonstrated that iNKT cell activa-
tion with αGalCer ameliorates cardiac remodeling and 
improves survival following myocardial infarction.24 How-
ever, little is known regarding alterations to the immune 
system in severe HF observed in DCM,26 and the effi-
cacy of immunomodulatory therapeutics has not been 
established. Here, we found that the iNKT cell number 
decreased in the spleens of DCM mice (Figure 2D and 
2E). Given that αGCDC treatment activated iNKT cells 
and prolonged the survival of DCM mice, impairment 
of the immune system in terms of iNKT cells might be 
responsible for the progression of cardiomyopathy and 
HF in DCM. Interestingly, Stat1 and Stat6 phosphoryla-
tion in the heart in response to αGCDC treatment cor-
related with the gene expression of invariant TCR in the 
myocardium and not with the increase in cytokine levels 
in the plasma (Figure 1‚ Figure S3), indicating that Stat1 
and Stat6 phosphorylation in the myocardium depends 
on iNKT cells localized in the heart.

To identify the potential mechanisms by which 
αGCDC treatment ameliorates HF in DCM mice, we 
performed GO analysis using microarray data and inves-
tigated the 2 phenotypes produced following treatment, 
namely antifibrosis and vasculogenesis. Fibrosis is a 
detrimental feature observed in failing myocardia, and 
thus, anti-fibrotic mechanisms are the mainstay of car-
dioprotective effects mediated by αGCDC treatment. 
Based on microarray analysis, we found that αGCDC 
treatment suppressed Smad2/3 phosphorylation and 
the expression of fibrotic genes, such as Ctgf, Col1a, 
and Col3a, which were upregulated in DCM mice (Fig-
ure 5). Several studies have shown that the TGF-β–
Smad axis plays a key role in the progression of HF 
via fibrosis of the heart. Kuwahara et al32 demonstrated 
that the inhibition of TGF-β using a neutralizing anti-
body prevents myocardial fibrosis in pressure overload-
induced cardiac hypertrophy. In addition, Sakata et al33 
demonstrated that a TGF-β antagonist suppresses 
myocardial fibrosis in mice with the cardiac-restricted 
overexpression of TNF-α. Recently, Khalil et al34 
reported that TGF-β–Smad3 signaling in fibroblasts 
is a major regulator of myocardial fibrosis. Collectively, 
these findings indicate that the anti-fibrotic effects of 
αGCDC treatment result from the suppression of TGF-
β–Smad2/3 signaling.
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Furthermore, we showed that IFNγ suppressed the 
TGF-β–Smad2/3 axis. IFNγ has an established role 
in inducing anti-fibrotic effects, with particular refer-
ence to the TGF-β–Smad2/3 axis. Ulloa et al35 first 
reported that IFNγ/Stat inhibits TGF-β–Smad signaling 
by upregulating Smad7, an inhibitory Smad. In addition, 
Kimura et al36 demonstrated that αGalCer attenuates 
the development of bleomycin-induced pulmonary 
fibrosis and improves survival, with IFNγ playing a piv-
otal role in the antifibrotic effects induced by αGalCer. 
In the present study, we demonstrated that fibrosis was 
suppressed in DCM mice treated with αGCDCs and 
that IFNγ suppressed the phosphorylation of Smad2/3 

and fibrotic genes induced by TGF-β stimulation in pri-
mary cardiac fibroblasts. Nevertheless, Smad7 was not 
upregulated in response to αGCDC treatment in vivo 
and IFNγ in primary cardiac fibroblasts (Figure S10A 
and S10B). These results suggest that an inhibitory 
interaction between TGF-β and IFNγ, which is not 
mediated via Smad7, plays a key role in the anti-fibrotic 
effects of αGCDCs or IFNγ in the heart. Thus, further 
investigations are needed to clarify these interactions.

Vasculogenesis and angiogenesis are dysregulated 
in the hypertrophied myocardium,37,38 and the insuf-
ficient vasculature of coronary artery circulation is a 
major cause of cardiac dysfunction.39,40 In this study, 

Figure 6. Role of IFNγ (interferon gamma) in TGF (transforming growth factor)-β/Smad signaling during α-galactosylceramide 
(αGalCer)-pulsed dendritic cell (αGCDC) treatment.
A, Phosphorylation of Smad2 and Smad3 with TGF-β (10 ng/mL) and IFNγ pretreatment (1, 10, and 50 ng/mL). Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as a loading control. B, Quantification of Western blotting results shown in B (n=4–8). C, Expression 
of fibrotic genes such as Ctgf, Col1a, and Col3a in response to TGF-β (10 ng/mL) with IFNγ pretreatment (1, 10, and 50 ng/mL) in primary 
cultured cardiac fibroblasts (n=6). Data are presented as mean±SD. Statistical significance was determined using the 1-way ANOVA with a 
post hoc test (Tukey).
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transcriptome analysis indicated that αGCDC treat-
ment ameliorated impaired vasculogenesis in DCM 
mice. Indeed, αGCDC treatment restored the capil-
lary density in the hearts of DCM mice, which was less 
dense than that in WT mice (Figure 5). GO analysis of 
genes involved in vasculogenesis revealed that Angpt1 
expression, which was markedly downregulated in DCM 
mice, was completely restored by αGCDC treatment 
(Figure 5). Angpt1 is essential for vasculogenesis in 
the developing heart41 as it promotes vascular maturity 
and activates the endothelial-specific tyrosine kinase 
Tie2, strengthening reciprocal interactions between 
the endothelium and the surrounding matrix as well as 
the mesenchyme. The overexpression of Angpt1 using 
viral vectors increases capillary density and improves 
cardiac function in a murine model of HF,39,42 suggest-
ing that Angpt1 is essential not only for heart develop-
ment but also for the preservation of cardiac function. 
Given that αGCDCs restored Angpt1 expression and 

vasculature density in the DCM heart, upregulated 
Angpt1 expression, at least in part, contributes to the 
improvement in the survival of DCM mice with preserved 
left ventricular contractility. Furthermore, other mecha-
nisms might contribute to the improvement in LVEF on 
day 4 after αGCDC treatment. As the improvement in 
LVEF following αGCDC treatment was not evident in 
wild-type BALB/c mice (Figure S11), we deduced that 
iNKT cell activation would revert some impairments 
associated with cardiac contractility observed in severe 
HF. Indeed, a microarray analysis also revealed other 
potential mechanisms as shown in Figure S6. However, 
further investigation might be needed to fully confirm 
the mechanism by which αGCDC treatment improves 
contractility in the HF model.

We demonstrated that IFNγ, but not IL-4 and IL-10, 
mediated upregulated Angpt1 expression induced 
by αGCDC treatment via Stat1 activation (Figure 7). 
Some studies have demonstrated that IFNγ exerts a 

Figure 7. Role of IFNγ (interferon gamma) in vasculogenesis during α-galactosylceramide (αGalCer)-pulsed dendritic cell 
(αGCDC) treatment.
A, Gene expression of Angpt1 in response to IFNγ, IL-4 (interleukin-4), or IL-10 (interleukin-10) treatment in primary cultured cardiomyocytes 
(n=3). B, Phosphorylated Stat1 and total Stat1 in response to IFNγ (50 ng/mL) in primary cultured cardiomyocytes transfected with siRNA 
targeting Stat1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control. C, Quantification of Western blotting 
results shown in B (n=3). D, Gene expression of Angpt1 in response to IFNγ in primary cultured cardiomyocytes transfected with siRNA 
targeting Stat1 (n=6). Data are presented as mean±SD. Statistical significance was determined using Dunnett test for A and 1-way ANOVA 
with a post hoc test (Tukey) for the other panels.
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proangiogenetic effect,43 whereas others have suggested 
that it exhibits an inhibitory effect on angiogenesis, espe-
cially in malignant tumors.44 These observations suggest 
that the role of IFNγ in angiogenesis or vasculogenesis 
depends on the cell type, organ, and specific conditions.

In this study, we demonstrated the cardioprotective 
effects of IFNγ during αGCDC treatment on contractile 
function and fibrosis. Although IFNγ is widely recognized 
as a pro-inflammatory cytokine, previous studies have 
also shown its significance in cardioprotection consider-
ing that its deletion aggravates HF in an aldosterone-
induced hypertrophy model and a pressure overload 
model.45,46 This evidence indicates that IFNγ is necessary 
for maintaining cardiac function during HF and that it 
plays a key role in cardioprotection induced by iNKT cell 
activation. Nevertheless, we deduced that multiple effec-
tors, including IFNγ induced by iNKT cell activation, con-
tribute to cardioprotection in the HF model. Indeed, we 
and others have demonstrated that IL-10, an anti-inflam-
matory cytokine, plays a pivotal role in cardioprotection 
mediated by αGalCer in post–myocardial infarction HF 
and cardiac hypertrophy induced by angiotensin II.24,47

This study has 2 major limitations. First, we trans-
planted human αGCDCs into DCM mice (thereby pro-
ducing a xenograft model), mainly because this study 
was designed to develop and validate a cell product for 
humans. Human APCs can present αGalCer to murine 

iNKT cells and activate them,20 and iNKT cells in mice 
were evidently activated in response to human αGCDCs 
in our study; however, xenografting, which can induce 
immune rejection, could be considered a limitation. Sec-
ond, we utilized a DCM model that harbors a troponin T 
mutant. Although this mutation is also observed in human 
DCM, DCM is a heterogeneous cardiomyopathy induced 
by numerous etiologies, and therefore, the present find-
ings cannot be broadly generalized to all clinical DCMs. 
Thus, detailed investigations are needed to validate the 
application of this concept to clinical DCMs.

In conclusion, our findings revealed the novel and 
beneficial effects of αGCDC treatment on chronic HF 
in a DCM model. This supports the clinical application 
of αGCDCs as a therapeutic modality for DCM patients 
with chronic HF. A clinical trial investigating the effi-
cacy and safety of αGCDC treatment for chronic HF 
is currently underway (Japan Registry of Clinical Trials; 
jRCT2073210116).
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