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Determining the valence of an odor to guide rapid approach–avoidance
behavior is thought to be one of the core tasks of the olfactory sys-
tem, and yet little is known of the initial neural mechanisms sup-
porting this process or of its subsequent behavioral manifestation
in humans. In two experiments, we measured the functional proc-
essing of odor valence perception in the human olfactory bulb
(OB)—the first processing stage of the olfactory system—using a
noninvasive method as well as assessed the subsequent motor
avoidance response. We demonstrate that odor valence perception
is associated with both gamma and beta activity in the human OB.
Moreover, we show that negative, but not positive, odors initiate
an early beta response in the OB, a response that is linked to a pre-
paratory neural motor response in the motor cortex. Finally, in a
separate experiment, we show that negative odors trigger a
full-body motor avoidance response, manifested as a rapid leaning
away from the odor, within the time period predicted by the
OB results. Taken together, these results demonstrate that the
human OB processes odor valence in a sequential manner in both
the gamma and beta frequency bands and suggest that rapid
processing of unpleasant odors in the OB might underlie rapid
approach–avoidance decisions.
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The survival of any organism is dependent on approach–
avoidance mechanisms: avoiding dangerous and approaching

rewarding stimuli. Among our senses, the olfactory system seems
specifically tuned to aid approach–avoidance decisions and, in
particular, to assist in avoiding potentially dangerous stimuli. It is
not surprising then that the very first stage of the central olfactory
system, the olfactory bulb (OB), processes various information
directly related to whether an odor should be avoided (1).

In nonhuman animals, the OB demonstrates rapid plasticity
to aversive stimuli (1) and has dedicated processing of odors
innately associated with threats (2). Sensory systems are nor-
mally attuned to signals indicating negative outcomes for the
individual given that a failure to respond to such stimuli may
lead to fatal consequences (3). For example, fast responses are
arguably more important when withdrawing from toxic fumes
than the need for speed when approaching positive odor sour-
ces. The perceptual equivalent to the motor-driven
approach–avoidance system in the olfactory system is the sub-
jective perceptual experience of an odorant’s valence. Here,
perceived unpleasantness of odorants emitted from potentially
dangerous sources, such as, for example, rotten food, is trans-
lated to avoidance (4). However, the underlying neural mecha-
nism for this system is largely unknown. There are two major
reasons for this. First, it is difficult to assess the subjective expe-
rience of a novel odorant’s valence in animal models. Second,
although assessing subjective measurements from humans is
straightforward, until recently, there has been no method that
allows a noninvasive measure of neural signals from the human
OB. With that said, several brain imaging studies on humans
have targeted the central processing mechanisms underlying

valence perception. Here, valence perception has mainly been
localized to the orbitofrontal cortex (OFC); cf. ref. 5. However,
the OFC is an area that is situated relatively late in the central
olfactory processing stream (6) and the location of neural proc-
essing of odor avoidance in nonhuman animals has been identi-
fied to be much earlier in the pathway, just one synapse away
from the odor receptors in the OB (7, 8). Thus, it is necessary
to study the OB to establish the underlying neural mechanism
of the earliest processing stages to understand how the olfac-
tory system processes the subjective valence of an odorant, the
first stage of an approach–avoidance decision.

Based on past studies in nonhuman animals (8), we hypothe-
sized that the OB in awake humans would demonstrate early
valence-differential processing and induce a preparatory motor
approach/avoidance response according to perceived odor
valence. In Experiment 1, we determined whether odor valence
is processed by the human OB by means of a recently devel-
oped method that allows a direct but noninvasive measurement
of the human OB (9). We found that subjective odor valence
could be linked to gamma and beta activity in the human OB,
independent of respiration, and that an early beta activity in
OB processing was linked to motor cortex processing in a
valence-dependent manner. Based on these results, in Experi-
ment 2, we assessed whether humans, akin to nonhuman
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animals (10), demonstrate a rapid, full-body approach/avoid-
ance response to odors in a valence-dependent manner in the
time period predicted by Experiment 1. We found that partici-
pants rapidly moved away from a negative odor source. Inter-
estingly, only unpleasant odors produced a consistent motor
response, and, importantly, this response aligned temporally
with the valence-associated activity in the OB demonstrated in
Experiment 1.

Results
Early Phase–Amplitude Coupling between Beta and Gamma in OB.
Odor-evoked neural signals in response to six odors with vary-
ing valence were recorded from 4 electrodes located directly
above the eyebrows, which, in combination with 64 electroen-
cephalogram (EEG) scalp electrodes, were used to extract
source space electrobulbogram (EBG) (9) signals from the OB
(Fig. 1A). Inhalation phase-locked odor stimuli were delivered
using a sniff-triggered, computer-controlled, and temporally
precise olfactometer (11). Odor delivery delay (∼200 ms) was
measured with a photoionization detector and adjusted for in
all analyses (12). After each odor stimulus, participants rated
perceived odor intensity, valence, and familiarity. A total of 19
participants participated in 3 separate and seemingly identical
sessions, comprising a total of 540 trials per participant. Next,
we removed trials with artifacts including muscle and blink (see
Methods for details) by which an average of 27.92 6 10.49 clean
trials per odor were included in the analysis for each individual.
Hence, considering all six odors, the total number of trials for
each individual included in our analyses was on average 167.52
6 25.81. More importantly, there was no statistical difference

between the number of trials across odors, F(5, 108) = 0.39,
P > 0.86, indicating that after artifact rejection, the experimen-
tal design remained balance.

We have previously established that the EBG measure is a
valid and reliable measure of OB processing (9), but prior to
our main analysis, we estimated the quality and spatial disper-
sion of the reconstructed OB signal within this unique dataset.
To this end, we used a simulation where the spatial dispersion
of three levels of signal-to-noise-ratio were assessed, namely a
hypothetical ideal, the empirical level, and twofold lower (i.e.,
twofold larger noise level) than empirical level. This analysis
confirmed that our source reconstruction method can success-
fully isolate OB’s EBG signal in source space given that the
spatial gain was similar to the hypothetical ideal condition
when assessing a signal-to-noise ratio similar to what we empir-
ically observed in the current dataset (SI Appendix, Fig. S1).

To allow direct comparisons between neural and behavioral
data, we used representational similarity analysis (RSA)—a
multivariate method that compares similarity (e.g., correlation)
matrices between continuous relationships to determine the
representational geometry on the individual level (13), there-
fore allowing direct comparisons between different parameters
without being hindered by difference in scaling and other inher-
ent differences between measuring techniques. In this case, we
assess how well a perceptual feature can be decoded from neu-
ral activity (presented as degree of similarity between measures’
representational dissimilarity matrix [RDM]). The perceptual
and neural population RDMs were initially derived on the indi-
vidual level as relationship-distances between individual odors,
separately for perceptual and neural space, and later assessed
for similarities between them in group-level analysis (14). In

Fig. 1. Early PAC between beta and gamma in the OB. (A) Methodological summary of Experiment 1, where individuals (n = 19) were tested during
three separate sessions that were subsequently merged. Source reconstruction was performed using the EEG/EGB electrodes in combination with a multi-
spherical head model and digitalized electrode positions to extract OB time course. RDMs were constructed for both OB neural signals and perceptual rat-
ings; subsequent partial Pearson correlations were derived for each time point from all possible permutations. (B) Group mean perceived valence ratings
of the six odors in Experiment 1. Individuals’ mean ratings are indicated with filled circles. Note that for analyses, valence ratings of each individual were
used to create a common structure with the DISTATIS method (14). Error bars represent SEM. (C) Heat map showing the strength of PAC as function of
time. Compared to background, a significant coupling around 53 to 65 Hz (significant results assessed with permutation testing and marked with black
boundaries) starts around 250 ms after odor onset. (D) The comodulogram between the beta and gamma bands (∼53 to 65 Hz) during the whole 1 s
indicates that the coupling appeared in the beta band around ∼16 to 18 Hz. Significant peak marked with asterisk and assessed with Student’s t test. The
statistical threshold for detecting significance (t = 1.96 equal to P < 0.05) is marked with a gray dashed line. FP denotes frequency of slower oscillation or
frequency phase.
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other words, for each time point in the OB recording, we assess
whether the relationship between the six tested odors in the
neural space is similar to the relationship between ratings of
the same odors in the perceptual space. Statistical relationships
are then assessed for the group. Specifically, we compared how
odor-induced neural activity in the OB within the gamma and
beta bands corresponds to individual valence ratings of the
same odors (Fig. 1B).

We initially assessed the relationship between activity of the
beta and gamma frequency bands, determining the frequencies
coupled together in OB and later the activity of these frequen-
cies to perceived valence in RSA. Phase–amplitude coupling
(PAC), a subclass of cross frequency-coupling phenomena, has
been identified as a neural mechanism detectable in most mam-
mals and critical for information processing in a multitude of
brain regions (15–20). Here, the phase of the lower frequency
oscillation drives the power of the coupled higher frequency
oscillation. Different functional roles have been attributed to
PAC, including sensory signal detection (21), executive func-
tions (22), and attentional selection (23). Specifically for olfac-
tion, it has recently been demonstrated that PAC in the OB
shapes early sensory processing in mice (24). Given this, we
examined PAC between beta and gamma oscillation within the
OB and its relation to the processing of the individual’s odor
valence using RSA. To gain a temporal dimension of the PAC,
we used time-resolved PAC [t-PAC (25)], a method that also
incorporates the temporal dynamic of the signal.

As a first step, we assessed the relationship between beta
and gamma bands with t-PAC within the first second after
receiving an odor stimulus to determine whether these fre-
quency bands demonstrate PAC and, if so, at which frequen-
cies. We found significant PAC between beta and gamma
already at 250 ms after odor onset (∼53 to 65 Hz), as assessed
by Monte Carlo permutation test (Fig. 1C; t = 3.85, P < 0.006,
and CI = [0.002, 0.006]). Next, we assessed the comodulogram
between beta and the detected range in gamma oscillations to
isolate frequencies of interest in the beta band. We found that
this coupling operates in the beta band within 16 to 18 Hz (t =
2.57, P < 0.009, CI = [0.002, 0.012]; Fig. 1D). The t-PAC and
the comodulogram results guided our subsequent neuronal and
valence RSA analysis by isolating signals of interest.

Early Gamma and Late Beta Activity Relate to Perceived Odor
Valence. Bandpassed OB reconstructed time courses were trans-
formed into a complex signal using Hilbert transform. Both
amplitude as well as phase were used to construct neural and
perceptual valence RDMs. This was performed at each time
point separately for each frequency band (gamma/beta) using
the Euclidean distance across six odors that varied in valence,
resulting in a sequence of RDMs (Fig. 1A). Then, maximum
partial Pearson correlations were calculated by an approximate
80-ms-wide nonoverlapping sliding window, sweeping 0 to 1 s
after odor onset anchored to inhalation, between two sequences
of RDMs (Fig. 2A). This resulted in a correlation time course
while controlling for perceived intensity (Fig. 2B). To test the
significance of the correlation at each time point controlling for
false positives, we performed a nonparametric permutation test
by which all possible combinations (number of randomizations
= 720) were tested for all time points (n = 13) during 1 s and
exact P values were computed. We found time points of signifi-
cant associations in RSA space between subband of gamma
activity (53 to 65 Hz, consequent to PAC result) and perceived
odor valence around 250 to 325 ms (r1 = 0.60, p1 < 0.010, CI =
[0.56, 1]) (Fig. 2B; adjusted for measured olfactometer delay).
The distribution and exact P value for the significant instance is
shown in Fig. 2C.

Given the association between gamma activity and perceived
valence, as well as the coupling between gamma amplitude and

phase of beta in the t-PAC analysis, we subsequently assessed
the potential relationship between beta band and perceived
valence using RSA. The extracted time course of OB was band-
passed to align with the results from the previously mentioned
comodulogram PAC (16 to 18 Hz). Similar to gamma, beta
oscillation values were extracted and converted into complex
signals using Hilbert transform to estimate instantaneous
amplitude and phase values. This was next transformed to
RDMs and partial Pearson correlations were performed
between beta RDMs and valence RDM while controlling for
perceived odor intensity, in a similar manner as described
previously.

We found that there was a significant association between
beta activity and valence in a time interval around ∼800 ms
after odor onset (Fig. 2D). In other words, there was an associ-
ation between variance in perceived odor valence and variance
in beta activity around 800 ms after odor onset in a subband
around 16 to 18 Hz. Similar to the gamma activity analysis, we
tested the statistical significance of the correlations using all
possible permutation tests for each time point within 1 s after
odor onset. Next, we compared each actual correlation with the
distribution derived from the permutation to extract the exact P
value (r = 0.65, P < 0.014, CI = [0.59, 1]). The distribution and
exact P value for the significant instance is shown in Fig. 2D.

Behavioral studies in humans have demonstrated intensity-
dependent regulation of the sniff response amplitude as early
as 160 ms after odor onset (26), and there are demonstrated
links between sniff magnitudes and both odor valence (27) as
well as odor intensity (28). Similarly, sniff rhythms have been
demonstrated to regulate OB gamma oscillation in anesthetized
rodents (29). Therefore, to determine whether the discovered
link between valence ratings and OB activity is potentially
mediated by participants’ sniff patterns, unrelated to the odor
presented, we assessed potential relationships between gamma
and beta activity and relevant sniff parameters (sniff trace, i.e.,
amplitudes over time; maximum sniff amplitude; and area
under the curve) using separate Spearman rank correlations.
However, our analysis demonstrated that there were no signifi-
cant relationships between sniff trace and OB activity in either
the gamma or beta bands (SI Appendix, Fig. S2).

Next, we asked whether there were any commonalities in the
neural representations of odor valence in the aforementioned
identified gamma and beta bands. To this end, the group-level
distance matrices of gamma and beta (RDMs) at the identified
time periods were scaled down using the first two eigenvectors
(principal component [PC]) to create two-dimensional (2D)
representations. For the gamma band, valence seemed to be
somewhat linearly organized along the first PC (PC1), whereas
there was no obvious valence-dependent organization along the
second PC axis (PC2) (Fig. 3A). For the beta band, there was a
reverse relationship as well as a linear linkage between valence
organization between the PC1–PC2 dimensions. To investigate
statistically which frequency band best explained most of the
individual’s valence ratings, we first determined whether the
organization of the odors within the 2D projections formed
clusters. To this end, the RDMs were first converted to similar-
ity matrices and communities were evaluated using a Newman
algorithm (30). Odor valence ratings were hierarchically
clustered from one to six clusters, and we found the elbow of
modularity index (Q) graph at three, which indicates that a
three-cluster solution best explains valence ratings (Fig. 3B).
On the neural data, we subsequently derived a modularity index
(Q) for each of the gamma and beta correlation peaks given
the three clusters determined by hierarchical clustering of
valence ratings and normalized their values to a corresponding
null model from 5,000 random rewirings (31). We found that
the beta band had a larger Q-value than the gamma band,
meaning that the odors formed the most coherent pleasant and
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unpleasant clusters here. This indicates that more detailed
information of participants’ subjective valence ratings can be
obtained from the beta frequency band rather than the gamma
band (Fig. 3C). We then statistically assessed whether the
obtained modularity indexes were significantly different from

the null model using 5,000 Monte Carlo permutations tests. We
found that the modularity index for beta was significantly larger
than for gamma (Z = 2.95, P < 0.003, CI = [0.009, 0.018]).

These results suggest that the final odor valence perception can
best be explained by processing in the beta band. Our analyses so

A

B C

D E

Fig. 2. OB activity in the gamma and beta band relates to valence perception. (A) Example of relationships between valence and OB activity in RSA
space. (B) Partial Pearson correlation time course between activity of gamma and valence on the group level. All possible permuted partial Pearson corre-
lation of gamma activity and valence indicated significant correlations at a time point ∼250 to 325 ms after odor onset (P < 0.010). (C) Distribution of all
possible permutations for the significant instances and actual correlation indicated with red closed circles. (D) Correlation time course of beta activity in
the OB and odor valence RDMs indicating a significant relationship with valence perception around 800 ms after odor onset. (E) Distribution of all possi-
ble permuted partial Pearson correlation of beta activity and valence ratings for time points centered around 800 ms (P < 0.014). Red closed circle shows
the actual correlation within the permutation distribution.
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far have, however, assessed odor valence by forcing ratings into a
single continuous dimension or into three clusters and used these
continuous parameters to assess organizational relationships
between odor perception and neural activity. This approach
means that we cannot assess whether either one of the contrasting
valence dimensions (pleasant or unpleasant) contribute more to
the OB processing. It has been argued that positive and negative
valence is separated in a 2D space (32), and a common approach
in past studies has been to assess valence using a dichotomized
design where groups of odors that differ in their rated valence
(labeled as pleasant and unpleasant) are contrasted. To facilitate
an assessment of whether there are differences in processing
between pleasant and unpleasant odor in the OB, we compared
OB processing of the two most pleasant odors against the two
most unpleasant odors, eliminating the two neutral middle odors,
all based on the individual’s own valence rating. When contrasting
the two odor valence categories, we found that negative odors
produced a greater synchronization response in the early portion
of the beta band (around 50 to 200 ms, t = 3.01, P < 0.004, proba-
bility CI range = 0.004), whereas positive odors produced a
greater synchronization response in the late beta band (around
690 to 780 ms, t = 3.49, P < 0.002, probability CI range = 0.003)
determined by 5,000 Monte Carlo permutation tests.

The separation in processing between the two valence
extremes demonstrated that negative odors produced a more
pronounced activity in the early beta band. We hypothesized
that this early processing might indicate the cuing of an early
avoidance response. This would align with behavioral data in
humans that have shown that an odor associated with threat
elicits a full-body motor avoidance response (10). If this
hypothesis is valid, we should observe odor valence-dependent
modulation of preparatory motor responses over the motor cor-
tex in the time interval of these OB responses. Specifically, we
hypothesized that we would observe greater power in the mu
rhythm over the motor cortex for negative odors. Desynchroni-
zation in mu rhythm has previously been demonstrated to be a
measure of preparatory motor responses to salient stimuli (33,
34), whereas inhibition of motor behavior yields synchroniza-
tion in mu rhythm (35, 36). To this end, the mu rhythm for two
extremes was assessed on the whole scalp, where we found
greater power over the motor cortex (electrode C2: t = 2.17,
P < 0.014, probability CI range = 0.003; electrode C4: t =
3.00, P < 0.003, probability CI range = 0.001; electrode CP2:
t = 2.01, P < 0.022, probability CI range = 0.004; electrode
CP4: t = 3.27, P < 0.001, probability CI range = 0.001; elec-
trode CP6: t = 2.23, P < 0.012, probability CI range = 0.003).

A

D E F

B C

Fig. 3. OB activity in the late-occurring beta band is more similar to subsequent perceptual ratings than activity in the early-occurring gamma band. (A)
Odors placed within the 2-dimensional PC space, derived from peak values within detected significant peaks in Fig. 1 B and D, separated by frequency
band. Observe the linear alignment between perceived odor valence and placement in PC space for the beta band. Odor names are written using abbrevi-
ations: Li (linalool), 2PE (2-phenyl ethanol), EB (ethyl butyrate), 1O3 (1-octen-3-ol), and DD (diethyl disulfide). Color code indicates average perceived
valence where green colors denote positive valence and red/yellow colors denote negative valence. See Fig. 1B for absolute valence ratings. (B) Hierarchi-
cal clustering valence rating from 1 to 6 clusters. The elbow of the graph is shown with a red closed circle. (C) Newman modularity index demonstrates
that mean Q-values are larger for beta synchronization, indicating that a more detailed odor valence readout can be inferred from this time point. Error
bar shows 95% CI for 5,000 permutations, and ** in C indicates P < 0.01. (D) t-contrast map indicated more beta power during early time points and less
beta power during late time points for the two most unpleasant odors compared to two most pleasant odors. (E) Topographical map of mu rhythm illus-
trates higher values for unpleasant compared to pleasant odors over motor cortex during intervals of 300 to 400 ms. (F) Source of mu rhythm was local-
ized to the right motor cortex (x 27, y �35, z 60) using eLORETA during the time interval displayed in E, i.e., 300 to 400 ms after odor onset.
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Next, we localized the source of the mu rhythm using extra low-
resolution electromagnetic tomography (eLORETA) and found
a cluster around the right motor cortex (x 27, y �35, z 60)
where the dipole voltage density was 12% stronger for unpleas-
ant compared to pleasant odors. Furthermore, for negative
odor trial (defined as 1.5 SD below the group mean), we
extracted valence ratings and odor-induced responses and sub-
sequently assessed the effect on mu rhythm for each trial using
a generalized linear model with Valence and Intensity as pre-
dictors. The group effect of Valence to predict mu power was
finally estimated for each electrode using a Student’s t test. In
line with our hypothesis, negative odor valence was related to
mu rhythm power over the motor cortex in the time period of
interest (250 to 450 ms after odor onset, the interval was
selected slightly larger to increase frequency specificity), elec-
trode CP2: t(18) = �2.23, P < 0.038, CI = [�1.39, �0.04] and
electrode FC4: t(18) = �2.32, P < 0.032, CI = [�0.92, �0.046]
(SI Appendix, Fig. S3). In other words, the more negative an
odor was perceived, the more mu power over the motor cortex
was observed in the time period of the early OB processing.

Unpleasant Odors Elicit a Fast Avoidance Response. Our results so
far have suggested that processing in the human OB is attuned
to odor valence and that there is a link between processing in
the OB and motor cortex activity in a valence-dependent man-
ner. These results suggest an association between valence proc-
essing of negative odors in the OB and an early avoidance
response. In other words, if the results obtained in Experiment
1 are valid, when a negative odor stimulates the OB, a behav-
ioral avoidance response should be initiated by the motor
system in the time period shortly after the demonstrated mu
activity, i.e., 400 ms plus motor response time. To directly test
this prediction, in Experiment 2, we sought to determine
whether odor valence initiates an approach–avoidance
response. Specifically, we wanted to determine whether this
response is linked in time to the early time period where associ-
ations between OB processing and valence perception were
found as well as a functional gating was demonstrated between
the OB and the motor cortex in the mu band. We operational-
ized approach–avoidance motor responses as posterior-anterior
angular motion, derived from normalized responses from a
force plate that measures participants’ whole-body microsway
(Fig. 4A). We hypothesized that a negative odor would elicit an
avoidance response, manifested by the initiation of a backward
motion in the early time period of interest. The body microsway
was measured as posterior-anterior angular motion that was
normalized to the height of individuals and bandpass filtered to
produce posterior-anterior momentum (PAM). Two pleasant
and two unpleasant odors, with averaged valence ratings illus-
trated in Fig. 4B, were presented using sniff-triggered olfactom-
etry, identical to what is described for Experiment 1.

We first performed a pilot experiment (n = 21) to allow us to
determine the time point(s) of interest for analyses of PAM
responses in a nonbiased manner, to preregister our hypothesis
and analyses, and, importantly, to establish known priors for
subsequent Bayesian analyses. To this end, we assessed five
time points of interest: 0.25 s (at the time of gamma process-
ing), 0.5 s (the hypothesized period of interest, gamma +
response time, based on results in Experiment 1), 0.75 s (at the
time of the beta processing), 1.0 s (at the time of beta process-
ing + response time), and 1.25 s after odor onset across the
pleasant and unpleasant odor conditions (SI Appendix, Fig.
S4A). These time points were selected to cover the full odor
presentation with additional motor response time factored in.
Within a linear mixed effect model (LMM) statistical model,
with participant as intercept and conditions as random slope,
we found a significant main effect for conditions only at the
time point 0.5 s after odor onset, t(61) = 2.13, P < 0.037, CI =

[0.01, 0.04], with no other significant effects at other time points
(SI Appendix, Fig. S4B). Subsequent Student’s t tests against 0
(standing straight) demonstrated that the backward motion in
response to negative odors was significant, t(61) = 2.06, P < 0.
04, CI = [�0.28, �0.04], but without a potential forward
motion in response to a positive odor, t(61) = 0.64, P > 0.74,
CI = [�0.19, 0.39].

In the main experiment (Experiment 2; n = 44), we focused
our analyses on the time point identified in the pilot experi-
ment—all other aspects but the sample size remained identical.
We selected the sample size based on an estimated effect size
of 0.3 (derived from the pilot experiment) and required power
0.95, alpha error probability 0.05, and a correlation among
measures of 0.4—this yields a suggested sample size of 44 par-
ticipants to enable a strong prediction. All hypothesis and anal-
yses were preregistered at https://aspredicted.org/fk9gw.pdf.

We could replicate the result demonstrated in the pilot
experiment with a significant difference between the two odor
categories at time point 0.5 s after odor onset, t(174) = 3.24,
P < 0.001, CI = [0.06, 0.23] (Fig. 4C). Given the fact that for
Experiment 2 we had a known prior from an independent data-
set (result from the pilot experiment), we further explored this
effect using Bayesian statistics. The Bayesian analyses sup-
ported results obtained with frequentist methods. We found
that our analyses gave substantial support for a difference
between the two parameters (Bf10 = 3.32; SI Appendix, Fig. S5).
However, these analyses assess potential differences between
the two odor categories, whereas results from the pilot experi-
ment indicate that effects are mediated mainly by negative
odors. When assessing each odor valence category separately
against no movement using a one-sided Student’s t test with
directionality based on the preregistration, there was once
again only a statistically significant effect for the negative odors
to elicit a backward motion, t(174) = 2.47, P < 0.007, CI =
[�∞, �0.016], and no significant effect for the positive odors,
t(174) = 1.22, P > 0.11, CI = [�0.04, +∞].

We then assessed whether the difference between odor
valence in PAM was mediated by a potential difference in respi-
ratory flow, a parameter that previously has been demonstrated
to be linked to odor valence (37). However, we found no corre-
lation between the respiration flow and PAM at the time point
of interest (0.5 s), rho = �0.02, P > 0.75, (Fig. 4D). Moreover,
to verify the lack of dependency, we assessed the null effect
using Bayesian statistics with the known priors. These analyses
also supported the conclusion that PAM and respiration were
not interdependent (SI Appendix, Fig. S6).

Discussion
We here demonstrate that neural activity in the human OB is
linked to perceived odor valence. Specifically, we found that
the OB processes odor information sequentially within two
time periods: First, a brief period of initial gamma activity
across the valence dimension and a temporally privileged early
beta activity for unpleasant odors, both indirectly linked to the
cuing of a motor avoidance response. Second, there was a later
period of beta processing that was linked to the linear forma-
tion of the final subjective valence percept of the presented
odor. These results indicate that one of the initial and primary
functions of the OB is to process early odor-based valence
information, potentially to extract early odor-based warning
signals.

The observation that odor valence was processed in the
human OB mainly during two time points, one early and one
late stage, is in line with the two-stage model of odor processing
in the OB suggested by Frederic et al. (38). They specifically
demonstrated that the OB first executes a fast processing, rely-
ing on gamma oscillations, allowing the individual to make fast
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discriminations, and a second slower processing, relying on
beta oscillations, utilizing information from centrifugal inputs
to support more deliberate decisions. Our data, which is in line
with earlier human and animal work, suggests that the OB pro-
cesses valence of unpleasant and pleasant odors at different
time points. In this context, our link between early gamma and
beta (for unpleasant odors) oscillations in the OB suggests that
this might be a preparatory, nondeliberate mechanism for fast
avoidance of potentially dangerous odors or avoidance of their
sources. This hypothesis is further supported by previous find-
ings that odor-induced gamma oscillations within the OB are
largely a local phenomenon (39, 40) and sometimes dependent
on the individual’s behavioral state or past negative experience
with the odor (41). Moreover, because the OB is located very
early in the odor processing stream with projections from the
olfactory receptor neurons and monosynaptic connections to
cerebral areas associated with processing of information related
to threat/saliency (42), the OB is ideally localized in the proc-
essing pipeline to process avoidance-related information given
the need for a fast response. Indeed, associating an odor with
an aversive outcome alters a range of parameters in how the
OB processes the associated odor. For example, it increases
neural responses (1, 43) as well as axonal density into associ-
ated glomeruli, which in turn is associated with an increase in
associated glomeruli size (44). Based on our past findings, it is

therefore likely that one of the initial and important aspects of
the OB is to extract and process odor information that is associ-
ated with a potential threat.

Results from the modularity index, derived from the PC
analyses, indicated that the strongest link between the two time
periods and final odor valence rating was the later beta activity
occurring around 700 to 800 ms after odor onset. This is also in
line with the two-stage model (38) of odor processing in the
OB with a separation of processing between bottom-up and
top-down dependent processing. Beta oscillations are often
considered more of a “top-down”–dependent signal as opposed
to gamma oscillations, which are considered more of a
“bottom-up”–dependent signal (45–47), although it should be
made clear that beta has also been demonstrated to be initiated
in the OB during odor sampling (48). Past studies in animal
models have indeed linked gamma band processing within the
OB to intrabulb processing (39, 47), and beta processing has
been demonstrated to sometimes be dependent on centrifugal
feedback from piriform cortex (49, 50) and to be modulated by
context or past odor associations (38). Our data cannot, how-
ever, conclusively determine whether the OB activity in the
later time period originates from centrifugal information from
higher order areas. Nonetheless, we believe that the most parsi-
monious explanation is that the late beta is representing
valence-dependent signals that project back, directly or

A B

D

C

Fig. 4. Unpleasant odors elicit a fast avoidance response. (A) Experimental setup in pilot and Experiment 2. Participants stood centrally on the force plate
with their feet together, facing a wall with a fixation cross placed at their eye level. Continuous respiration was measured using a respirometer, and the
olfactometer was triggered close to the nadir of a respiration cycle to synchronize the trial onset with inhalation. (B) Bars show averaged valence rating
of unpleasant and pleasant odors during the experiment (error bars show 95% CI). (C) Valence-dependent modulation of PAM was replicated in the main
experiment in line with our preregistered hypothesis and indicating significant backward movement (i.e., beta values below zero) for unpleasant odors
500 ms after odor onset. (D) Nonsignificant correlation coefficient between PAM and respiration flow suggest that differences in breathing did not facili-
tate differences. Heatmap shows the joint distribution, and the dashed red line shows the correlation. *P < 0.05.
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indirectly, from other cerebral areas, such as the orbitofrontal,
amygdala, and piriform cortex. These projections would then
help shape the final interpretation of the odor by adding infor-
mation of past experiences (51) as well as information about
the odor object per se (52–54)—two factors that are known to
strongly influence the final odor valence percept (4, 55). None-
theless, the analysis we performed in this study was unable to
demonstrate directionality and future studies need to deter-
mine this specific question.

In our data, the early gamma and beta power in the OB
seem specifically attuned to the processing and perception of
negative odor valence with no clear demonstration that the OB
processes odors associated with a positive outcome at early
time points. This finding is in line with findings in rodents indi-
cating that the anterior OB is processing negative or aversive
odors, whereas odors with a positive valence are processed
mainly within an area downstream from the OB, the olfactory
tubercle (56, 57), an area that does not have centrifugal direct
connections with the OB (58). Whether this region-specific
valence separation in processing also occurs in humans is not
known. However, a recent study on human participants demon-
strated that, akin to rodents, pleasant but not negative odors
are preferentially processed in the olfactory tubercle (59).
Moreover, intracranial electric stimulation of the OFC, an area
previously linked to odor valence processing in humans, could
only produce pleasant odor experiences (60). This separation
between valence extremes support the 2D valence hypothesis
postulating that odor valence perception is not represented by
a unidimensional spectrum, ranging from unpleasant to pleas-
ant. Instead, a 2D space where positive and negative valence is
separated with neutral valence as the start point has been sug-
gested (32). This has also been supported by data on the
semantic distribution of odor descriptors that are commonly
divided into a positive and a negative category (32, 61). In con-
trast to the demonstrated increase in beta frequency for odors
with more negative valence as compared to odors with more
positive valence, we did not find an association between valence
and beta activity when assessing links in RSA space using a lin-
ear approach in early time points. A possible explanation for
this discrepancy might be that our t-PAC finding suggests that
the detailed odor valence information for beta is reflected in
phase and not amplitude in early time periods of OB process-
ing of the odor. Hence, it is possible that the lack of linear asso-
ciation between neural activity in beta band and odor valence
in RSA space during early time points is due to our finding that
only phase, but not amplitude, based on PAC coupling, is
linked to gamma, thereby suggesting that the coupling of ampli-
tude is critical for finding linear associations in RSA space.
Similarly, our present method may not be able to capture that
the OB also processes positive valence during early time points
due to the range of our odors used where only some mean indi-
vidual ratings reached above 70 on the 0 to 100 scale (Fig. 1B).

When studying OB function, a confounding factor is the pos-
sible effect of respiration change, modulated by odor valence.
Past studies demonstrate that unpleasant odors can modulate
the sniff magnitude (62), which in turn affects OB activity (63).
Hence, a negative odor can indirectly change OB activity by
mere modulation of respiration and not directly through recep-
tors. That said, both animal (64) and intracranial recordings in
humans (65) demonstrate that respiration mainly affects slower
frequencies in the theta/delta bands in the brain. When consid-
ering the fact that oscillations in the present data (i.e., gamma/
beta) are well separated from theta/delta bands and that no
changes were found in breathing parameters between odors (SI
Appendix, Fig. S3), it is unlikely that our findings are signifi-
cantly affected by potential differences in respiration. It should
further be noted that the EBG method requires that partici-
pants are in a nutrition-deprived state to maximize signals from

the OB, which might have an impact on the obtained results (9,
66, 67). However, this later aspect of the method can also mean
that the potential perceived reward of the odor would increase
and therefore also maximizes the likelihood of finding effects
for positive odors. Future studies where odors are either
individually selected based on their reward properties or condi-
tioned with positive outcome are needed to conclusively deter-
mine whether the human OB prioritizes processing negative
odor valence.

Results in Experiment 1 suggested the existence of an
approach/avoidance motor response occurring around 500 ms
after odor onset in a valence-dependent manner. In two sepa-
rate experiments (pilot and Experiment 2) and using a design
with preregistered hypotheses and analyses, we demonstrate
here that odors with a negative valence triggered an avoidance
response that was manifested as leaning away from the odor
source. We have previously demonstrated a similar fast avoid-
ance response in human participants to the odor of blood (10),
an odor that is treated as an approach or avoidance trigger
across species. Our current findings extend these results and
suggest that odor avoidance in humans might extend beyond
biologically important and potentially inherent signals and be a
general phenomenon that is linked to the valence of the odor
per se. Negative odors induced larger mu desynchronization
over and within the motor cortex, which is a response that pre-
viously has been demonstrated to be a measure of preparatory
motor responses to salient stimuli (33, 34). Although specula-
tive, this mu desynchronization appeared in a time period that,
when response time is factored in, corresponds to the motor
avoidance response to negative odors demonstrated in Experi-
ment 2. Moreover, this motor cortex response to the negative
odors appeared around 150 ms after the valence-related
increase in gamma and early beta activity within the OB,
thereby allowing the signal time needed to transmit the infor-
mation between the OB and motor cortex. For neutral and
pleasant odors, a similar motor movement would probably be
related to later processing. In line with this notion, rodents per-
forming a Go, No-Go task with positive reinforcement exhibit
simultaneous activity in the piriform cortex and primary motor
cortex just before executing a motor response for the Go trials.
Importantly, while these responses are seen in low and high
gamma, as well as beta activity, they are only present during the
second and the third and final sniff (68). For the first sniff
(equivalent to the data in our study), there was, however, no
response related to the motor cortex for the rewarded Go trials.
This indicates that for neutral and pleasant odors, as compared
to unpleasant, a top-down regulation from olfactory cortex and
motor cortex directly to the OB is more evident (68). Our
results suggest that the olfactory and motor systems are also
more closely linked in humans than has previously been appre-
ciated and that this, especially for unpleasant odors, may be
cued at the OB level.

It should be noted that while our results demonstrate that
the human OB processes subjective odor valence, it does not
suggest that the OB is the first processing stage of valence.
Multiple studies in humans and nonhuman animals alike show
that an odorant’s valence partially depends on its physicochemi-
cal properties (69–75). Physicochemical properties have been
shown to predict olfactory receptor neuron activation, and
based on this, it has been suggested that odor valence is, at
least partially, coded at the level of the olfactory epithelium
(74). Because the six odors in Experiment 1 were selected from
the DREAM challenge (75) to span the physicochemical
valence space, our OB activations may to some extent reflect
information from physicochemical properties originating from
receptor neurons projecting upstream to the OB (76). It is still
an open question if a peripheral valence code originating from
physicochemical properties reaches the OB and if the OB in
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turn refines the signal or keeps it unchanged. It should, how-
ever, be noted that all results linking odor valence to OB proc-
essing are based on the individual’s own valence rating and not
an a priori defined valence rank among the included odors.
Specifically, we show that perceived pleasantness is represented
uniformly across participants in the bulb at specific time
periods and frequencies in a manner that is represented by sub-
jective perception and not predefined odor classification. This
suggests that valence is processed and not merely manifested
by odor identity. Valence ratings are, to a nontrivial degree,
dependent on personal experiences. Indeed, when we assess
the relationship between individual’s RDM of odor valence rat-
ings and that of the full group, the mean similarity is 61.6%,
which means that about 38.2% of the total variance in these
valence ratings (in this case, valence ranking) is explained by
individual differences. Our choice of methods therefore
reduces, but does not eliminate, the potential impact physico-
chemical properties might have on our results in favor of sub-
jective valence perception.

Even though we can demonstrate links between the OB and
the motor cortex in a relevant time period, it should be noted
that our whole-body avoidance results are only indirectly linked
to the EEG data. For it to be directly linked, it would require
assessing EEG source signals from individuals who are freely
moving around, which is not possible with current methods for
measuring OB responses because the active electrodes strongly
amplify motion artifacts. To the best of our knowledge, no
method currently exists that would allow measures from the OB
while participants moved their full body. Moreover, it is impor-
tant to highlight that our data only covers the first sniff of an
unannounced odor. As demonstrated in rodents, OB processing
is continuously updated with each continuous sniff with marked
shifts in both neural and behavioral responses (68, 77, 78).

In summary, our results suggest that the human OB processes
odor valence. We propose that the two stages of processing of
valence in the OB are due to a reciprocal process where the ini-
tial fast gamma and beta response address negative odors based
on valence information that may be projected from the olfactory
receptor neurons (69) or learned from past aversive experiences
already coded in the OB (1). In contrast, the later beta response
seems more related to the final valence rating of the odor as well
as potential preparation of the OB’s initial gamma and subse-
quent beta responses for the second sniff of the same odor. At
this stage, the OB should be influenced by information related to
past experiences with the identity of the odor. Importantly, nega-
tive odors seem to have privileged temporal access in the human
OB. This suggests that one of the initial functions of the OB is to
process and extract early odor-based warning signals to aid the
individual’s approach–avoidance decisions.

Methods
Experiment 1: Valence Decoding from Oscillations within the OB.
Participants. In Experiment 1, 19 individuals (mean age 28.88 6 4.52,
7 women) who reported being healthy, nonsmokers, and with no history of
head trauma or neurological disorders participated in three separate record-
ing sessions (all identical). Prior to inclusion, a working sense of smell was
confirmed in all participants using a five item, four alternative, cued odor
identification test (79). All participants cleared the cutoff for inclusion of at
least three correct answers. Given the scarcity of functional anosmia in the
participants’ age range, the probability that we erroneously included individu-
als with anosmia in the experiment is less than 0.05%. The study was approved
by the national Swedish Ethical Review Authority (EPN: 2016/1692-31/4), and
all participants signed informed consent prior to participation.
Chemicals and odor delivery. In Experiment 1, six odorants were used,
namely linalool, ethyl butyrate, 2-phenyl-ethanol, 1-oceten-3-ol, octanoic
acid, and diethyl disulfide (SI Appendix). Odors were delivered birhinally using
a computer-controlled olfactometer (11), and each odor was presented 20
times in each session to participants (i.e., 60 times in total for each odor across
the three sessions). The olfactometer has an onset time of 200 ms, measured

from computer trigger to odor delivered in the nose, and a sharp rise time to
facilitate an odor presentation with high temporal precision (11). A total flow
rate of 3 L/min inserted into a constant 0.3 L/min flow to prevent tactile sensa-
tion of odor onset was used. To further avoid participants predicting odor
onset but ensure a clear percept, odor onset was (unbeknownst to the partici-
pants) triggered by their own sniff cycle. When the assigned intertrial interval
(10 s) had occurred, an odor was triggered at the nadir of the inhalation phase
in the sniff cycle following that interval, thus ensuring odor presentation at
inhalation. A relatively long intertrial interval was used to lower the risk of
odor habitation. Participants’ sniff cycle was measured by thermopod (Experi-
ment 1) and respirometer (Experiment 2) sampling at a rate of 400 Hz (Power-
lab 16/35, ADInstruments), and respiration traces for triggering of odor were
analyzed online by LabChart recording software (ADInstrument). Data were
subsequently down-sampled offline to 40 Hz and processed in MATLAB 2018a
for further analyses.
Procedure. To allow us to collect a large data set for each individual, each par-
ticipant participated in three sessions on separate days with at least 1 d and at
the most 1 mo apart. Each session consisted of three 15-min long blocks with
5-min break between each to limit odor adaptation/habituation, totaling
about 1 h per session. Participants were presented with the six different odors
in a random order and after each odor presentation, they rated how pleasant
and intense they perceived the presented odor to be. Ratings were done by
placing a marker on a labeled visual analog scale presented on the screen
ranging from 0 (very unpleasant/very weak) to 100 (very pleasant/very strong).
Electroencephalography, EBG, neuronavigation measurement. Sixty-four
EEG scalp electrodes were placed according to international 10/20 standard
and an additional four EBG electrodes on the forehead (9). Signals were sam-
pled at 512 Hz using active electrodes (ActiveTwo, Bio-Semi) and the recording
from both 64 EEG and 4 EBG electrodes was used to interpolate surface poten-
tials on scalp as well as forehead. Subsequently, these recordings were used to
reconstruct OB time course on the source level. Electrode offsets were manu-
ally checked prior to experiment onset, and electrodes were adjusted until
meeting the a priori established criteria (<40 mV). Next, the position of all the
electrodes in stereotactic space was determined using an optical neuro-
navigation system (Brain-Sight, Rogue Research); for more details, please see
ref. 9.
EBG/EEG data analysis. Preprocessing. Data were epoched from 500 ms pres-
timulus to 1,500 ms poststimulus, rereferenced to average of activity at all
electrodes, linear phase bandpass filtered at 1 to 100 Hz (Butterworths fourth
order), and power-line interference filtered using discrete Fourier transform
filtering at electrical frequency (50 Hz) to remove power-line noise. Trials with
large muscle and eye blink artifacts were identified with an automatic algo-
rithm. The artifact detection protocol consisted of bandpass filtering using
Butterworth filter (fourth order), Hilbert transform to extract amplitude val-
ues, and z-scoring. Trials with z-values above 4 were marked and removed
from further analysis.

OB time course extraction. To extract OB’s response time course, digitized
electrode positions were first used to coregister the participant’s head to a
default Montreal Neurological Institute (MNI) brain using a six-parameter
affine transformation. Second, a headmodel was constructed based on amul-
tishell spherical headmodel. Spherical volume conductors were considered for
scalp, skull, gray matter, and white matter with the conductivity of 0.43, 0.01,
0.33, and 0.14 (9). The covariance matrix of 64 scalp and 4 EBG electrodes dur-
ing the 1 s odor presentation were regularized by 10% prior to being fed into
eLORETA algorithm to estimate the time course of the dipole placed in (x6 6,
y 30, z �32) on trial level, which corresponds to OB location (9, 80). The maxi-
mum projection of the dipoles’ time course over three principal axes was
computed to serve as OB activity. eLORETA analysis was carried out in the
open-source Fieldtrip toolbox 2018within MATLAB R2019b (81).

Time-frequency analysis of OB signal. After extracting the OB’s response
time course, we assessed the difference in power evolution of the two most
unpleasant and pleasant odors. The time-frequency map for broadband fre-
quencies [1∼100 Hz], with step of 1 Hz and interval [�0.1∼1 s] with step of
0.005 s, was estimated using a multitapered sliding window from discrete pro-
late spheroidal sequences (DPSS). The window length was adjusted to cover at
least three cycles for each frequency, ranging 0.3∼3 s. Next, the time-
frequency map of each trial was assessed and converted to decibels. Finally, to
create the contrast map, the most unpleasant and pleasant category, each
consisting of two odors, was determined on the individual level based on par-
ticipants’ valence ratings and contrasted against each other.

Mu rhythm and source localization. Similar to time-frequency analysis of OB
signal, the mu rhythm power for all scalp electrodes were estimated using
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multitapered sliding DPSS widow for mu frequency range [10∼13 Hz] with
step of 0.5 Hz and time interval of 0.3∼0.4 s with step of 0.005 s. Likewise to
OB time-frequency analysis, the window lengths were chosen to cover at least
three cycles of mu rhythm. Next, the mu power for the two most unpleasant
and pleasant odors were estimated, baseline corrected, and converted to deci-
bels. Finally, a topographical map was created and nonparametric statistics
were performed to create contrast and find channels that were significantly
different in mu power. Source localization was performed similar to the OB
source localization, and after coregistration of electrodes to default MNI
brain, a spherical head model with four tissue types was created. The cross-
spectral density matrix of electrodes during the 0.3∼0.4 s after the odor onset
were regularized by 10% and fed into eLORETA to localize the source of
mu rhythm.

t-PAC. t-PAC of the extracted OB response time course was analyzed between
gamma and beta bands with window length 250 ms and 50% overlapping.
The gamma band [30∼100 Hz], discretized to 20 frequency bins, and the
instantons amplitude were extracted using Hilbert transform at each fre-
quency bin. Similarly, using Hilbert transformation , the instantaneous phase
of slower oscillations (i.e., beta [12∼30 Hz]) was computed, and t-PAC for each
time bin was calculated as the power ratio of the composite signal of instanta-
neous amplitude of faster oscillation and phase of slower to the faster oscilla-
tion during the window interval on the individual level (25). Moreover, we
quantified the comodulogram level between the outcome of t-PAC with a
slower band to isolate a range of slower frequencies that are coupled to iden-
tified gamma. t-PAC analysis were carried out in BrainStorm toolbox within
MATLAB R2019b (82).

RSA. We used RSA to assess the relationship between the odor valence rating
and neuronal population activity of OB in two prominent odor-related fre-
quencies, gamma and beta. To limit our statistical tests and minimize the
potential false positive error, we only include the frequencies of gamma and
beta bands in the RSA analysis that were found to be coupled in the t-PAC
analysis. The RDMs for whole 1 s of odor stimuli were compared between the
behavioral and OB response in a searchlight framework on the individual
level. In line with a multidimensional scaling method (14), the so-called DISTA-
TIS method, we constructed a consensus RDM to represent the group level. To
determine the potential relationship between neural and perceptual RDMs,
values above the diagonal line of the matrices was assessed using all possible
permuted (i.e., shuffling the labels of odors; given 6 odors, the total possible
combinations is 720) partial Pearson correlation to avoid inflated correlation
due to symmetry of RDMs (Fig. 1A). The group-level RDMs were subsequently
scaled down using eigenvector decomposition into two main axes. The dis-
tance matrices were converted to similarity matrices by inversing the distance
matrix after added by 1, and modularity indices (Q) were computed using the
Newman method (30) given three clusters. The three clusters were identified
using a hierarchical clustering of valence rating, varying the number of clus-
ters from 1 to 6 and estimating the knee of the modularity curve where the
knee of the curve was estimated as the furthest point from the linear approxi-
mation. RSA analysis and community detection were performed in the open-
source CoSMoSMVPA toolbox (83) and MATLAB Network Toolbox (https://
github.com/ivanbrugere/matlab-networks-toolbox).
Statistical analysis. We assessed the statistical difference in power evolution
between the two most unpleasant and pleasant odors, as well as scalp mu
rhythm, using a nonparametric statistic. The time-frequency maps of unpleas-
ant and pleasant odors of OB signal and scalp electrodes were computed
using multitapered sliding windows and compared using 5,000-permutation
Monte Carlo tests to find significance time/frequency bins or channels. To stat-
ically test the relationship between the brain data and valence rating in RSA,
RDMmatrices at each time point were shuffled through all possible combina-
tions. In each iteration, partial Pearson correlation between neural and per-
ceptual valence was computed with intensity as nuisance covariates. To
extract the exact P value from the permutation test, we computed the number
of times the actual partial Pearson correlation was bigger than shuffle data
out of total permutations (720). Similarly, for t-PAC analysis, nonparametric
Monte Carlo 5,000 permutation tests were performed for the OB coupling
value at each time-frequency bin against baseline (250 ms prestimulus), and
exact P valuewere extracted. The subsequent t-mapwas smoothed, while pre-
serving the shape, for illustration purposes.

The distance matrices at the instances of significant correlation with
valence for both gamma and beta were scaled down to first and second PCs
(i.e., PC1 and PC2), and Newman modularity was calculated to assess whether

the tested odors clusters comply with valence rating. To statistically test the
Newman index Q, the modularity of similarity matrices was compared with
the null model for each correlation peak. The null model was generated by
5,000 times rewiring of the adjacency (similarity) matrix while persevering
weight, degree, and strength distribution using the Brain Connectivity Tool-
box within MATLAB R2019b (84, 85). Later, the actual modularity index was
compared with the null distribution. In the post hoc analysis to assess effects
on premotor responses, we extracted data in the time interval 300 to 400 ms
after odor onset. We tested if the preparatory response for motor action we
observed in Experiment 2 could be found in this experiment, even though
here, participants were sitting in a chair and instructed to sit as still as possible.
The power of mu synchronization/desynchronization was predicted using a
generalized linear model having valence and intensity as predictors for each
electrode on the scalp and yielding in beta maps on the individual level. Sub-
sequently, the beta maps were statically tested on the group level via the Stu-
dent’s t test.

Experiment 2: Odor Valence–Dependent Approach/Avoidance Responses.
Participants. Given that links between perceived odor valence and approach/
avoidance motor responses had not been previously assessed, we initially per-
formed a structured pilot experiment to explore the time period of interest of
the motor response, the result of which was later used as a priori defined tem-
poral regions of interest in Experiment 2. In the pilot experiment, a total of 21
individuals (age = 28.71 6 5.84, 11 women) participated. In the subsequent
Experiment 2, a total of 44 individuals (age = 25.526 4.01, 26 women) partici-
pated. Inclusion criteria (including passing the anosmia screening test) were
the same as described for Experiment 1. The studies were approved by the
local ethical review board (EPN: 2016/1692-31/4), and all participants signed
informed consent prior to their participation.
Odors and delivery method. In both the pilot and main experiments, odors
were piloted and presented as described in Experiment 1 but using slightly
different odors. In the pilot experiment, four odors were used, namely straw-
berry, carvone, fish odor, and ethanethiol. To limit odor dependency, straw-
berry was substituted with vanillin and ethanethiol with diethyl disulfide in
the main experiment (SI Appendix). Odors were presented identical to Experi-
ment 1 and, unbeknownst to the participants, triggered by their sniff cycle
(Fig. 4A).
Body sway measurement. Participant’s body microsway was assessed with a
force plate (AccSwayPlus, AMTI Massachusetts) assessing eight axes of motion.
The force plate was initially allowed to warm up for a few minutes, after
which it was zeroed, and a 25-s period of unloaded baseline was initially
recorded for calibration purposes.
Procedure. Participants stood in the center of the force plate with their feet
together, facing a wall where a fixation cross was placed at eye height about
70 cm away from their face. The height of the fixation cross was adjusted for
each individual according to the participant’s height. Their arms were posi-
tioned alongside the body, and they were instructed to avoid performing
redundantmovement (Fig. 4A). See SI Appendix for more information.
Statistical analyses. Posterior-anterior angular momentum extracted from
the body sway data recorded by the force plate was assessed according to a
calibration matrix provided by the force plate vendor. In the pilot study (n =
21), event-related responses of the PAM were calculated for five time points
during the odor interval with steps of 0.25 s to identify the time point of inter-
est. LMMwith participant intercept and random slope of odor were fitted for
the three time points. Having determined the time point of interest, we
repeated the experiment in a completely new data set with bigger sample
size and fitted LMMwith the exact similar design. Moreover, as a control anal-
ysis, we examined if respiration correlates PAM by means of Pearson correla-
tion at the time point of interest. The analysis was repeated in a Bayesian
framework as supplementary analysis. See SI Appendix for more information.

Data Availability. EEG and behavioral data as well as all scripts have been
deposited in the Open Science Framework (https://osf.io/c8u39/?view_
only=ebb85532e1064d128db79bacb6be27f8).
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