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PTH2R is related to cell proliferation 
and migration in ovarian cancer: a multi‑omics 
analysis of bioinformatics and experiments
Wang Xiaowei1†, Lu Tong3†, Qu Yanjun1 and Fan Lili2*   

Abstract 

Background:  Ovarian cancer is a common gynecological disease and seriously endangers women’s health. Currently, 
there is still a lack of effective molecular markers for the diagnosis and treatment of ovarian cancer. The present study 
aimed to investigate the molecular markers associated with ovarian cancer.

Methods:  The molecular and gene related to ovarian cancer were extracted from GEO database and TCGA database 
by bioinformatics, and the related genes and functions were further analyzed. The results were verified by qPCR, WB, 
CCK-8 and Transwell experiments.

Results:  Data analysis showed that PTH2R gene was highly expressed in tumors, and 51 HUB genes were obtained. 
Finally, experimental verification showed that PTH2R gene was highly expressed in ovarian cancer, and PTH2R gene 
was involved in the proliferation, invasion and metastasis of ovarian cancer cells.

Conclusions:  After experimental verification, we found that knocking down the expression of PTH2R can inhibit the 
proliferation, invasion and migration of tumor cells.PTH2R is expected to become a new molecular marker for ovarian 
cancer.
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Background
Ovarian cancer is one of the three malignant gynecologi-
cal tumors. Although ovarian cancer is less common than 
either cervical or endometrial cancers, its mortality rate 
exceeds that of cervical and endometrial cancers com-
bined. [1, 2] The 5-year survival rate for ovarian cancer 
is < 40%, making it one of the deadliest gynecological 
tumors. [3] Its lethality mainly arises from its aggressive 
nature and from the difficulty of achieving early diagno-
sis. As a result, most patients develop highly metastatic, 
invasive disease in later stages [4]. Ovarian cancer is 

highly heterogeneous and adenocarcinoma accounts for 
the majority of malignant tumors. Current treatment 
strategies include platinum- and taxane-based chemo-
therapy, as well as neoadjuvant chemotherapy after sur-
gical resection. Unfortunately, most patients relapse or 
develop drug resistance within 36 months. [5] At present, 
the molecular etiology of the ovarian cancer remains elu-
sive; thus, finding effective biomarkers for the diagnosis 
and treatment of ovarian cancer is a priority.

In recent years, with the development of sequenc-
ing technology, bioinformatics has come to play an 
important role in revealing the occurrence and devel-
opment of tumors [6, 7]. In the past, many research-
ers did not have direct access to sequencing data, due 
to sample or funding constraints. Now, however, an 
increasing number of researchers are uploading their 
microarray or sequencing data to public databases, 
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allowing oncology-related researchers around the 
world to download and process data to reveal the 
underlying pathogenesis of tumors. Among these, the 
Gene Expression Omnibus (GEO) [8] and The Can-
cer Genome Atlas (TCGA) databases [9] are the most 
widely used. The GEO database contains raw micro-
array and sequencing data uploaded by numerous 
researchers, as well as data from a variety of molecu-
lar types, including mutation, messenger ribonucleic 
acid (mRNA), non-coding RNA, and other transcrip-
tome and methylation data. A large number of studies 
have analyzed public data from GEO; many have used 
multi-data set joint analysis to find important regula-
tory molecules. For instance, Bi et  al. used GSE17260 
and GSE73614 to develop a glycolysis-related prog-
nostic signature in ovarian cancer [10]. In addition, Jin 
et  al. identified CXCL10 gene as promising biomarker 
for ovarian cancer immunotherapy [11]. TGCA data-
base is also widely used in oncology studies; it is a 
pan-cancer project hosted by the National Institutes of 
Health (NIH), providing a wide variety of tumors and 
different molecular data types that can be downloaded 
and analyzed. In the past few years, most studies have 
focused on RNA sequencing (RNA-Seq) analysis, such 
as mRNA and non-coding RNAs [12–15]. Recently, fol-
lowing the updating of old algorithms and the discov-
ery of new ones, CIBERSORT, MCPcounter, and other 
algorithms have been used to assess tumor immune 
cell infiltration. Meanwhile, ESTIMATE has been used 
to assess the scores of Immune and stromal cells in the 
tumor microenvironment [16–18].

Exploring public databases has revealed many mol-
ecules that are highly expressed in ovarian cancer, 
such as CXCL10 [11], MMP16 [19], MCUR1 [20], 
MRPL15 [21] etc. In combination with multiple data 
sets, the expression of the gene Parathyroid Hormone 
2 Receptor (PTH2R) has been shown to be significantly 
elevated in ovarian cancer. To further mine PTH2R-
related data, here relevant information was classified 
into high or low expression PTH2R groups, according 
to the expression value of PTH2R. Further analyses of 
these groups, such as mutation characteristics, copy 
number variation (CNV), drug resistance character-
istics, and immune infiltration, were conducted to 
explore PTH2R-related genes and functions from the 
perspective of various data. Furthermore, quantitative 
polymerase chain reaction (qPCR), western blot (WB), 
Cell Counting Kit 8 (CCK-8), and transwell assays 
were conducted alongside other experiments to verify 
the expression and function of PTH2R. Bioinformat-
ics analysis and experimental verification revealed that 
the high expression of PTH2R can promote the growth, 
invasion, and metastasis of ovarian cancer. PTH2R may 

therefore be useful as a potential biomarker for ovarian 
cancer in the future.

Materials and methods
Sample source
Ovarian cancer tissue (n = 12) and normal ovarian tissue 
(n = 12) samples were collected from gynecology depart-
ment in The First affiliated Hospital of Harbin Medi-
cal University, from 3 to 9 months in 2020. None of the 
patients were treated before undergoing surgery. The sur-
gically resected specimens were immediately placed in 
liquid nitrogen and then transferred to a −80 °C refriger-
ator for storage. All patients in the study provided written 
informed consent for the biological study. The research 
protocol (including specimen collection) was reviewed 
and approved by the Biomedical Ethics Committee of 
The First Affiliated Hospital of Harbin Medical Univer-
sity (Batch Number: 2022JS01), All procedures were con-
ducted in accordance with the Guidelines of the World 
Medical Association Declaration of Helsinki. The clinico-
pathological staging and typing of the patients met the 
Joint Council on Cancer (AJCC) typing criteria.

Public data acquisition and preprocessing
Using R software (Version 4.1.0,  http://r-​proje​ct.​org/) 
the “GEOquery” package [22] from the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) was applied to 
download the GSE18520 and GSE66957 ovarian expres-
sion datasets. The samples in these datasets were sourced 
from Homo sapiens, and the platform is based on the 
GPL570 (HG-U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array. The GSE18520 dataset includes 63 
samples from 53 ovarian cancer patients and 10 normal 
samples. GSE66957 includes 57 samples and 12 Normal-
ovarian samples from 69 ovarian cancer patients within 
the dataset. All these data were included in this study.

In addition, count data of ovarian cancer RNA-Seq, 
single nucleotide polymorphism (SNP) data, and match-
ing clinical data (n = 379) were downloaded from TCGA 
database  using Genomic Data Commons (GDC) soft-
ware (https://​portal.​gdc.​cancer.​gov/​proje​cts/). As there 
is no normal control for ovarian cancer in TCGA, here 
the obtained TCGA data were combined with GTEx to 
obtain normal ovarian control download samples (n = 88) 
and ovarian cancer samples (n = 427). RNA-Seq count 
data were obtained through the University of California 
Santa Cruz (UCSC) Xena browser (https://​xenab​rowser.​
net/​datap​ages/; the data were corrected in batches).

Screening of differentially expressed genes (DEGs)
The differentially expressed genes (DEGs) of the 
GSE118520 dataset were downloaded through the R 
package “limma” [23], following which the package 

http://r-project.org/
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“ggplot2” was used to draw a volcano map of the DEGs 
to show their differential expressions. DEGs were con-
sidered significant when they met the thresholds of 
P < 0.05 and |log2FoldChange|> 1. Subsequently, DEGs 
in ovarian cancer and normal samples in the combined 
TCGA-GTEx dataset were screened using the R pack-
age “Deseq2” [24], using the same thresholds as detailed 
above. Taking the intersections of the DEGs obtained 
from the two data sets, the candidate gene of interest was 
then selected for subsequent analysis.

Mutation and CNV analysis
The somatic mutation data of TCGA-OV patients were 
extracted by using the R package “maftools” [25]. Somatic 
mutation data of patients in the high and low gene 
expression groups were then collected and analyzed.

To analyze the changes in CNVs in TCGA-OV patients 
within the high gene expression group, the R package 
“TCGAbiolinks” [26] was used to download the “Masked 
Copy Number Segment” data of patients. GISTIC 2.0 
analysis of the downloaded CNV fragments was then 
conducted through GenePattern (https://​cloud.​genep​
attern.​org) [27].

Weighted gene co‑expression network analysis (WGCNA)
The R package “WGCNA” [28] was used to analyze the 
GSE18520 and TCGA-OV datasets. The samples were 
divided into high and PTH2R low expression groups. 
The standardized data were then used to construct a co-
expression network. For all functions in WGCNA, the 
correlations of double weights were used as the correla-
tion method. A topological overlap metric (TOM) was 
used for network construction and module identifica-
tion. The calculation parameters minModuleSize = 50 
and mergeCutHeight = 1,000 were used to analyze data. 
Ultimately,  the hub genes were obtained from the inter-
section of the genes in the module with the highest sig-
nificance, and using the previously obtained DEGs.

Functional enrichment analysis
Gene ontology (GO) analysis is commonly used to con-
duct large-scale functional enrichment studies, including 
biological process (BP), molecular function (MF), and 
cellular component (CC) [29]. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) is a widely used database 
that stores information about genomes, biological path-
ways, diseases, and drugs [30]. Here, GO annotation and 
KEGG pathway enrichment analyses were performed on 
the hub gene using the R package “clusterProfiler” [31]. A 
critical value of false discovery rate (FDR) < 0.05 was con-
sidered to imply statistical significance.

Gene Set Enrichment Analysis (GSEA) is a calcula-
tion that analyzes whether a particular set of genes is 

statistically different between two biological states. It is 
commonly used to estimate changes in the activities of 
pathways and biological processes in sample expression 
datasets. Here, GSEA was conducted to study the dif-
ferences in biological processes between groups based 
on the gene expression profile data set of TCGA-OV 
patients [32]. The gene set “c2.cp.kegg.v7.2.symbols” was 
downloaded from the MSigDB database [33] for GSEA, 
and FDR < 0.25 and P < 0.05 were considered to represent 
a significant enrichment.

Drug sensitivity analysis
The CellMiner database (https://​disco​ver.​nci.​nih.​gov/​
cellm​iner/) is a web-based tool that contains genomic 
and pharmacological information for researchers to use 
transcripts and drug response data from the NCI-60 cell 
line [34]. The data were compiled by the National Cancer 
Institute. CellMiner provides transcriptional expression 
levels for the drug responses of 22,379 genes, 360 micro-
RNAs, and 20,503 compounds [35]. The mRNA expres-
sion profiles and drug activity data including the PTH2R 
gene were downloaded from the CellMiner database. The 
correlation between PTH2R gene expression and com-
pound sensitivity was calculated through Pearson’s cor-
relation analysis. P < 0.05 was considered to represent 
statistical significance.

The Genomics of Drug Sensitivity in Cancer (GDSC) 
database(www.​cance​rrxge​ne.​org/)can be used to search 
for tumor drug response data and genome sensitive 
markers [36]. Here, the pRRophetic algorithm [37], the 
ridge regression model, and IC50 were used to predict 
the sensitivities of the high and low PTH2R expression 
groups to common anticancer drugs.

Immune cell infiltration analysis and tumor 
immunoanalysis
CIBERSORT (http://​CIBER​SORT.​stanf​ord.​edu/) and the 
LM22 characteristic gene matrix were used to predict the 
proportions of 22 immune cells in all samples within the 
predicted dataset [38]. CIBERSORT was used to assess 
the abundances of 22 immune cells in TCGA-OV data-
set, and to calculate the correlations between these 22 
kinds of immune cells. Then, by integrating candidate 
gene expression, spearman’s correlations were calculated 
between the gene expression and these immune-infiltrat-
ing cells, with P < 0.05 being considered to represent sta-
tistical significance.

Cell culture
The following three cell lines were used in this study: the 
human ovarian cancer cell lines SK-OV3 and A2780, nor-
mal ovarian surface epithelium cell line IOSE-80. All cell 
lines were purchased from the American Type Culture 
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Collection (Manassas, VA, USA). All cells were cultured 
in high glucose Dulbecco’s modified Eagle’s Medium 
(DMEM, Corning) treated with 10% fetal bovine serum 
(FBS;  Hyclone) and 1% penicillin/streptomycin solution 
(Invitrogen) in a 37 °C humidity, 5% CO2 incubator.

Real‑time fluorescence qPCR
Total RNA was extracted using RNAiso Plus reagent 
(Takara Bio, Kusatsu, Japan). RNA concentration and 
purity were assessed using a NanoDrop 2000 system 
(Thermo Fisher, Carlsbad, CA, USA). Reverse transcrip-
tion was then performed using the PrimeScript™ RT 
reagent kit with gDNA eraser (Perfect Real Time; Takara 
Bio). The SYBR® Premix Ex AQ ™ II (Tli RNaseH Plus; 
Takara Bio) in ABI 7500 Fast System (Life Technolo-
gies, Carlsbad, CA,  USA) was used for real-time qPCR; 
Primers 5ʹ - GAG​GAA​CAG​TGG​GGA​AAA​TATCG -3ʹ 
(Forward) and 5ʹ - TGG​GGT​TAC​AGT​GTC​GGA​AAG’ 
(Reverse) were used for amplification of the entire human 
PTH2R coding sequence (GenBank accession number 
NM_005048), sequences used for human GAPDH were 
GGA​GCG​AGA​TCC​CTC​CAA​AAT -3ʹ (Forward) and 5ʹ- 
GGC​TGT​TGT​CAT​ACT​TCT​CATGG’ -3ʹ (Reverse). The 
2−ΔΔCt method was used to calculate gene expressions.

Plasmid transfection
The PTH2R gene was amplified from HEK293T by stand-
ard PCR and then subcloned into pcDNA3.1-HA vector. 
All plasmids were sequenced. Lipofectamine 2000 (Invit-
rogen) was used for transfection, according to manufac-
turer’s instructions.

Cell proliferation detection
The CCK-8 assay (CCK-8 SAB Biotech. College Park, 
MD, USA) was used to detect cell proliferation. Accord-
ing to the manufacturer’s protocols, the cells were seeded 
into six-well plates at a density of 1.0 × 105 cells per 
well, and were then cultured in medium supplemented 
with 5% FBS for 24 h (at 37 °C and 5% CO2). Then, 24 h 
after transfection, the cells were digested with trypsin 
and inoculated in triplicate into 96-well plates (3 × 104 
cells per well). Each well was incubated with 10 μL/well 
CCK-8 solution for 2 h every day, for a total of 5 d. The 
optical density at 450 nm was measured on a microplate 
reader. Three independent replications were performed.

Transwell invasion and migration experiments
Transwell experiments were divided into transwell 
migration and transwell invasion experiments. The basic 
operations were as follows: transwell cells were placed 
into a 24-well culture plate, the chamber is referred to 
herein as the superior chamber and the culture plate is 
referred to as the lower compartment. The cells were 

then digested in a serum-free medium, following which 
the cell density was adjusted to 1 × 106 cells/mL and the 
sample was inoculated in the upper chamber. Dulbecco’s 
Modified Eagle Medium (DMEM) containing 10% FBS 
was then added to the lower chamber. Transwell invasion 
assays were performed by precoating the upper mem-
brane with 40 µL of matrix glue (BD Biosciences, USA); 
the cells were fixed with 4% paraformaldehyde and were 
washed with phosphate buffer solution (PBS) after 24 h. 
Then, they were stained with 0.1% crystal violet (Solar-
bio, China) and representative images were observed 
at × 100 and × 200 magnification with an optical micro-
scope (Olympus, Tokyo, Japan). Five non-repeating fields 
per chamber were selected for photography and counted.

Clone formation experiment
The cells were digested with 0.25% trypsin until indi-
vidual cells were obtained; the cell suspension was then 
diluted to a concentration of 1 × 104 cells/mL. Then, 
1,500 cells from the medium were added to each well of 
a six-well plate and incubated at 37 °C in 5% CO2. When 
the clones are visible to the naked eye in the six-well 
plate, cell culture was stopped and the cells were fixed in 
4% paraformaldehyde for 15 min. Crystal violet staining 
was then performed, and the number of clones for which 
there were more than 50 cells was counted using an opti-
cal microscope.

Immunohistochemical test
Immunohistochemistry (IHC) was conducted accord-
ing to the antibody supplier’s instructions. Sections of 
clinical samples were incubated overnight at 4  °C with 
a PTH2R primary antibody at different dilution ratios. 
Images were captured at appropriate magnification under 
an optical microscope (Nikon Microsystems, Shanghai, 
China). The antibody used in this study was anti-PTH2R 
(Chemicon International and GenWay Biotech).

Western blot
Total cellular proteins were extracted using radioimmu-
noprecipitation assay (RIPA) lysates (Beyotime, Shanghai, 
China). Proteins were isolated and transferred to polyvi-
nylidene fluoride (PVDF) membranes (Millipore, Temec-
ula, CA, USA) by using 7.5% or 10% sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). 
The membrane was sealed with primary resistance to 
PTH2R (Chemicon International and GenWay Biotech) 
at 4  °C overnight, following which the membrane was 
then washed and incubated with secondary antibod-
ies. Protein bands were detected using enhanced chemi-
luminescence (Thermo Scientific Carlsbad, CA, USA).
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Statistical analysis
All data processing and analysis were completed by R 
software (version 4.0.2). For the comparison of the two 
groups of continuous variables, the statistical signifi-
cance of the normally distributed variables was estimated 
using the independent Student t test, and the differences 
between the non-normally distributed variables were 
analyzed using the Mann–Whitney U test (i.e. Wilcoxon 
rank-sum test). The Chi-square test or Fisher’s exact test 
was used to compare and analyze the statistical signifi-
cance between the two groups of categorical variables. 
P < 0.05 was considered statistically significant.

Results
High expression of PTH2R gene in tumors
The work flow is shown in Fig.  1. Screening and sort-
ing of ovarian cancer data from the GEO database and 
sequencing data from TCGA (combined with the GTEx 
dataset) revealed that PTH2R was differentially expressed 
in the GSE18520, GSE66957 and TCGA-OV datasets; 
it was significantly highly expresses in tumor tissue 
(Fig.  2A–C). PTH2R, which is also known as PTHR2, 
has recently been found to regulate intracellular calcium 

and influence keratinocyte differentiation [39]. To date, 
PTH2R has not been studied in ovarian cancer, however, 
so here PTH2R was chosen as the study object. The func-
tion of PTH2R was explored and verified through subse-
quent analyses and experiments.

ROC analysis showed that the samples of the two data-
sets (GSE18520 and TGCA-GTEx) could be better distin-
guished after grouping them according to the expression 
of PTH2R (Fig. 1D, E). Comparing the DEGs in the high 
and low PTH2R expression groups revealed that the 
2,448 genes were differentially expressed in GSE1850, 
while 1,984 DEGs found in TCGA-OV (Fig. 2F–I).

Mutation and copy number variation analysis of PTH2R
In the high PTH2R expression group, significant muta-
tions were observed in the TP53, TTN, CSMD3, AHANK 
and DNAH10 genes; they were 96%, 24%, 12%, 6% and 
6%, respectively. In the low PTH2R expression group, 
significant mutations were observed in the TP53, TTN, 
MUC16, BRCA1and FAT3 genes; they were 87%, 22%, 
10%, 7% and 7% (Fig. 3A–B). Based on the mutation sites 
of PTH2R, the mutation information could be plotted 
(Fig. 3C).

In addition, by collating CNV information of TCGA-
OV, it was possible to calculate CNV changes in the high 
PTH2R expression group (using GISTIC 2.0; Fig.  3D), 
revealing that the 3q26.2, 5q13.2, 8q24.21 and 19p13.3 
locus of said group changed significantly.

WGCNA
By associating module feature genes with grouping infor-
mation for both datasets, WGCNA revealed that 9 fea-
ture modules were determined in TCGA-OV. There were 
3 modules with significant positive correlations and 6 
modules with significant negative correlations (Fig.  4A, 
B). Furthermore, 11 feature modules were determined in 
GSE18520: there were 3 modules with significant positive 
correlations and 8 modules with significant negative cor-
relations (Fig. 4D, E). The greater the correlation coeffi-
cient, the greater the correlation with PTH2R expression. 
Subsequently, the MEpink module with the largest corre-
lation coefficient in TCGA-OV and the MEbrown mod-
ule with the largest correlation coefficient in TCGA-OV 
were selected, as shown in Fig. 4C and F.

Functional enrichment analysis
Intersecting the genes in the module with the previ-
ously obtained DEGs resulted in the identification of 
51 hub genes. Functional enrichment analysis was con-
ducted for these hub genes, with GO revealing that the 
DEGs were closely related to the detection of chemi-
cal stimulus involved in sensory perception of smell, 
sensory perception of smell, detection of chemical Fig. 1  The visual flow-process diagram of this study
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stimulus involved in sensory perception and snRNA 
3’-end processing biological processes (Fig.  5B). 
KEGG functional analysis indicated that the differen-
tially expressed genes mainly affected the Pathogenic 
Escherichia coli infection, Cardiac muscle contraction, 

Olfactory transduction and Amyotrophic lateral scle-
rosis pathways (Fig. 5C). The GSEA results showed that 
REACTOME_ANTIMICROBIAL_PEPTIDES, REAC-
TOME_NEUTROPHIL_DEGRANULATION, REAC-
TOME_INTERLEUKIN_10_SIGNALING etc. pathways 

Fig. 2  PTH2R is overexpressed in tumor. A The TCGA_OV dataset revealed that PTH2R was highly expressed in tumor tissues. B The GSE18520 
dataset revealed that PTH2R was highly expressed in tumor tissues. C The GSE66957 dataset revealed that PTH2R was highly expressed in tumor 
tissues. D–E The ROC curve of TCGA_OV and GSE18520 dataset according to the expression of PTH2R. FI. The volcano plots and heatmaps showed 
the differentially expressed genes in TCGA_OV and GSE18520
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were significantly enriched in high PTH2R group, while 
REACTOME_CLASS_C_3_METABOTROPIC_GLU-
TAMATE_PHEROMONE_RECEPTORS, REACTOME_
GLUCURONIDATION etc. were mainly enriched in low 
PTH2R group (Fig. 5D, E).

Drug sensitivity analysis and drug prediction
Sorted by relevance, the top eight drugs most associated 
with PTH2R were selected. As shown in Fig. 6A, PTH2R 
was negatively correlated with Epothilone B, Alvespimy-
cin, Tanespimycin, geldanamycin analog, Actinomycin D, 
Mithramycin, Depsipeptide and Pelitrexol.

In addition, IC50 value analysis of the high and low 
expression PTH2R groups using the GDSC database 
revealed that common anti-tumor drugs such as Doc-
etaxel, Gefitinib had no significant difference, whereas 
Cisplatin, Lapatinib etc. did have a difference (Fig. 6B).

Effect of PTH2R gene on immune cell infiltration 
in TCGA‑OV patients
To analyze the relationship between PTH2R gene 
expression and immune cell infiltration in TCGA-OV 

microenvironment, the proportion of immune cell inva-
sion in the tumor microenvironment was calculated 
using the CIBERSORT algorithm. Figure 7A and B pre-
sent landscape of immune cell infiltration in TCGA-OV 
tumor microenvironment and the correlation results of 
the immune cell score, respectively. PTH2R was found to 
be significantly positively correlated with Plasma cells, T 
cells follicular helper, Eosinophils etc. and negatively cor-
related with Dentritic cells resting, Neutrophils, NK cells 
activated.

Moreover, the comparison between high and low 
PTH2R expression group on TMB and MSI showed that 
TMB was significantly increased in the high PTH2R 
expression group ( p = 0.013), while the MSI showed no 
significant difference. (Fig. 7D and E).

PTH2R gene expression verification
Comparing the PTH2R gene expression levels in ovar-
ian cancer and normal tissues, and in the ovarian cancer 
cells and normal ovarian epithelial cells, revealed that the 
expression of PTH2R was significantly higher in ovarian 
cancer tissues and cells than in normal ovarian tissues 

Fig. 3  The alteration of mutations and copy number variation in high PTH2R expression group and low PTH2R expression group. A The top 30 
mutation genes in high PTH2R expression group. B The top 30 mutation genes in low PTH2R expression group. C. The mutation sites information of 
PTH2R. D The CNV in the PTH2R high expression group
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and cells (Fig. 8A and B). Subsequently, western blot and 
IHC results also showed that PTH2R protein expression 
was significantly both higher in tumor than in normal tis-
sues and cells (Fig. 8C–E, Additional file 1: Fig S1); this 
result is consistent with the expression trend of PTH2R 
in RNA-Seq data observed in the previous database.

Inhibition of proliferation, invasion, and metastasis 
of ovarian cancer cells by PTH2R knockdown
First, we tested the knockdown efficiency of PTH2R in 
ovarian cancer cells, and found that knocking down with 
sh-PTH2R reduced the expression of PTH2R more than 
half in A2780 and SKOV3 cell. (Additional file  2: Fig. 

Fig. 4  WGCNA analysis. A The lowest power for which scale independence in TCGA_OV dataset. B Repeated hierarchical clustering tree. C The 
associations between phenotypes and the modules in TCGA_OV dataset. E The lowest power for which scale independence in GSE18520 dataset. F 
Repeated hierarchical clustering tree in GSE18520. G The associations between phenotypes and the modules in GSE18520 dataset
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S2A and B) The proliferation ability of PTH2R on ovar-
ian cancer cells was detected by CCK-8 assay, revealing 
that compared with the control group, the decreased 
expression of PTH2R reduced the A2780 and SKOV3 
proliferation activity  (Fig.  9A and B). Similarly, the col-
ony formation assay revealed that the downregulation 
of PTH2R inhibited the colony formation of A2780 and 
SKOV3 cells, compared with the control group (Fig. 9C). 
Subsequently, transwell invasion and migration experi-
ments further demonstrated that PTH2R downregula-
tion significantly reduced the invasion and migration of 
tumor cells (Fig.  9D and E). In conclusion, the PTH2R 

gene was found to be involved in the proliferation, inva-
sion, and metastasis of ovarian cancer. This result further 
validates the results of the bioinformatical analysis.

Discussion
Ovarian cancer is the most malignant cancer among 
diseases of the female reproductive system, account-
ing for more than 90% of ovarian cancer deaths. If epi-
thelial ovarian cancer is identified at stage II or III, the 
estimated 5-year mortality rate is ~ 70% [40]. Currently, 
the standard treatment for patients with advanced ovar-
ian cancer comprises cytolytic surgery and postoperative 

Fig. 5  Enrichment analysis. A The Venn diagram of DEGs and WGCNA candidate genes. B-C GO and KEGG pathway enrichment of candidate 
51 candidate genes. D the significant enriched pathway in high PTH2R expression with GSEA. E the significant enriched pathway in low PTH2R 
expression with GSEA
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chemotherapy. However, the efficacy and prognosis of 
ovarian cancer patients remain poor due to poor toler-
ance to chemotherapy and the lack of effective monitor-
ing measures. Thus, it is expected that new targets can be 
found for the diagnosis and treatment of ovarian cancer.

With the current progress in bioinformatics and the 
development of sequencing technology, an increasing 
number of researchers are gaining access to larger sam-
ple sets from public databases from which to mine valid 
information. In this study, the combined TCGA-OV 
data set and the GSE18520, GSE66957 data sets showed 
that PTH2R was significantly elevated in ovarian can-
cer tissues. PTH2R, also known as PTHR2 (Ensembl 
ID: ENSG00000144407), was first reported as a selective 

parathyroid hormone receptor [41]. Although PTH2R 
was identified as prognostic index in papillary thyroid 
cancer and breast cancer bone metastases [42, 43]. there 
are no PTH2R-related studies in ovarian cancer. Moreo-
ver, we surveyed the expression of PTH2R in pan-cancer 
via the GEPIA 2 database (http://​gepia2.​cancer-​pku.​cn), 
and noticed that PTH2R is differentially expressed in 
several cancers, like glioblastoma, low-grade glioma, kid-
ney chromophobe and ovarian cancer. However, PTH2R 
tends to be overexpressed only in ovarian cancer.

Then, tumor samples were further divided into high 
and low PTH2R expression groups, which allowed 
PTH2R-related genes and molecular characteris-
tics to be better investigated. Analyzing the mutation 

Fig. 6  Drug sensitivity analysis. A The correlation between PTH2R expression and anti-tumor drugs based on the CellMiner database. B Drug 
prediction IC50 differences in PTH2R high and low group based on the GDSC database

http://gepia2.cancer-pku.cn
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characteristics of the high and low PTH2R expression 
groups revealed that there were significant mutation dif-
ferences between the two. In the high PTH2R expression 
group, the CSMD3, AHANK, CSMD1 etc. mutations 
were more frequent, while in the low expression group, 
the MUC16, BRCA1, FAT1 etc. mutations were more fre-
quent. In addition, CNV changes were also identified in 
high PTH2R expression group, and significant changes 
were identified at 3q26.2, 5q13.2, 8q24.21 and 19p13.3 
locus. Analysis of drug resistance revealed that resistance 

to Cisplatin and Imatinib was more obvious in the high 
PTH2R expression group.

Moreover, with the development of immunotherapy, 
here the relationship between PTH2R and immune cell 
infiltration was investigated, alongside the prospect of 
immunotherapy, by combining RNA-Seq data and a 
widely used immune cell scoring algorithm. Comparing 
the correlations between the expression of PTH2R and 
immune cell infiltration revealed that PTH2R showed 
a significant positive correlation with Plasma cells, but 

Fig. 7  The landscape of immune microenvironment in TCGA_OV and PTH2R related immune cells correlation A–B The landscape of immune 
microenvironment in TCGA_OV and correlation between 22 immune cell infiltration score. C The correlation between PTH2R expression and 
infiltrated immune cells. DE The difference between MSI and TMB in PTH2R high expression and low expression group
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was negatively correlated with Dendritic cells resting. 
However, the coefficient  of  association was relatively 
low,  so this does not necessarily mean that PTH2R is 
definitely related to immune response; it also may be 
due to insufficient of the sample size. In addition, TMB 
and MSI scores showed that the TMB was significantly 
increased in the high PTH2R expression group, which 
may be a potential diagnostic marker.

Although bioinformatics analysis provided important 
information in this PTH2R study, experiments were still 
needed to verify the expression and function of PTH2R. 
Therefore, the mRNA expression and protein levels of 
PTH2R were investigated through qPCR, WB, and IHC, 
revealing that it was consistent with the expression trend 
identified in the databases. In other words, the expression 
of PTH2R in tumors was significantly higher than that in 

Fig. 8  Validation of PTH2R expression in tissues and cells. A–B The qPCR showed that PTH2R is highly expressed in tumor tissues and cells. C The 
western blot showed that PTH2R protein is highly expressed in tumor cells. D The western blot showed that PTH2R protein is highly expressed in 
tumor tissues. E The IHC showed that PTH2R protein is highly expressed in tumor tissues. *p < 0.05, **p < 0.01
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normal tissues and cells. In addition, a series of tumor 
cell function experiments, such as CCK-8, clonogenesis, 
and transwell assays, showed that PTH2R knockdown 
significantly inhibited the growth, invasion, and migra-
tion of tumor cells. In conclusion, PTH2R is expected to 
become a new molecular marker for ovarian cancer.

This study is the first to report the expression and func-
tion of PTH2R in ovarian cancer. Combined with molec-
ular information available in public databases, this study 
deeply explored the function and mechanism of PTH2R 
from the perspective of multiple omics; its findings pro-
vide an important preliminary basis for future PTH2R-
related research. However, there are some limitations in 
this study, as only the expression and biological function 
of PTH2R were verified; it was not possible to completely 
characterize the influences of drug resistance and muta-
tion characteristics. The future research should focus on 
elucidating the mechanism to understand how PTH2R 
influenced cell proliferation and migration.

Conclusion
In this study, PTH2R was found to be highly expressed 
in ovarian cancer through bioinformatics methods, com-
bined with the GEO and TCGA databases. Experiments 
verified that PTH2R was not only highly expressed in 
tumor cells and tissues, but also affected the prolifera-
tion, invasion, and migration of tumor cells. PTH2R is 

thus expected to become a new molecular marker for 
ovarian cancer.
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