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Inflammation

In the early 1990s, the concept that the inflammatory process is causally 
involved in plaque formation began to be recognised and referred to as 
‘the inflammatory hypothesis of atherosclerosis’.1,2 Different investigations 
found evidence that inflammatory biomarkers are associated with the 
prognosis and severity of acute coronary syndrome (ACS) and other 
clinical manifestations of atherosclerosis.3,4 The contributions of Maseri, 
Libby, Ridker and Crea – among many others – have led to a better 
understanding of the importance of the inflammatory component in the 
pathogenesis of this condition.5,6 In fact, the idea that atherosclerosis 
carries characteristics of an inflammatory disease has been suspected 
since the 19th century, based on pathological observations made by 
Rudolf Virchow and others. However, it is only in recent years that chronic 
inflammation has been recognised as a contributing factor in the 
development, progression and complications of atherosclerosis, with new 
evidence supporting the inflammatory nature of the disease.7,8 

While the purpose of an inflammatory process is the resolution of injuries, 
pathogens or infections by initiating an appropriate response, chronic 
inflammation represents a deviation from this natural biological response. 
In contrast to acute inflammatory events, which are usually self-limiting, 
atherosclerosis has been shown to be an unresolved chronic inflammatory 
condition that lacks the typical resolution phase.9

Greater attention has been focused on the relationship between 
inflammation and vascular calcification.10 Coronary artery calcification 
(CAC), which is concomitant with the development of advanced 
atherosclerosis, shows a close association with the total atherosclerotic 

plaque burden and an increased risk of cardiovascular (CV) events and 
mortality.11 CAC pathologically begins as microcalcifications (0.5–15.0 μm) 
and grows into larger calcium fragments that are observed to occur 
concurrently with the progression of plaques. Recent studies suggest that 
massive dense calcifications are usually associated with stable plaques, 
whereas, microcalcifications are related to vulnerability.12 Increasing 
evidence now supports the concept that arterial calcification is an 
inflammatory disease, an active process associated with macrophage 
burden, which is stimulated by inflammatory pathways and exacerbated 
in certain clinical conditions, including diabetes.13,14 

Cholesterol and Inflammation 
In atherosclerosis, inflammation begins and evolves in response to the 
accumulation of cholesterol in the intima of large and medium-sized 
arteries. New discoveries about innate immunity have improved the 
understanding of the events that initiate and drive inflammation, changing 
several concepts about the pathogenesis of inflammatory disorders and 
showing that innate and adaptive immune responses play a key role 
throughout the initiation, progression and clinical consequences of 
atherosclerotic disease. In the initial stages, the endothelial cells are 
activated and inflammatory cells are recruited in the vascular wall in 
response to the accumulation of cholesterol-rich lipoproteins in the 
innermost part of the arteries, giving rise to a wide variety of macrophages 
derived from monocytes, T lymphocytes, mast cells and dendritic cells 
among others.15–17 The role of T-cell-mediated adaptive immunity in the 
pathogenesis of atherosclerosis is an increasing focus of study. Activated 
T lymphocytes, primarily T helper 1 cells (Th1) accumulate early and 
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abundantly in atherosclerotic lesions. The Th1 cells recruited to the lesion 
recognise oxidised low-density lipoprotein (ox-LDL) as an antigen and 
produce pro-inflammatory mediators such as interferon-gamma (IFN-γ) 
and tumour necrosis factor (TNF).18,19 IFN-γ is the main pro-atherogenic 
cytokine and it promotes local expression of adhesion molecules, 
cytokines and chemokines such as CXCL9, CXCL10 and CXCL11 and 
their main receptor CXCR3 by macrophages and endothelial cells. 
Chemokine signalling via CXCR3 facilitates the recruitment of active Th1 
cells (Figure 1).20 The Th1 subset of CD4+ T cells is the most abundant T cell 
population in human atherosclerotic plaques with CXCR3 being required 
for the generation of Th1 cells.21. Strong evidence supports that CXCR3 
and its ligands play a key role in atherosclerosis. Although this has not yet 
been fully established, it would seem they have both beneficial and 
deleterious actions depending upon their timing and level of activation. 
CXCL10, which is involved in sustaining inflammation through Th1 
recruitment, appears to have a role in preventing excessive fibrosis.21 

While all of the above can contribute to some extent to the formation and 
progression of atherosclerosis, macrophage retention within the arterial 
wall is fundamental in atherosclerosis, with macrophages being the major 

inflammatory cells involved in its progression. Structural alterations, in 
particular the exposure of proteoglycans, facilitate the retention of LDL 
particles in the intima, where they undergo oxidative modifications 
promoted by reactive oxygen species (ROS) and inflammatory cells.22,23 As 
a result, these lipoproteins become more pro-inflammatory and contribute 
to endothelial activation. Facilitated by adhesion molecules, the different 
types of leukocytes adhere to the activated endothelium covering the 
retained lipids and produce pro-inflammatory cytokines. Macrophages 
derived from monocytes take up the ox-LDL through scavenger receptors, 
transforming from the permanent accumulation of lipids into cells known 
as foams that secrete pro-inflammatory molecules and play an important 
role in collagen and matrix breakdown leading to plaque rupture.24,25 It 
has been reported that macrophages themselves can proliferate within 
atherosclerotic lesions. Related to this, both resident and recruited 
macrophages are thought to be mediated through the action of interleukin 
4 (IL-4) which was sufficient to drive the accumulation of macrophages 
through self-renewal.26 

Two different subtypes of macrophages – M1 and M2 – have been 
described, with M1 being induced (activated) by Th1 and cytokines such as 

Figure 1: The Complex Process Involving Multiple Players in the Development 
and Progression of the Atherosclerotic Lesion
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IFN-γ and involved with pro-inflammatory activities. In contrast, M2 
macrophages are stimulated by Th2 and cytokines including IL-4 or IL-13 
and produce anti-inflammatory cytokines such as IL-10 and are able to 
counterbalance inflammatory responses to M1 macrophages by promoting 
the resolution of inflammation.27 Regulatory T cells that express 
transforming growth factor-beta (TGF-b) also tend to mitigate 
inflammation.8 Humoural immunity and B cells also participate in 
atherosclerosis with B1 lymphocytes appearing to be protective against 
atherosclerosis, whereas B2 lymphocytes can aggravate this process.28

Scavenger receptors class B type 1 (SR-B1) in endothelial cells have been 
postulated to mediate LDL delivery into arteries and its accumulation by 
macrophages, thereby promoting atherosclerosis.29 The ox-LDL exerts its 
action through several receptors, with the most important being the 
innate immune scavenger receptor lectin-like ox-LDL receptor 1 (LOX-1).30 
An exacerbation of endothelial dysfunction has also been reported due to 
increased production of vasoconstrictors, an increase in ROS and a 
decrease in endothelial nitric oxide.31 Ox-LDL plays a key role in 
atherogenesis through LOX-1.32 This influences multiple cell types such as 
endothelial cells, smooth muscle cells (SMCs), fibroblasts, macrophages 
and platelets contributing to endothelial dysfunction, apoptosis, migration 
and the differentiation of monocytes and macrophages, proliferation and 
migration of SMCs and plaque instability, some of the mentioned critical 
factors in atherosclerosis.33

In synthesis, cholesterol and inflammation are interconnected, because 
the accumulation of cellular cholesterol promotes inflammatory 
responses. In addition, the activation of immune cells promotes 
cholesterol deposition by affecting the flow of cellular cholesterol.33 
Therefore, atherosclerosis is characterised by quantitative and qualitative 
abnormalities of lipoproteins and an inadequate inflammatory response.15 
The involvement of the inflammatory process is notably evident in acute 
coronary disease in which unstable plaques prone to rupture are 
characterised by significant infiltration of different inflammatory cells, a 
large and friable lipid core and a thin fibrous layer.16,34 

Crystalline cholesterol, which is present and abundant in atherosclerotic 
lesions, has been identified as being the predominant endogenous 
danger signal that initiates an inflammatory response through the 
stimulation of the nucleotide-binding oligomerisation domain, NLR family 
pyrin domain containing 3 (NLRP3) and known as the inflammasome.35–37 
As a result of the retention and oxidation of lipoproteins within the vessel 
wall, the accumulation of cholesterol can lead to the formation of 
cholesterol crystals, which are then absorbed by macrophages, causing 
an inflammatory reaction through the activation of the NLRP3 
inflammasome and triggering a cascade of amplification of the immune 
responses.38 Therefore, cholesterol crystals can be an initiating or 
exacerbating factor in the atherosclerotic process, contributing to the 
rupture of foam cells and the expansion of the lipid-rich necrotic core in 
vulnerable plaques.39

In summary, the NLRP3 inflammasome is a fundamental component of the 
innate immune system which mediates the activation of caspase-1 and the 
secretion of pro-inflammatory cytokines IL-1β and IL-18 in response to 
microbial infection and cell damage, as well as being associated with 
several inflammatory disorders, including but not limited to diabetes and 
atherosclerosis.40 

Imaging technologies, including CT, intravascular ultrasound (IVUS) and 
MRI, are critical for confirming the presence and extent of atherosclerosis, 

with MRI permitting the characterisation of plaque composition, such as 
lipid core, fibrosis, calcification and intraplaque haemorrhage.41 When MRI 
is combined with positron emission tomography (PET), some functional 
and molecular insights are provided into the underlying biological 
processes. For quantifying vascular inflammation, 18-fludeoxyglucose 
PET (18-F-FDG PET) has been validated for determining macrophage 
infiltration to plaques, the relationship with disease activity, response to 
treatment and it can be predictive of future events.42 In addition, 18 
F-fluoride PET (18-F-NaF PET) can identify culprit and ruptured plaques in 
patients with MI and symptomatic carotid disease. Moreover, histological 
characterisation has demonstrated that 18 F-fluoride activity localises to 
regions of plaque rupture with evidence observed of increased 
inflammation, calcification activity, necrosis and cell death.43 The latter 
method, capable of detecting microcalcifications can be very useful in 
patients with early atherosclerosis.44

Inflammation as a Treatment Target
The pharmacological modulation of inflammation aimed at reducing CV 
events is difficult, since many agents that can modulate the inflammatory 
response have been shown to be ineffective or have had off-target 
negative effects. We will now focus more extensively on the results of 
Phase III clinical trials for different treatment options.

Statins 
The idea of addressing inflammation as a way of reducing mortality and 
morbidity from coronary artery disease (CAD) has received strong support 
based on the JUPITER study, where treatment with rosuvastatin reduced 
LDL-C levels by 50% and high-sensitivity C-reactive protein (hs-CRP) by 
37% after a median follow-up of 1.9 years. A concurrent and significant 
reduction in the combined primary endpoint of MI, stroke, arterial 
revascularisation, hospitalisation for unstable angina or death from CV 
causes, was verified in favour of rosuvastatin (HR 0.56; 95% CI [0.46–
0.69]; p<0.00001).45 Likewise, it was observed that in those individuals 
who attained low levels of both LDL-C (<70 mg/dl) and hs-CRP (<1 mg/l), 
the relative risk reduction for CV events was 79%, (95% CI [0.09–0.52]; 
p<0.0001).46 Similarly, the IMPROVE-IT study analysed the relationship 
between the achievement of this dual target – LDL-C and hs-CRP – and 
the primary endpoint – CV death, major coronary event or stroke – for 
patients randomly assigned to simvastatin monotherapy or a combination 
of simvastatin and ezetimibe. In the 15,179 patients studied, simvastatin 
plus ezetimibe significantly increased the likelihood of achieving the 
predefined targets of LDL-C <70 mg/dl and hs-CRP <2 mg/l with those 
who achieved this dual target (39%) had lower primary event rates than 
those who did not (38.9% versus 28.0%, adjusted HR 0.73; 95% CI [0.66-
0.81]; p<0.001).47 Nevertheless, a fundamental question remains as to 
whether or not inflammation still plays a role in patients who reach very 
low LDL-C levels, for example when they are treated with proprotein 
convertase subtilisin/kexin type 9 (PCSK9) inhibitors, which unlike statins 
have been shown not to modify hs-CRP values.48

In the FOURIER study, Bohula et al. explored whether the association of 
inflammation and risk of CV events persists even at very low levels of 
LDL-C. In patients with an LDL-C <20 mg/dl 1 month after randomisation, 
there was still a risk gradient under basal hs-CRP of <1, 1–3 and >3 mg/l 
with an event rate of 9.0%, 10.8% and 13.1%, respectively. This supports 
the concept of an inflammatory risk that is independent of LDL-C levels.49

Imaging-based studies support an association between statin and 
calcification progression, which is one of the ways by which statins 
prevent CV events, although the mechanism responsible for this effect is 
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not completely understood.10 In a pooled analysis of eight randomised 
trials of serial IVUS, statins were shown to promote coronary calcium 
independent of plaque volume regression.50 Related to this, plaques with 
microcalcification (spotty calcium) found in the active stage of 
atherosclerosis inflammation have been shown to respond favourably to 
statin therapy confirming that the ability of statins to affect atheroma 
burden depends in part on the type of calcification.14 Yet, their modest 
effect on the absolute burden of atherosclerotic disease suggests that 
any protective effects on the arterial wall may result, in part, from 
compositional changes rather than a pure reduction in lesion size or the 
degree of stenosis. 

In the REVERSAL study, patients were randomly assigned to receive a 
moderate lipid-lowering regimen (pravastatin 40 mg) or an intensive one 
(atorvastatin 80 mg), and the primary efficacy parameter was calculated 
as the percentage change in atheroma volume assessed by IVUS. A 
progression of coronary atherosclerosis occurred in the pravastatin group 
(2.7%; 95% CI [0.2–4.7]; p=0.001) compared with baseline whereas 
progression in the atorvastatin group did not occur (−0.4%; 95% CI [−2.4– 
1.5]; p=0.98). The baseline LDL-C level (mean = 150.2 mg/dl in both 
treatment groups) was reduced to 110 mg/dl in the pravastatin group and 
79 mg/dl in the atorvastatin group (p<0.001). Interestingly, hs-CRP 
decreased by 5.2% with pravastatin and 36.4% with atorvastatin 
(p<0.001).51

Similarly, in the SATURN study, a significant lowering of the atherogenic 
lipoprotein levels (LDL-C), inflammatory status (hs-CRP) and elevations of 
anti-atherogenic lipoproteins (HDL-C) were associated with overall 
atheroma regression, mediated largely by a reduction in the fibro-fatty 
tissue component.52

In addition to reducing LDL-C, statins have also been shown to diminish 
inflammation independently of cholesterol, but this does not provide the 
proof of the principle of inflammatory causation in atherosclerosis. 
Therefore, the only way to corroborate this hypothesis was to attack 
inflammation without modifying the lipid levels and testing pure anti-
inflammatory therapies.

Canakinumab: the First Proof of Concept
CRP is an excellent marker of systemic inflammation and it is a useful 
parameter for evaluating the effectiveness of anti-inflammatory 
treatments. However, since it does not cause atherothrombosis, it does 
not qualify as a primary target for therapeutic intervention.53 On the other 
hand, IL-1β is critically involved in atherosclerosis and induces the 
production of IL-6 and subsequently CRP. Therefore, the IL-1 signalling 
pathway is a valuable treatment target.54 This background and several 
studies have supported the rationale for targeting IL-β specifically without 
affecting IL-1α, which may be involved in host defense.

The CANTOS trial was designed to test whether reducing inflammation by 
neutralising IL-1β with canakinumab (a fully human monoclonal antibody) 
in patients with previous MI and elevated plasma hs-CRP levels (≥2 mg/l) 
would reduce the risk of recurrent CV events beyond standard secondary 
prevention therapies. This trial compared three doses of canakinumab – 
50 mg, 150 mg and 300 mg administered subcutaneously every 3 months 
– with placebo. A total of 10,061 subjects were included, with a mean age 
of 61 years and with a median follow-up of 3.7 years. Although no changes 
in LDL-C were observed, the use of canakinumab resulted in large, dose-
dependent reductions in CRP and IL-6. The primary endpoint, a 
combination of non-fatal MI, non-fatal stroke or CV death was reduced by 

15% in the 150 mg group (HR 0.85; 95% CI [0.74–0.98]; p=0.021); and by 
14% in the 300 mg group, (HR 0.86; 95% CI [0.75–0.99]; p=0.031). 
However, there was no significant difference in all-cause mortality for all 
doses of canakinumab versus placebo (HR 0.94, 95% CI [0.83–1.06]; 
p=0.31). A potentially limiting fact for the use of this drug in coronary heart 
disease is that canakinumab was associated with a higher incidence of 
fatal infection which, although small in proportion, was statistically 
significant.55

It is important to note that the reduction in CV events was stronger in 
those who were identified as cytokine responders as they achieved lower 
levels of hs-CRP after initiation of the drug. Patients treated with 
canakinumab who reached hs-CRP concentrations on treatment of <2 
mg/l showed a 25% reduction in major adverse CV events (MACE; 
p=0.0001) and a 31% decrease in both CV mortality (adjusted HR 0.69, 
95% CI [0.56–0.85]; p=0.0004) and all-cause mortality (adjusted HR 0.69, 
CI [0.58–0.81]; p<0·0001) with the latter being partially explained by 
concomitant reductions in deaths from lung cancer. However, no 
significant reduction in these endpoints was observed among those 
treated with canakinumab who had hs-CRP concentrations of ≥2 mg/l.56 
The calculated number needed to treat (NNT) of patients to avoid one MI, 
stroke, coronary revascularisation or death from any cause in the entire 
CANTOS cohort was calculated to be 24. However, among patients who 
reached hsCRP <2 mg/l with canakinumab, the estimated 5-year NNT 
figure dropped to 16. In contrast, the NNT increased to 57 for patients who 
reached hsCRP >2 mg/l on treatment.56 

Compared with those allocated to placebo, patients treated with 
canakinumab who reached lower levels of IL-6 after the first dose (below 
the study median value of 1.65 ng/l), experienced a 32% reduction in 
MACE, (adjusted HR 0.68, 95% CI [0.56–0.82]; p<0.0001), a 52% reduction 
in CV mortality (adjusted HR 0.48, 95% CI [0.34–0.68]; p<0.0001) and a 
48% reduction in all-cause mortality (adjusted HR 0.52, 95% CI [0.40–
0.68]; p<0.0001) thereby providing evidence that modulation of the IL-6 
signalling pathway is associated with reduced CV event rates, independent 
of lipid lowering.57 Interestingly, canakinumab was shown to reduce MACE 
in chronic kidney disease (CKD) patients and was particularly effective in 
those who achieved a level of hsCRP <2 mg/l after the first dose with CV 
and all-cause mortality being reduced.58 

Finally, subclinical inflammation-mediated in part by IL-1β participates in 
peripheral insulin resistance and impaired pancreatic insulin secretion. 
Although IL-1β inhibition with canakinumab had similar effects on major CV 
events in patients with or without diabetes in the CANTOS study, treatment 
over a median period of 3.7 years did not reduce incident diabetes.59

Methotrexate 
The commonly used methotrexate (MTX) has shown favourable results in 
attenuating systemic inflammation and decreasing CV events.60–62 At low 
doses, it is also an effective, safe and well-tolerated anti-inflammatory 
agent used in patients with rheumatoid arthritis or psoriasis.63 The CIRT 
trial was designed to evaluate the results of low dose MTX (LD-MTX) on 
CV events in patients with chronic atherosclerosis and with diabetes or 
metabolic syndrome.64 

It included 4,786 participants, most of whom had previous coronary 
revascularisation and were treated with standard preventive therapy prior 
to randomisation. These patients had a mean basal LDL-C of 68 mg/dl and 
a mean basal hs-CRP of 1.6 mg/l. However, the study was stopped early 
due to a lack of benefit of LD-MTX in preventing MACE in patients with 
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CAD and either type 2 diabetes or metabolic syndrome. Thus, no benefit 
was observed in CV results with the use of LD-MTX (HR 0.96, 95% CI 
[0.79–1.16]; p=0.67) and no difference in all-cause mortality was observed 
between the groups. It is important to note that, in contrast to 
canakinumab, LD-MTX did not reduce IL-6, CRP or IL-1β levels and there 
was no reduction in CV events compared with placebo.64

The study populations in CANTOS and CIRT were similar but with a key 
difference. In the CANTOS trial all participants had a basal CRP ≥2 mg/l, 
they qualified as a population with high inflammatory risk (with a median 
basal hs-CRP of 4.2 mg/l), while in CIRT the median basal hs-CRP level 
was 1.6 mg/l. Another crucial difference was the inflammatory pathway 
affected by the pharmacological intervention. Canakinumab used in the 
CANTOS trial specifically inhibits IL-1β, resulting in a significant reduction 
in CRP, IL-6 and IL-1β levels. In contrast, LD-MTX used in CIRT had no 
effect on these biomarkers or inflammatory mediators, which may 
explain the lack of clinical benefit in these stable populations with 
atherosclerotic CAD.65

Colchicine 
Colchicine, a broad-spectrum anti-inflammatory agent previously used to 
treat inflammatory disorders such as gout and recurrent pericarditis, is 
also a treatment option for atherosclerosis. Colchicine is a widely 
available, inexpensive and generally well-tolerated medication. Among 
several anti-inflammatory mechanisms, colchicine appears to block 
cholesterol crystal-induced activation of the NLRP3 inflammasome, which 
decreases the secretion of the pro-inflammatory cytokines IL-1β and IL-18 
leading to downstream reductions in interleukin-6 and CRP, thus providing 
a reason to test this classical drug in patients with CAD.66–68 Colchicine 
also reduces the mobility and deformability of neutrophils and decreases 
their adhesion to endothelial cells and atherosclerotic lesions, features 
that can improve plaque morphology.69,70

The LoDoCo trial tested colchicine in a cohort of 532 patients with stable 
coronary disease receiving aspirin and/or clopidogrel and statins. The 
treatment with 0.5 mg/day of colchicine significantly reduced the 

prevalence of CV events (4.5%) compared to placebo (16.0%), although a 
small percentage of patients showed intestinal intolerance toward 
colchicine.71 

Similarly, in the COLCOT study, treatment with colchicine of 0.5 mg per 
day compared to placebo over a two-year period in 4,745 patients after 
MI, resulted in a 23% relative reduction in the primary endpoint of the 
study, including MI, stroke, resuscitated cardiac arrest, hospitalisation for 
angina leading to urgent revascularisation and CV death (HR 0.77; 95% CI 
[0.61–0.96]; p=0.02). Despite the benefit obtained from colchicine being 
significant only for the components of coronary revascularisation and the 
endpoint stroke, all CV outcomes were positively affected. However, it 
should be noted that colchicine has been associated with increased 
cases of pneumonia and gastrointestinal disturbances.72 

Finally, evidence from the recent LoDoCo2 trial has shown that the anti-
inflammatory effects of colchicine reduce the risk of CV events in patients 
with chronic coronary disease. The study, randomised 5,522 patients with 
chronic stable coronary disease and compared a daily dosage of 0.5 mg 
colchicine against placebo. After an average follow-up of 2.4 years, the 
primary endpoint (CV death, non-fatal MI, non-fatal stroke and coronary 
revascularisation) decreased by 31% (HR 0.69; 95% CI [0.57–0.83]; 
p<0.001) in those treated with colchicine.73 

A recent meta-analysis examined four randomised clinical trials, including 
11,594 patients (colchicine n=5,774; placebo/no colchicine n=5,820) in two 
studies in stable CAD – LoDoCo and LoDoCo2 – and two in ACS – COLCOT 
and the Australian COPS Randomized Clinical Trial.74 Compared with 
placebo or no drug, colchicine was associated with a statistically 
significant reduction in the incidence of the primary composite endpoint 
(pooled HR 0.68; 95% CI [0.54-0.81]; I2 = 37.7%).75

Convincing evidence now supports the use of colchicine for secondary 
prevention in patients with recent MI or chronic CAD that has continued at 
residual CV risk despite good blood pressure control and an adequate 
reduction of atherogenic lipid.76 The features of this drug may contribute 

Table 1: Selected Clinical Trials Targeting Inflammatory Modulation in Atherosclerotic Cardiovascular Disease

Target/Pathway Agent Study n Results Patient Group
Oxidised LDL Succinobucol ARISE79 6,144 No effect Post ACS

sPLA2 Varespladib VISTA-1680 5,145 No effect Post ACS

LpPLA2 Darapladib STABILITY81 15,828 No effect Stable CAD

LpPLA2 Darapladib SOLID-TIMI 5282 13,026 No effect Post ACS

P-selectin Inclacumab SELECT-ACS83 544 No effect ACS/PCI

IL-1 receptor Anakinra VCU-ART284 30 No effect ACS

P38 MAP kinase Losmapimod LATITUDE-TIMI 6085 3,503 No effect ACS

Neutrophil chemotaxis/NLRP3 
inflammasome

Colchicine LoDoCo71 532 Positive Stable CAD

IL-1β Canakinumab CANTOS57 10,061 Positive Stable CAD

Tumour necrosis factor/IL-6 Etanercept versus
tocilizumab

ENTRACTE87 3,080 No differences Rheumatoid arthritis

Neutrophil chemotaxis/NLRP3 inflammasome Colchicine COLCOT72 4,500 Positive Post ACS

IL-6, TNF Methotrexate CIRT64 4,786 No effect CAD + diabetes/MS

Neutrophil chemotaxis/NLRP3 inflammasome Colchicine LoDoCo269 5,522 Positive Stable CAD

ACS = acute coronary syndrome; CAD = coronary artery disease; IL = interleukin; LDL = low-density lipoprotein; LpPLA2 = lipoprotein-associated phospholipase A2; MAPK = mitogen-activated protein 
kinase; MS = metabolic syndrome; NLRP3 = nucleotide-binding oligomerisation domain, leucine-rich repeat and pyrin domain containing protein 3; PCI = percutaneous coronary intervention; 
sPLA2 = secretory phospholipase A2 TNF = tumour necrosis factor.
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in different ways to its atheroprotective effects but many of these still 
need to be elucidated.77 In addition, further randomised and controlled 
studies will be needed to determine the long-term tolerability and efficacy 
of low-dose colchicine for secondary prevention in patients with CAD 
before its widespread use can be recommended.78 Indeed, two relevant 
randomised clinical trials are still running: CLEAR SYNERGY (NCT03048825) 
in ACS patients and CONVINCE (NCT02898610) for secondary prevention 
after stroke, that is expected to have the results shortly.

Multiple pathways have been identified as potential objectives for the 
prevention and treatment of CV diseases. In Table 1, several trials of 
agents that modulate a specific pathway are summarised including some 
that have been extensively analysed. Most clinical trials targeting specific 
downstream targets, such as those with oxidation of LDL, secretory 
phospholipase A2 (sPLA2) and lipoprotein associated phospholipase A2 
(LpPLA2), P-selectin, the IL-1b inhibitor anakinra, losmapimod to inhibit 
p38 MAP kinase and methotrexate failed to meet their primary endpoints 
with respect to a decrease in CV events or a selected surrogate 
endpoint.64,79–85 Nevertheless, a spectrum of possibilities has now opened 
up for exploring new anti-inflammatory therapies to target inflammation in 
the prevention of atherosclerosis, although it is clear that more research 
is still needed on the role of anti-inflammatory and immunomodulatory 

interventions in atherosclerotic CV disease to achieve a better 
understanding of the complex players involved in the inflammatory 
process.86 Finally, the development of new potentially more promising 
drug compounds is highly desirable. 

Conclusion
Inflammation plays a key role in all steps of the atherosclerotic process, 
from the initial stage, when leukocytes are recruited at the sites of 
subendothelial cholesterol accumulation to the late events of plaque 
rupture and thrombosis. Chronic inflammation of the arterial wall is 
promoted by the innate and adaptive immune responses and is sustained 
by the complex mechanism involving pro-inflammatory cytokines. 

In the CANTOS study, designed specifically to demonstrate whether 
purely decreasing inflammation correlated with reducing clinical events, 
the expected proof of concept, the quarterly administration of the anti-IL-
1β monoclonal antibody canakinumab showed clear benefits. Most 
recently this concept was endorsed by the use of colchicine in COLCOT 
and LoDoCo2 studies, but further confirmation and careful evaluation of 
the balance between benefits and adverse events is still needed before 
international guidelines can endorse the use of colchicine for the 
secondary prevention of CV diseases. 
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