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Effects of climate change on the movement of
future landfalling Texas tropical cyclones
Pedram Hassanzadeh 1,2✉, Chia-Ying Lee3, Ebrahim Nabizadeh 1, Suzana J. Camargo 3, Ding Ma 4 &

Laurence Y. Yeung 2

The movement of tropical cyclones (TCs), particularly around the time of landfall, can

substantially affect the resulting damage. Recently, trends in TC translation speed and the

likelihood of stalled TCs such as Harvey have received significant attention, but findings have

remained inconclusive. Here, we examine how the June-September steering wind and

translation speed of landfalling Texas TCs change in the future under anthropogenic climate

change. Using several large-ensemble/multi-model datasets, we find pronounced regional

variations in the meridional steering wind response over North America, but―consistently

across models―stronger June-September-averaged northward steering winds over Texas.

A cluster analysis of daily wind patterns shows more frequent circulation regimes that steer

landfalling TCs northward in the future. Downscaling experiments show a 10-percentage-

point shift from the slow-moving to the fast-moving end of the translation-speed distribution

in the future. Together, these analyses indicate increases in the likelihood of faster-moving

landfalling Texas TCs in the late 21st century.
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S ince the beginning of the 21st century, Texas has experi-
enced a number of devastating TCs; the three costliest ones
are Tropical Storm Allison (June, 2001), Hurricane Ike

(September, 2008), and Hurricane Harvey (August to September,
2017), which all caused severe damage around Greater Houston,
the most populous and industrialized region along the Texas
coast. Harvey, Ike, and Allison, with estimated damage of $125B,
$34.8B, and $11.8B, are respectively the 2nd, 7th, and 16th
costliest TCs affecting the mainland of the United States (US),
after accounting for inflation1. The critical measures needed to
strengthen the resiliency of the Texas coastline, and in particular
the Houston-Galveston area, against future TCs require an
understanding of the region’s past TCs and their potential
changes in the future in a changing climate.

The damage from the aforementioned TCs had different
characteristics: Harvey and Allison caused flood damage due to
record-breaking rainfall2–6, while Ike caused damage due to
strong winds and a record-breaking storm surge7,8. Several fac-
tors (e.g., intensity, size, landfall angle, translation speed, and sea
level) influence the characteristics of the damage from a TC, and
various consequences of climate change (e.g., higher sea-surface
temperature (SST), increased atmospheric moisture, changes in
large-scale circulation) influence these factors9–12.

Changes in TCs’ characteristics such as frequency and intensity
have been extensively studied in the past13–16. More recently, a
number of studies have investigated how the translation speed of
TCs at the global or basin-wide scale might have changed in the
past few decades, or are projected to change in the future under

anthropogenic climate change; however, their findings have
remained inconclusive10,11,17–24.

The focus of this paper is on a specific question: how will climate
change influence the movement of future landfalling Texas TCs, and
specifically their translation speed? To answer this question, we use
several large-ensemble/multi-model datasets and clustering and
downscaling techniques. Examining changes in the June to Sep-
tember steering winds and frequency/pattern of clustered daily
steering winds shows an increase in the northward meridional
steering winds over Texas in the period of 2074–2100 compared to
1979–2005 under the RCP8.5 emission scenario. We suggest that
this regionally robust change in atmospheric circulation is associated
with an intensifying and west-ward shifting Atlantic subtropical high
and a weakening American monsoon. Consistent with these changes
in steering winds, downscaling experiments show that in the future,
the relative frequency of fast-moving TCs (speed ≥20 kmh−1)
increases by ~6% while that of slow-moving TCs (speed ≤5 km h−1)
decreases by ~4%, indicating a 10-percentage-point shift from the
slow-moving end to the fast-moving end of the translation-speed
distribution. Our results do not show any evidence for an increase in
the likelihood of slow-moving landfalling Texas TCs in the late 21st
century under climate change; on the contrary, our results indicate a
higher probability of fast-moving TCs.

Results
Large-scale circulation and tracks of most-devastating past
Texas TCs. Figure 1 compares the tracks of Harvey, Allison, and
Ike, the rainfall during each storm, and the large-scale
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Fig. 1 Track, rainfall, and large-scale circulation. a The track of Hurricane Harvey, Tropical Storm Allison, and Hurricane Ike, and the rainfall (shading)
during each storm. The red circles mark the position of the center of the storm at 9:00 a.m. UTC during the dates shown for each storm (data from
International Best Track Archive for Climate Stewardship, version 4). The shading shows the cumulative rainfall during the time of each storm (Harvey: 25
August–2 September 2017; Allison: 6–18 June 2001; Ike: 8–15 September 2008; data from the National Oceanic and Atmospheric Administration Climate
Prediction Center). b The anomalous meridional steering wind (shading) and anomalous geopotential height at 500mb (Z500, contour lines) on the day of
Ike’s landfall (13 September 2008) and averaged over the day of landfall and the next two days for Harvey (26–28 August 2017) and Allison (6–8 June
2001). Data are from NCEP-DOE reanalysis. Due to Ike’s fast movement, the large-scale circulation is plotted only on the day of landfall. The anomalies are
computed with respect to a 15-day (17-day) running mean around the landfall date (landfall date +1) for Ike (Harvey and Allison) for 1979–2018, with the
landfall year excluded. The interval of contour lines is 25 m and continuous (broken) lines show positive (negative) values. High-pressure (H) and low-
pressure (L) systems are marked. See Methods for further details.
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atmospheric circulation over North America around the time of
their landfall. Both Harvey and Allison stalled over southeast
Texas for around 5 days, which was a major contributor to the
substantial rainfall over Houston2,3. Around the time of each
storm’s landfall, an anomalous high-pressure system existed over
western US, which caused anomalous southward steering winds,
slowing down or stopping the storm from moving north and
reaching the midlatitude westerlies (following Lee at el.25, steering
winds are defined as the weighted average of lower-level 850 mb
(80%) and upper-level 200 mb (20%) winds). Ike, however, was a
fast-moving TC that crossed Texas in less than one day. Around
the time of Ike’s landfall, an anomalous high-pressure system was
present over eastern US and an anomalous low-pressure system
was present over mid-western US, which together resulted in
strong anomalous northward steering winds, leading to Ike’s fast
northward translation speed. These examples show, to the leading
order, the effects of the large-scale circulation on the movement
of the three most-devastating Texas TCs in the 21st century.

Future changes in June-to-September-averaged steering winds.
How, then, will the large-scale circulation and steering winds in
this region respond to anthropogenic climate change? Projections
of regional changes in atmospheric circulation are known to often
have large uncertainties, in particular due to natural variability
and model biases26. To reduce these uncertainties, we use three
sets of large-ensemble simulations with 20, 40, and 100 members,
as well as single-member simulations from 14 Coupled Model

Intercomparison Project Phase 5 (CMIP5) models (see Supple-
mentary Table 1). Figure 2 shows the projected change in June to
September-averaged zonal and meridional steering winds and
geopotential height at 500 mb (Z500) using the Community Earth
System Large Ensemble Project (LENS) dataset and the multi-
model-mean of CMIP5 simulations. Supplementary Fig. 1 shows
the projected changes in the two other large-ensemble datasets –
the Max Planck Institute for Meteorology Grand Ensemble (MPI-
GE) and the Geophysical Fluid Dynamics Laboratory Large
Ensemble (GFDL-LE).

Consistently across all models, the steering eastward winds are
projected to decline between 30°N and 50°N, associated with the
poleward shift of the midlatitude westerlies27. All models predict
a robust northward steering wind response over Texas that
typically extends from the south of 30°N to the north of 40°N.
This northward wind response is often (but not in all cases) part
of a dipolar meridional wind pattern with a southward
component west of ~100°W; see Fig. 2c, d and Supplementary
Fig. 1c, d. Note that the magnitude of this northward response is
comparable to the climatology, e.g., using Houston (95°W, 30°N)
as a reference, the response in LENS is ~33% of the June-to-
September-averaged meridional steering wind.

This robust northward steering wind response over Texas
could potentially lead to an increase in the northward translation
speed of landfalling Texas TCs, while the weakening of the
westerlies (statistically significant north of 30°N–35°N depending
on the model, see Fig. 2 and Supplementary Fig. 1) could cause a
decrease in the eastward translation speed of the TCs once they
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Fig. 2 Changes in the large-scale circulation and steering winds under climate change. Changes are computed as June to September averages in the
period of 2074–2100 minus those in the period of 1979–2005. a, c, e: Using 40 ensemble members of National Center for Atmospheric Research’s Large
Ensemble Community Project (LENS). Stars show where the difference is not statistically significant, based on a two-tailed t test at 95% level. A domain-
averaged increase of 112.6 m is removed from geopotential height at 500mb (Z500) for better illustration. b, d, f: Using multi-model-mean from 14
Coupled Model Intercomparison Project 5 (CMIP5) models. Dots show where fewer than 10 models (out of 14) agree on the sign of the change. A domain-
averaged increase of 122.7 m is removed from Z500. See Methods for further details. See Supplementary Fig. 1 for the projected changes using 100
ensemble members of Max Planck Institute for Meteorology Grand Ensemble (MPI-GE), and using 20 ensemble members of Geophysical Fluid Dynamics
Laboratory Large Ensemble (GFDL-LE). Supplementary Figs. 2–9 show similar plots but separately for each month of June to September.
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reach the midlatitudes (see the Discussion and recent papers by
Yamaguchi et al.23 and Zhang et al.24 for the implications of these
changes). The northward steering wind response adds to the
natural tendency of TCs to move poleward due to beta
advection28,29 and is robust from June to September (see
Supplementary Figs. 2–9). In most model projections, this
northward wind response is concentrated over a relatively narrow
band over Texas. Examining the model projections in Z500,
however, shows some differences across models. In the CMIP5
multi-model mean, there are two distinct positive peaks in Z500
response over the northwest and northeast US (Fig. 2f). In
contrast, the LENS (Fig. 2e) and GFDL-LE (Supplementary
Fig. 1e) models show only one peak, in the northwest and
northeast, respectively, while MPI-GE projects a broad increase of
Z500 over Canada (Supplementary Fig. 2f).

The high-pressure responses over northwest US resemble the
anomalous high-pressure system during Harvey and to some extent
Allison (Fig. 1). However, the changes in meridional steering winds
over Texas and the midwest in Fig. 1 (during Harvey and Allison)
and in Fig. 2e, f (by the end of the 21st century) are opposite. In
LENS (Fig. 2e), there is a low-pressure (cyclonic) response centered
around (100°W, 30°N) that is consistent with the northward wind
response over Texas; however, such low-pressure response is
missing from, or is much less pronounced in, the other models.
These results suggest that understanding the source(s) and
underlying mechanism of the northward steering wind response
over Texas might require a closer examination of the subtropical
processes and additional variables.

Mechanism of June-to-September-averaged steering wind
changes. Recently, Wills et al.30 investigated the response of the
northern hemisphere stationary waves to climate change. Their
analysis of the historical and RCP8.5 simulations of CMIP5
models show a similar narrow band of northward wind over
Texas in the stationary components of both low- and upper-level
meridional winds from June to August (see their Fig. 2a, d).
Following their analysis, we examine the responses of the sta-
tionary components of June to September 850 mb and 200mb
streamfunctions, as well as sea-level pressure, in the LENS,
GFDL-LE, and MPI-GE datasets (Supplementary Fig. 10). The
increase in the low-level northward wind over Texas is consistent
with the intensification and westward expansion of the North
Atlantic subtropical high (see Supplementary Fig. 10a–f; also see
Fig. 2a, c of Wills et al.30), which predominantly results from the
enhanced land-ocean thermal contrast31. Furthermore, the
increase in the upper-level northward wind over Texas is con-
sistent with the weakening of the North American monsoon32,33

(see Supplementary Fig. 10g–i; also see Fig. 2b of Wills et al.30),
which is due to increases in static stability with sea-surface
warming32. These changes in the Atlantic subtropical high and
American monsoon constructively influence the low- and upper-
level meridional winds over Texas, leading to a remarkably robust
increase in the northward steering winds.

Future changes in daily steering wind regimes. In the above
analysis, we discussed changes in the June to September and
monthly-mean steering winds. Below, we will examine how cli-
mate change affects the daily steering wind patterns over south-
ern US by applying a self-organizing map (SOM) cluster analysis
to the LENS daily steering wind vectors (consisting of the zonal
and meridional components) in the current (1979–2005) and
future (2074–2100) climates (see Methods section). We focus on
LENS, which reproduces the 1979–2005 daily steering wind
regimes in the NCEP-DOE reanalysis fairly well (see Supple-
mentary Figs. 11 and 12). To examine and quantify changes in

steering wind regimes in the future, in the analysis that is pre-
sented hereafter, following the framework of Gervais et al.34, we
apply the SOM analysis to the data of current and future climates
combined together (see Methods section). Supplementary Fig. 13
shows the distinct steering wind regimes over Texas: Clusters C1-
C5 and C10 have strong southerlies, clusters C6 and C9 have
strong northerlies, and clusters C7 and C8 have weak steering
winds. Climate change might affect these regimes by changing the
frequency or the pattern of each cluster. We emphasize again that
each cluster contains days from both current and future periods,
and within each cluster, the frequency and pattern might change
between the two periods under climate change. Such changes can
be quantified and visualized separately (see Eqs. (4) and (5) in
Methods and Supplementary Figs. 14 and 15) or together (see Eq.
(3) and Supplementary Fig. 16).

Figure 3 shows the results for the five clusters that experience the
largest changes between the current and future climates. The
northward steering winds associated with clusters C1, C4, and C5
over Texas (Fig. 3a–c) become stronger in the future (Fig. 3d–f),
mainly due to increases in the frequency of these clusters
(Supplementary Fig. 14). The southward steering winds associated
with clusters C6 and C9 (Fig. 3g, h) become weaker in the future, as
the changes are northward (Fig. 3I, j). These trends are due to
changes in both the frequency and pattern (Supplementary Figs. 14
and 15). Overall, the changes in the two clusters with southward
steering winds (C6 and C9) indicate a weakening of such winds
(Fig. 3m), and the changes in all the other clusters together indicate
a strengthening of the northward steering winds over Texas
(Fig. 3k). The total changes across all clusters point to an increase in
northward steering winds (Fig. 3n), which suggests an increase in
the northward translation speed of landfalling Texas TCs. As
expected, the wind pattern shown in Fig. 3n is approximately the
same as the combination of the responses shown in Fig. 2a, c. The
cluster analysis has further shown that this June-to-September-
averaged response arises from an increase, by ~7%, in the daily
frequency of regimes that have northward steering winds, and a
decrease, by ~7%, in the daily frequency of regimes that have
southward steering winds (as well as some changes in the patterns
for the latter); see Supplementary Fig. 14.

TC-CMIP5 downscaling experiments. Our interpretation of how
changes in the daily steering wind patterns affect the movement
of future TCs involves the assumption that TCs approach the
Texas coastline with the same probability across different clusters.
However, both the TC probability and the occurrence of a given
cluster are connected to the large-scale atmospheric circulation,
in particular the subtropical circulation, which is responsible for
moving TCs from their genesis region (e.g., the Atlantic Ocean
and Gulf of Mexico) toward the Texas coast. Therefore, next we
examine changes in the translation speed of landfalling Texas TCs
in synthetic TCs generated by a downscaling model, the
Columbia TC HAZard model (CHAZ, Lee et al.25). These
experiments account for not only the effects of changes in the
steering winds and TC frequency, but also changes in other
environmental variables including the potential intensity (PI),
mid- to low-level moisture, and low-level vorticity. The CHAZ
model is downscaled from six CMIP5 models (see Methods
section). Statistics of the synthetic TCs generated by CHAZ at the
global and basin-wide scales are described in Lee et al.35. Here we
use only a subset of storms that pass through an area within 300
km from Houston at the historical (HIST, 1981–2005) and late
21st century (RCP8.5, 2071–2099) periods.

Figure 4 shows that the observed landfalling Texas TCs tend to
move northward and westward with their translation speed
peaking between 5 and 15 km h−1. The simulated Texas TCs at
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the HIST period have similar characteristics in both translation
speed and direction, although the CHAZ-CMIP5 model under-
estimates the probability of slow-moving storms (translation
speed ≤5 km h−1) while overestimating the probability of the fast-
moving ones (translation speed ≥20 km h−1). Thus, we also
analyze data in which this bias has been corrected using two
different methods (see below). The probability density function
(PDF) in the translation speeds shifts under RCP8.5 toward
higher speeds (Fig. 4a): The relative probability of TCs with speed
≥20 km h−1 increases from 31.4% to 37.6% of all TCs whereas the
probability of TCs with speed ≤5 km h−1 decreases from 20.4% to
16.6% of all TCs, indicating a 10-percentage-point shift from the
slow-moving end to the fast-moving end of the PDF. Analyzing
the bias-corrected PDFs leads to the same conclusion (Supple-
mentary Fig. 17). The shift toward fast-moving TCs is mainly due
to a shift of the meridional translation speed’s PDF toward faster
northward speeds (see Fig. 4b and the caption). Results from

downscaling experiments are consistent with those from large-
scale circulation analyses discussed earlier.

Discussion
In this paper we investigate how anthropogenic climate change
might affect the steering winds and translation speed of land-
falling Texas TC by the end of the 21st century. To reduce the
effects of natural variability and model bias, we use the outputs of
three sets of large-ensemble simulations and 14 CMIP5 models.
We use three different analysis techniques, examining changes in
June to September or monthly-mean steering winds over North
America, changes in clustered steering wind patterns over Texas,
and downscaling experiments for TCs making landfall along the
Texas coast (centered on Houston) from six CMIP5 models.

Our results show no evidence for an increase in the probability of
slow-moving landfalling Texas TCs by the end of the 21st century.
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Instead, we find a robust projected increase in the northward
steering winds over Texas, which could lead to an increase in the
frequency of fast-moving landfalling TCs. Indeed, the downscaling
experiments show a decrease in the likelihood of slow-moving TCs

making landfall around Houston, and an increase in the likelihood
of the fast-moving ones. The aforementioned changes in the
steering winds over Texas appear to be associated with changes in
the Atlantic subtropical high and American monsoon. Our results
highlight the importance of conducting regional analyses to inves-
tigate the effect of climate change on the movement of future TCs,
as there are prominent regional variations in the steering winds’
future changes. Note that while we focus on Texas in this paper, our
multi-model, multi-faceted approach can be readily applied to other
regions in future work.

We emphasize that the focus of our study is on potential
changes in the movement of landfalling Texas TCs by the end of
the 21st century compared to the late 20th century due to
anthropogenic climate forcing. This emphasis should be kept in
mind when comparing our conclusions with those of other recent
studies. For example, Kossin17 has reported a global slowdown of
TCs in the period of 1949–2016, including by 16% over land areas
affected by the North Atlantic TCs. However, the analysis of
Kossin17 (and Hall and Kossin19) differs in region and period
from our results; thus a direct comparison is not valid. Further-
more, some recent studies20–23 have challenged the findings of
Kossin17. In particular, Yamaguchi et al.23 showed that large-
ensemble, high-resolution simulations using an atmospheric
general circulation model (AGMC) do not support a slowdown of
northern hemisphere TCs from 1951 to 2011, and attributed the
slowdown reported in Kossin17 to inhomogeneities of the
observational data in the pre- and post-satellite eras.

To examine the effect of climate change, Yamaguchi et al.23

and Zhang et al.24 have conducted AGCM simulations with +4 K
warmer global SST and compared the TC translation speeds in
the period of 2051–2110 versus 1951–2011. Both studies found a
decrease in the average TC translation speed at higher latitudes in
the future (consistent with the projected decreases in the mid-
latitude eastward steering winds in Fig. 1 and Supplementary
Figs. 1–9). Yamaguchi et al.23 also reported an increase in the
relative frequency of TCs at higher latitudes. Because the trans-
lation speed is much larger in the midlatitudes (due to the wes-
terlies), Yamaguchi et al.23, as discussed in detail in their paper,
found, overall, an increase in the annual-mean global TC trans-
lation speed, including a statistically significant increase from
22.1 km h−1 to 22.6 km h−1 in the North Atlantic basin. While
the conclusion of their work appears to be similar to ours, the
underlying reasons are entirely different, because of our focus on
the Texas coastline (low latitudes) and their focus on hemispheric
and basin-wide changes (low and high latitudes). We found an
increase in the likelihood of fast-moving landfalling Texas TCs
due to the increase in northward meridional steering winds over
the northern Gulf region and Texas. Thus, our work and that of
Yamaguchi et al.23 and Zhang et al.24 answer different, although
complementary, questions.

Gutmann et al.18 have performed pseudo-global warming
simulations using the Weather Research and Forecasting (WRF)
model and examined how the movement of eastern and south-
eastern US TCs might change under RCP8.5 by the end of the
21st century. Among the 22 TCs they examined that had small
track changes between the current and future simulations, Ike was
the only Texas hurricane (out of two, the other being Rita) with
statistically significant change in its translation speed, which
decreased from 8.1 m s−1 to 6.7 m s−1. Our study and that of
Gutmann et al.18 focus on similar periods and region; however,
there are major differences in our methodologies. In our multi-
model, multi-faceted approach, the conclusions are based on
consistent statistical changes of steering winds and synthetic TCs,
while Gutmann et al.18 drew their conclusions from changes in
the single-model simulations of a few historical TCs in pseudo-
global warming experiments. Thus, changes in the landfalling TC
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Fig. 4 Relative probability of the translation speed of tropical cyclones
(TCs) that pass through an area within 300 km from Houston. a Total
speed; b Meridional speed v; c Zonal speed u. Data from observations
(1981–2018, gray), and from the HIST (1981–2005; blue) and RCP8.5
(2071–2099; red) Columbia TC HAZard-Coupled Model Intercomparison
Project 5 (CHAZ-CMIP5) downscaling simulations. The observational data
are from International Best Track Archive for Climate Stewardship, version 4.
The black vertical lines in gray bars show one standard deviation from
observations while the symbols along the blue and red bars show the mean
values from individual CMIP5 models. See Methods for further details. In
a, there is ~10% shift from the relative probability of slow-moving TCs toward
that of fast-moving TCs under RCP8.5 (see text). In b, there is ~9.8% shift
from the relative probability of slow-moving TCs (|v| ≤ 5 kmh−1) toward that
of fast-moving TCs (northward speed v ≥15 km h−1) under RCP8.5. In c,
there is ~2.9% shift from the relative probability of slow-moving TCs (|u|
≤5 kmh−1) toward that of fast-moving TCs (westward speed u ≥15 km h−1).
Supplementary Fig. 17 shows the same analysis but with bias correction.
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frequency and impacting angle are not considered in their study.
Furthermore, we focus on the movement and translation speed
around the time of landfall, while Gutmann et al.18 considered the
average translation speed over the entire lifetime of the storms,
e.g., in the case of Ike, from the Caribbean Sea to northern US.
Further investigations are needed to fully understand the differ-
ences and reconcile the conflicting conclusions between our work
and that of Gutmann et al.18.

Hurricane Harvey’s slow movement and stall over Texas was a
major contributor to its extreme rainfall and the resulting
flooding2,3,6. However, the increased possibility of fast-moving
landfalling Texas TCs in the future does not necessarily suggest a
reduced risk to human life, infrastructure, and ecosystems. For
example, the financial damage from Hurricane Ike, a fast-moving
hurricane, was comparable to that of the slow-moving Hurricane
Harvey. However, as mentioned earlier, the damages were due to
differing factors: intense rainfall (which led to extensive flooding)
in the case of Harvey, and storm surge-induced flooding and
wind gust in the case of Ike. Understanding the main driver(s) of
damage by future TCs in each region is crucial for adaptation and
mitigation efforts, as different drivers require different―and
often costly and controversial―protective measures and stra-
tegies (e.g., seawalls for storm surge vs. improved reservoirs and
bayou systems for rainfall-induced flooding)36–39.

The damage from a TC depends on many factors, and to fully
assess the risk of future TCs, in addition to changes in their
movement, changes in TC size and intensity, as well as sea level,
SST, air moisture content, other environmental factors, and even
urbanization40 should also be considered. Some recent studies have
quantified the influence of climate change on Hurricane Harvey’s
and future Texas TCs’ rainfall3–6,10,41 as well as future TC-induced
flooding42. Our work suggests that further investigation, particularly
aimed at disentangling the contributions from changes in dynamics
(large-scale circulation) and thermodynamics (temperature) are
needed to better understand and constrain the impact of climate
change on the risk of TCs making landfall in Texas. Finally, in this
paper, as in most other studies, we focus on changes in the late 21st
century under the high-emission scenario, RCP8.5 (thus allowing
comparison with previously reported results). However, to better
inform the adaptation and mitigation efforts, mainly about the time
of emergence and the magnitude of these changes in TC movement,
similar analyses for the mid-21st century and under other emission
scenarios such as RCP4.5 (as e.g., discussed in Knutson et al.11,14)
should be conducted in future work.

Methods
Rainfall and tropical cyclones’ track data. Cumulative precipitation during each
storm is calculated for the specified time period using the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center (CPC) global
unified gauge-based analysis of daily precipitation43. The data are plotted at the
native resolution of 0.5° × 0.5° in Fig. 1.

The TC track data are obtained from the International Best Track Archive for
Climate Stewardship (IBTrACS), version 444, which contains interpolated ~3-
hourly data for storm positions. Data are overlaid using the Climate Data Toolbox
for MATLAB45.

NCEP-DOE reanalysis data. We use 1979–2018 daily averaged zonal and mer-
idional winds (u and v) and Z500 from NCEP-DOE reanalysis 2 dataset46. In Fig. 1
and the rest of the paper, components of the steering winds are defined following
Lee at el.25 as the weighted average between winds at 850 mb and 200 mb:

usteering ¼ 0:8 ´ u850 þ 0:2 ´ u200 ð1Þ

vsteering ¼ 0:8 ´ v850 þ 0:2 ´ v200 ð2Þ

Large-ensemble datasets. We use monthly averaged u, v, Z500, and sea-level
pressure from three large-ensemble datasets: The National Center for Atmospheric
Research (NCAR) Community Earth System Model (CESM) Large Ensemble
Community Project (LENS)47, the Max Planck Institute for Meteorology (MPI)

Grand Ensemble (MPI-GE)48, and the Geophysical Fluid Dynamics Laboratory
(GFDL) Climate Model version 3 (CM3) Large Ensemble (GFDL-LE)49. We also
use daily averaged u and v from LENS and GFDL-LE.

These datasets contain data from fully coupled atmosphere-land-ocean-ice
simulations of the period 1920–2005, based on the historical radiative forcing, and
the period 2006–2100, where the forcing is chosen based on the high-emission
scenario RCP8.5. For each period, an ensemble with 20 (GFDL-LE), 40 (LENS), or
100 (MPI-GE) members are simulated by starting from initial conditions that differ
in small random perturbations. The LENS, MPI-GE, and GFDL-LE models have
horizontal resolutions of approximately 1°, 1.8°, and 2°, respectively.

To compute mean changes in large-scale circulation from the large-ensemble
and CMIP5 datasets (Fig. 2 and Supplementary Figs. 1–9), we analyze and compare
data from 1979–2005 (referred to as “current” climate) and 2074–2100 (referred to
as “future” climate).

CMIP5 datasets. We use monthly averaged u, v, and Z500 from 14 models in Phase
5 of the Coupled Model Intercomparison Project (CMIP5)50; see Supplementary
Table 1. We use the historical and RCP8.5 simulations of each model. To compute the
multi-model-mean, we first interpolate data from all models to the highest horizontal
resolution (0.75° × 0.75°), and then calculate the average over all models.

Cluster analysis. To cluster daily steering wind patterns and identify the dominant
regimes, we use self-organizing map (SOM)51, which is an artificial neural network
that has been extensively used to classify climate data34,52–57. To conduct the
cluster analysis, we compute vectors consisting of the zonal and meridional
components of the daily steering winds (Eqs. (1)–(2)) for each grid point inside a
box around Texas, and then apply the SOM algorithm on these daily vectors. Note
that we do not conduct any pre-processing on the daily vectors before applying the
SOM algorithm. For SOM, we use the selforgmap subroutine in MATLAB’s Deep
Learning Toolbox. Different layers of neurons with 1000 ordering phase steps are
set to classify wind patterns. The distance between layers is calculated using the
linkdist function and the layer topology function is set to be hextop, which creates
hexagonal patterns for neurons.

In order to find the uncertainties of the frequencies, we perform 50 repetitions of
SOM clustering, each time using one fifth of the total available data chosen randomly.
Pattern correlation is used to find the correspondence between the cluster centers
obtained each time and those obtained from the entire dataset. In Supplementary
Figs. 12–14, the uncertainties of the frequencies are reported as standard error.

We focus on the LENS dataset, which provides daily wind data for a 40-member
ensemble for each period, and in the period of 1979–2005, reproduces the
June–September steering wind clusters of reanalysis data fairly well (compare
Supplementary Figs. 11 and 12 and see their captions). Note that the results of
these two figures are obtained by conducting two separate SOM analyses: One
applied to the daily steering wind vectors in the reanalysis data (Supplementary
Fig. 11) and one applied to the daily steering wind vectors in the LENS current
climate data (Supplementary Fig. 12).

Choosing the appropriate number of clusters is a challenging task in using any
unsupervised cluster analysis technique. Here, we use the subjective criterion that the
number of clusters should be small enough so that the resulting cluster centers have
distinctly different wind patterns, yet large enough such that increasing the number of
clusters do not lead to new distinctly different patterns. We use 10 clusters (SOM
size= 2 × 5); using 12 clusters (SOM size= 3 × 4) leads to the same conclusion.

To investigate how the steering wind patterns change between the current and
future climates, following previous studies34,53,54, we apply the cluster analysis on a
dataset consisting of both current and future climates. Here, we follow the framework
of Gervais et al.34. For each cluster i, we define the frequency f Ci ðf Fi Þ as the number of
days in the current (future) period in that cluster divided by the total number of days
in the current period, which is equal to the total number of days in the future period.
Hereafter, superscripts F and C refer to the future and current climates, respectively.
Supplementary Fig. 13 shows the frequency �fi ¼ ðf Ci þ f Fi Þ=2 and the center of each
cluster i (the cluster center, �Pi , is the average of the daily patterns within each
clusters). There are clearly distinct cluster centers, corresponding to regimes involving
strong northward (C1, C3-C5, C10) or southward (C6 and C9) steering winds. Then,
we analyze, how each cluster changes between the current and future climates, and
further quantify, separately, how the change in frequency and change in wind pattern
within each cluster contribute to the total change:

Total change in cluster

i ¼ f Fi ´ PF
i � f Ci ´ PC

i ¼ �Pi ´Δfi þ �fi ´ΔPi ð3Þ
The first term after the second equal sign is calculated as

�Pi ´Δfi ¼ PF
i þ PC

i

� �
=2 ´ f Fi � f Ci

� � ð4Þ
and shows the effect of the change in the frequency of that cluster in the future
climate compared to the current climate. Supplementary Figure 14 shows �Pi ´Δfi
from Eq. (4) for each cluster. The second term after the second equal sign is
calculated as

�fi ´ΔPi ¼ f Fi þ f Ci
� �

=2 ´ PF
i � PC

i

� � ð5Þ
and shows the effect of the change in the wind patterns in that cluster in the future
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climate compared to the current climate. Supplementary Figure 15 shows Eq. (5)
for each cluster. See Gervais et al.34 for further discussions of the methodology.
Supplementary Figure 16 shows the total change (Eq. (3)) in each cluster.

CHAZ-CMIP downscaling experiments. CHAZ, the Columbia (TC) HAZard
model, is used for generating synthetic storms in the historical period (1981–2005;
HIST) and the late 21st century under RCP8.5 (2071–2099; RCP8.5). Lee et al.25

developed and tested the CHAZ model using recent historical, observation-based
reanalysis data. Lee et al.35 then downscaled the CHAZ model from six CMIP5
models (see Supplementary Table 1) to examine the impact of a warming climate
on the global and basin-wide TC activity. Details of the methods and the config-
uration of the CHAZ model, as well as the CMIP5 models, are described in Lee
et al.25,35. Below we provide a summary.

The CHAZ model consists of three separate models: genesis, track, and intensity.
The genesis model seeds the domain with weak vortices using a seeding rate that
depends on environmental conditions through a TC genesis index (TCGI)58,59. The
track model then moves seeds forward by advection of the environmental steering
wind (Eqs. (1)–(2)) plus a beta drift component60. The evolution of the storms’
intensity is then determined by the intensity model61,62 using the surrounding large-
scale environment via an empirical multiple linear regression model, plus a stochastic
component. The stochastic component accounts for the internal storm dynamics and
does not depend explicitly on the environment. Intensity at landfall and shortly
afterward is calculated from a separate regression model that takes into account both
the proximity to land and the environmental conditions. Ambient environmental
variables required by the CHAZ model are potential intensity (PI)63, deep-layer (850
mb to 250mb) vertical wind shear, the moisture variables – column integral relative
humidity (CRH) or saturation deficit (SD), the absolute vorticity at 850mb, and the
steering flow. SD is the difference between the column integrated water vapor and the
same quantity at saturation, and the CRH is their ratio. Both are calculated following
Bretherton et al.64.

In this study, we use a subset of synthetic storms from Lee et al.35 that affect
Texas. In Lee et al.35, the CHAZ model is downscaled from monthly averaged data of
six CMIP5 models; see Supplementary Table 1. As discussed in Lee et al.35, the future
projections of the annual frequency of TCs globally and in the North Atlantic region
are sensitive to the choice of CRH and SD in TCGI. Consequently, there is a large
uncertainty in assessing the frequency of TCs affecting Texas in future climate.
However, Lee et al.35 noticed that the projected changes in the forward speed are not
sensitive to the annual TC frequency. Therefore, as our focus is on the changes in the
steering winds and the relative probability distribution of the forward speed, we use
all the Texas storms from both CRH and SD experiments described in Lee et al.35.
We refer to synthetic storms from the historical period (1981–2005) as ‘HIST’ while
those from the late 21st century (2071–2099) as ‘RCP8.5’.

The CHAZ results from the HIST period are compared to the observations
from IBTrACS version 444. We use the 6-hourly storm location (in longitude and
latitude) and maximum wind speed from 1981 to 2018. As noted in the Results
Section, CHAZ captures the climatology of the observed forward speed of Texas
storms relatively well (Fig. 4). Nevertheless, it is noticeable that CHAZ at the HIST
period underestimates the probability of slow-moving storms and overestimates
the probability of the fast-moving ones. Although our interest is in the differences
in the synthetic storms’ forward speed in the RCP8.5 period compared to those in
the HIST period, it is also reasonable to calibrate the model results to match with
observations, i.e., conduct bias correction42,65. When doing so, we should examine
whether our results and conclusions are sensitive to the bias correction approach.
Thus, we conduct additional sets of analyses using bias-corrected data with two
distribution mapping approaches applied.

In the first approach, we assume that the relative probability distributions of the
forward speed and direction are Gaussian, and we correct the location and scale
parameters of the modeled distribution. In other words, the corrected distribution
has the same mean and standard deviation as the observed one. In the second
approach, we use the quantile-matching technique66, which allows the CHAZ’s
distribution to match the entire observed distribution. We derive the correction
factors using CHAZ HIST simulations and then apply the same corrections to
simulations for RCP8.5. Supplementary Figure 17 shows the relative probability
distributions of the translation speed, and its meridional and zonal components,
with the Gaussian bias correction method applied. In the caption, the numbers
associated with the shifts in the relative probability distributions with Gaussian or
quantile-matching bias-correction method are reported. Analyzing the bias-
corrected distribution from either approach yields the same conclusion as the one
reached with the original data (Fig. 4): a decrease in the relative probability of slow-
moving TCs and an increase in the relative probability of fast-moving TCs by the
end of the 21st century under RCP8.5 (Supplementary Fig. 17).

Data availability
The daily precipitation data are available at https://psl.noaa.gov/data/gridded/data.cpc.
globalprecip.html. The IBTrACS data are available at https://data.nodc.noaa.gov/cgi-bin/
iso?id=gov.noaa.ncdc:C01552. The NCEP-DOE reanalysis dataset is available at https://
www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. The large-ensemble and
CMIP5 datasets are available at: http://www.cesm.ucar.edu/projects/community-projects/
LENS/ (LENS), https://esgf-data.dkrz.de/search/mpi-ge/ (MPI-GE), https://www.
earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.gfdl_cm3_lens.html (GFDL-

LE), and https://esgf-node.llnl.gov/projects/cmip5/ (CMIP5). The downscaling data used
in Fig. 4 and Supplementary Fig. 17 are provided as Supplementary Data files.

Code availability
All computer codes used to analyze the data and produce the plots are available from the
corresponding author upon request.
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