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Abstract: Osteoconductive and osteoinductive coatings represent attractive and tunable strategies
towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate
local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and
hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells’ develop-
ment, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover,
the addition of osteogenic proteins represents the next step towards the fabrication of advanced
biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially
contribute to the new bone formation. In this respect, laser-processed composites, based on PLA,
Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic
implants. The nanostructured coatings proved superior ability to promote the adhesion, viability,
and proliferation of osteoprogenitor cells, without affecting their normal development and further
sustaining the osteogenic differentiation of the cells. Our results are complementary to previous
studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and
orthodontic applications.

Keywords: hydroxyapatite; bone morphogenetic protein; MAPLE

1. Introduction

Besides biomechanical support and functional performance, surface characteristics of
metallic implants are essential aspects to be considered during the fabrication of implantable
devices for orthopedic and orthodontic applications. It has been shown that specific surface
features of metallic implants are responsible for their long-term mechanical stability and
tribological outcomes [1–3], corrosion resistance, and potential ion-mediated toxicity [4–6],
as well as for their osseointegration (by influencing the behavior of cells that control the
final bone formation) [7–9]. As metallic biomaterials represent key elements for hard tis-
sue replacement and restoration, a plethora of efforts have been undertaken to limit their
main shortcomings, namely bioinertness and poor bioactivity. Many studies confirmed the
importance of surface characteristics for reaching a proper and augmented osseointegra-
tion [10–13], with a special emphasis forming a bioactive implant-to-bone interface.

Surface modification of metallic implants, either performed by mechanical, chemical,
or physical techniques [14–16], results in beneficial outcomes in implants’ reactivity, hy-

Polymers 2021, 13, 4303. https://doi.org/10.3390/polym13244303 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-3036-094X
https://orcid.org/0000-0002-2226-5849
https://orcid.org/0000-0003-4038-7548
https://orcid.org/0000-0001-8093-1750
https://orcid.org/0000-0002-9439-9432
https://doi.org/10.3390/polym13244303
https://doi.org/10.3390/polym13244303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13244303
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13244303?type=check_update&version=1


Polymers 2021, 13, 4303 2 of 19

drophilicity, roughness, surface energy and charge, and, especially, biocompatibility. The
physical methods that have been applied to enhance the osteogenic activity of implantable
metallic biomaterials include thermal spraying [17], sputtering [18], ion implantation [19],
plasma treatment [20], and laser-assisted processing [21]. Special attention was oriented
towards the latter category, given the enhanced physicochemical properties and boosted
biofunctional performance of laser-textured [22–24] and coated [25,26] metallic implants.
Out of all these techniques, the matrix-assisted pulsed laser evaporation (MAPLE) is known
to have some advantages, such as the possibility to synthesize homogeneous and uniform
nanosized or nanostructured coatings, as well as composite or hybrid coatings containing
organic substances, such as polymers [27–29] and biomolecules [30,31].

Surface modification by calcium phosphate coatings, obtained by laser processing,
represents a suitable choice to increase the integration of metallic implants and improve
their biofunctionality [32,33]. Synthetic hydroxyapatite (HAp) is one of the most widely
utilized calcium phosphate biomaterials for bone tissue engineering applications, as it
shows chemical and structural resemblance with the biological apatite [34,35] and excellent
biocompatibility [34]. Synthetic HAp is responsible for an increased concentration of local
Ca2+, which can further stimulate osteoblasts proliferation and encourage the growth
and differentiation of mesenchymal stem cells [36]. HAp-based laser-processed coatings
demonstrated high efficiency for osseointegration of metallic implants and subsequent
bone regeneration [21,34].

In addition, the HAp-aided osseointegration of metallic materials can be further en-
hanced by developing composite or hybrid coatings, as the presence of different ions [37–39]
and nanostructures [40,41] has beneficial effects on the crystallization, mechanical proper-
ties, degradation, and biological activity of apatite and enhances the repair mechanisms
of bones.

Polylactic acid (PLA) is a linear aliphatic polyester with good mechanical and ther-
moplastic properties, superior solubility and degradation, excellent biocompatibility, and
tunable biodegradability [42–44]. It has been widely explored for biomedical applications,
including surgical sutures, implants, bone grafts, and drug carriers [45–47]. In addition,
PLA coatings were reported as successful platforms for the circumstantial release of bioac-
tive molecules [48,49]. Given the physicochemical versatility and biological behavior
of PLA/HAp composites, as well as their ability to improve the osteogenic response of
metallic biomaterials both in vitro [50] and in vivo [51], the synthesis of PLA/HAp com-
posite coatings for enhanced osseointegration of metallic implants the focus of several
papers [52,53].

Moreover, the immobilization or incorporation of growth factors, with an essential role
during the repair and regeneration of bone tissue, is an attractive strategy to promote and
support the osseointegration of metallic implants and subsequent bone healing. Several
growth factors have been explored for their capacity to advance the healing process of
bone tissue, but bone morphogenetic proteins (BMPs) are among the most proficient.
Those multifunctional cytokines play a pivotal role in bone remodeling, both during
osteoblastogenesis and osteoclast homeostasis [54,55]. BMPs are extensively explored
for orthopedics and oral maxillofacial surgery [56–58]. Advanced biomaterials based on
osteoinductive calcium phosphates, such as HAp [59,60] and tricalcium phosphate [61],
were reported as effective delivery platforms for osteogenic BMPs.

Immobilizing or embedding osteoinductive proteins from the BMP family on/in
implantable materials and devices used in orthopedics and orthodontics is an effective
approach to increasing biomechanical and functional performance. In this regard, the supe-
rior efficacy of supporting cell proliferation and inducing osteogenic differentiation of stem
cells in fibroin/HAp scaffolds [62], nano-HAp/collagen/PLA [63], and PCL/HAp [64], en-
riched with BMP2, have been reported. The osteogenic potential, as well as the capacity to
simulate de novo bone tissue formation, has also been reported when incorporating plasmid-
activated BMP2-loaded chitosan nanoparticles into collagen/HAp scaffolds [65]. More, the
potential of BMP2-loaded nano-HAp/PLA-PEG composites [66] and hybrid PLA/HAp
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nanofibrillary structures, decorated with BMP2-loaded liposomal nanocapsules [66], to
be used in bone engineering, has also been highlighted. The potential of BMP2-loaded
nano-HAp/PLA-PEG composites and hybrid PLA/HAp nanofibrillary structures, deco-
rated with BMP2-loaded liposomal nanocapsules [67], to be used in bone engineering, has
been supported by the multifunctionality of these materials, which possess the ability of
biomineralization and stimulate osteogenic differentiation and generation of new bone
tissue. Prolonged and controlled release of BMP2 from three-dimensional biomimetic
supports, based on HAp/collagen [68,69] and HAp/chitosan [70,71], has accelerated the
process of bone regeneration; these advanced materials also demonstrating the ability to
stimulate angiogenesis and neovascularization.

With the aim to improve the bioactivity of metallic implants, we herein evaluated
the ability of MAPLE-obtained composite coatings, based on PLA, Hap, and BMP4
(PLA/HAp/BMP4), to modulate the complex response of osteoprogenitor cells. In this
view, the PLA/HAp/BMP4 materials samples were synthetized and characterized, in
terms of their physicochemical properties and morphology by XRD, SEM, FT-IR, and
IRM. More, the samples were subjected to a set of biological tests, revealing their level
of biocompatibility and potential to sustain pre-osteoblasts differentiation towards the
osteogenic lineage.

2. Materials and Methods
2.1. Materials

All reagents required for the synthesis of HAp-based composite coatings were pur-
chased from Sigma-Aldrich (Merck Group, Darmstadt, Germany), namely polylactic acid
(PLA), CaCl2, Na2HPO4·2H2O, NaOH (10%), dimethyl sulfoxide (DMSO), and bone mor-
phogenetic protein 4 (BMP4).

The same supplier provided most reagents and assay kits used for biological evalua-
tion (otherwise, the provider was specified below). The MC3T3-E1 osteoblastic cell line,
derived from mouse calvaria (ATCC® CRL-2593™), was acquired from American Type
Culture Collection (ATCC, Manassas, VA, USA).

2.2. HAp Synthesis

To synthesize the HAp powdery sample, CaCl2 and Na2HPO4 × 2H2O were dissolved
in ultrapure water. The phosphorous-containing solution was then added dropwise to
the calcium-containing solution, under continuous stirring. Subsequently, the alkaline pH
adjustment was performed by adding 10% NaOH, and the resulted solution underwent a
one-day maturation process. The final product was subjected to filtration, triple washing
treatment, and drying process.

2.3. Composite Coatings Synthesis

Titanium discs (with diameter and thickness of 12 mm and 0.1 mm, respectively),
and double-side polished (1 0 0) Si slides were used as substrates during the MAPLE
experiments. Prior to surface modification by laser processing, all substrates were subjected
to an ultrasonic cleaning treatment with acetone, ethanol, and deionized water (15 min
each step), followed by drying under a high purity nitrogen jet.

The solid targets required for MAPLE experiments were obtained by freezing the
PLA/HAp/BMP4 suspensions in DMSO (3% concentration) at liquid nitrogen temperature.
Further, the targets were irradiated with a COMPexPro 205 Lambda Physics KrF* excimer
laser source (λ = 248 nm, τFWHM = 25 ns), at a repetition rate of 15 Hz and a residual
pressure of 3 × 10−3 mbar. The target-to-substrate distance was set at 5 cm. A total number
of ~58,000 laser pulses were applied for each experiment, for depositions using different
laser fluences (200, 300, and 400 mJ/cm2).
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2.4. Characterization Methods

The X-ray diffraction (XRD) analyses were performed using the CuKα radiation
(λ = 1.056 Å) of an XRD-6000 Shimadzu equipment (Duisburg, Germany). Data were
collected between 10–80◦ diffraction angles.

SEM investigations were performed on HAp powder and HAp-based coatings, using
the secondary electron beams (30 keV and 25 keV, respectively) of an Inspect S scanning
electronic microscope from FEI (Thermo Fischer Scientific, Hillsboro, OR, USA). Before
SEM analysis, all samples were capped with a thin conductive layer.

Fourier transform infrared spectroscopy (FT-IR) spectra of HAp powder and com-
posite coatings, as well as infrared microscopy (IRM) maps of Hap-based coatings, were
recorded on a Nicolet iN10 MX FT-IR microscope (Thermo Fischer Scientific, Waltham,
MA, USA), equipped with an MCT liquid nitrogen cooled detector. The measurements,
performed in the reflection mode, were collected in the 4000–600 cm−1 wavenumber range,
at 4 cm−1 resolution. Multiple scans were co-added and converted to absorbance, in order
to attain each IR spectrum, using in this respect the Ominc Picta software (Thermo Fischer
Scientific Company, Waltham, MA, USA).

2.5. Biological Evaluation
2.5.1. Cell Culture Model

Mouse pre-osteoblasts from the MC3T3-E1 cell line (CRL-2593, ATCC) were used as
in vitro cell culture model to evaluate the biocompatibility of PLA/HAp/BMP4 materials,
as well as for assessing the osteogenic differentiation potential of the proposed material. Be-
fore cell seeding, all the tested composites were sterilized by exposure to UV light. Besides
the PLA/HAp/BMP4 materials, non-coated substrates (Titan discs) were employed as
reference material and were processed identically as the PLA/HAp/BMP4-coated samples.

For the biocompatibility assessment, the MC3T3-E1 preosteoblasts cells were seeded
at an initial density of 1 × 104 cells/cm2 on the surface of the samples in Dulbecco’s
modified Eagle medium (DMEM, Sigma-Aldrich), supplemented with 10% fetal bovine
serum (FBS, Life Technologies, Foster City, CA, USA) and 1% penicillin/streptomycin
mixture (10,000 units/mL penicillin and 10 mg/mL streptomycin) (Sigma-Aldrich) and
maintained under standard culture conditions (37 ◦C, 5% CO2) for 7 days. During the 7 days
of maintaining the bioconstructs in culture, the cell culture media was refreshed every other
day. For the osteogenic differentiation assessment, the MC3T3-E1 pre-osteoblasts cells were
seeded at an initial density of 2 × 104 cells/cm2 on the surface of the samples in complete
DMEM culture media. After 24 h, the cell culture media was replaced with a commercially
available osteogenic induction culture medium (StemPro Osteogenic Differentiation Kit,
Thermo Fischer Scientific), and the samples were maintained in culture for 21 days under
standard culture conditions. The osteogenic induction culture medium was refreshed three
times a week.

2.5.2. In Vitro Biocompatibility Assessment

The PLA/HAp/BMP4 materials biocompatibility was investigated 2 and 7 days
after the achievement of the cell/composite bioconstructs, by evaluating the MC3T3-
E1 cell viability and proliferation potential as the material cytotoxicity and impact on
cell morphology.

The potential of the PLA/HAp/BMP4 materials to sustain cell viability and prolifera-
tion, as well as the pattern of cell distribution on the material surface, was investigated by
the quantitative live/dead fluorescence microscopy assay, using the Live/Dead kit (Life
Technologies). Briefly, the samples were retrieved from the cell culture media, rinsed with
phosphate saline buffer (PBS, Life Technologies, Foster City, CA, USA), and incubated in
the freshly prepared staining solution, containing both calceinAM and ethidium bromide,
according to the manufacturer’s recommendations. After 20 min of incubation, at room
temperature in darkness, the samples were investigated using the Olympus IX73 (Olympus
Life Science, Waltham, MA, USA) microscope, equipped with a fluorescence modulus.
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To quantitatively investigate the cell viability and proliferation of MC3T3-E1, seeded
in contact with the PLA/HAp/BMP4 materials, the cell metabolic activity was evalu-
ated using the MTT assay. For this, the cell culture media was discarded and replaced
with 1 mg/mL 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT solution
(Sigma-Aldrich), freshly prepared in FBS-free culture media. After 4 h of incubation at
37 ◦C, the MTT solution was removed, and the resulting formazan crystals were dissolved
in DMSO. The absorbance of the resulting solution was measured at 550 nm using a
FlexStation III microplate multimodal reader (Molecular Devices, San Jose, CA, USA).

Evaluation of the cytotoxicity of the PLA/HAp/BMP4 materials was performed via
LDH assay using the lactate dehydrogenase (LDH), based in vitro toxicology assay kit
(TOX7 kit, Sigma-Aldrich). Cell culture media samples were harvested at both experi-
mental time points and mixed with the kit’s components, according to the manufacturer’s
indications. The resulting solutions were incubated at room temperature, for 20 min in
the dark, and the reaction was stopped with 1 N HCl. The LDH enzyme’s activity in the
culture media was determined by measuring at 490 nm the absorbance of the resulting
solutions, using the FlexStation III microplate multimodal reader (Molecular Devices).

To reveal the morphology of MC3T3-E1, cultured in contact with the PLA/HAp/BMP4
materials, the adhered cells were fixed with a 4% paraformaldehyde solution (PFA, Sigma-
Aldrich) for 20 min, permeabilized with a 2% BSA solution with 0.1% Triton X100 (Sigma-
Aldrich) for 1 h, and further stained with fluorescein isothiocyanate (FITC)-conjugated
phalloidin (Sigma-Aldrich) for 1 h at 37 ◦C in the dark. Before samples microscopy
investigation, using the Olympus IX73 fluorescent microscope, the cell nuclei were stained
with 4, 6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich).

2.5.3. In Vitro Osteoinductive Potential Assessment

The osteogenic differentiation process was monitored, during 21 days of exposure of
MC3T3-E1 cells, cultured on the surface of PLA/HAp/BMP4 materials, in the presence of
osteogenic inductors, at 2-time points: 14 and 21 days.

The protein expression levels of the osteogenic-specific markers osteopontin (OPN)
and osteocalcin (OCN) were investigated by fluorescence microscopy, following specific
antibody staining. In this view, samples were fixed and permeabilized, as described above,
and incubated overnight at 4 ◦C, with rabbit polyclonal anti- OCN (Santa-Cruz Biotech-
nology, Heidelberg, Germany) and goat polyclonal anti-OPN (Santa-Cruz Biotechnology,
Heidelberg, Germany) antibodies. Prior to fluorescence microscopy investigation, the sam-
ples were further incubated in tetramethylrodamine-5,6-isothiocyanate (TRITC)-conjugated
goat anti-rabbit and FITC-conjugated rabbit anti-goat secondary antibodies solutions for
30 min at room temperature in darkness (Santa-Cruz Biotechnology, Heidelberg, Germany)
and DAPI for nuclei staining.

Alkaline phosphatase (ALP) activity was evaluated using the Alkaline Phosphatase
Activity Colorimetric Assay Kit (Biovision, Milpitas, CA, USA), following the manufac-
turer’s instructions. At the chosen time points, for monitoring the osteogenic induction,
the culture media was harvested, mixed with p-nitrophenylphosphate substrate, and in-
cubated at 25 ◦C for 60 min. The optical density of the resultant p-nitrophenol at 405 nm
was determined spectrophotometrically, and the results were plotted on the p-nitrophenol
standard curve to quantify the amount of pNP generated by ALP in each sample. ALP
activity was determined as described in the kit protocol.

To evaluate the capacity of MC3T3-E1 cells to form calcium deposits in contact with
the PLA/HAp/BMP4 materials, the alizarin red S staining was employed. Briefly, at
the experimental time points, the cell culture media was discarded, and samples were
further washed with PBS and fixed with 4% PFA for 2 h. For staining, a freshly prepared
solution of 1% Alizarin Red (Sigma-Aldrich) was used for immersing the samples for
30 min at room temperature. Then, the dye was removed, and the samples were washed
with distilled water, until the washing solution remained colorless and transferred in a 10%
acetic acid solution for dye extraction. The optical density of the resulting solutions was



Polymers 2021, 13, 4303 6 of 19

determined spectrophotometrically at 405 nm using a Flex Station III multimodal reader
(Molecular Devices).

2.5.4. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism Software (San Diego,
CA, USA). All statistic data are presented as mean values ± standard deviation of three
independent experiments. Both one- and two-way analyses of variance (ANOVA) were
used. Bonferroni’s multiple comparisons post-test were used to identify which groups were
different, with p < 0.05 considered statistically significant. For the microscopy-based assays,
image acquisition and processing were performed using dedicated software (CellSense F,
Olympus and Image J, National Institutes of Health, Bethesda, MD, USA).

3. Results & Discussion
3.1. Physicochemical Characterization of HAp Powder

Following the complete drying of the viscous white precipitate, resulted from chemical
synthesis, XRD analysis was performed, the corresponding results being included in
Figure 1.
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Figure 1. XRD pattern of HAp powder.

Diffraction maxima corresponding to the hexagonal crystalline structure of hydrox-
yapatite were identified at 2θ values of 26.4◦, 28.7◦, 29.4◦, 32.2◦, 33.9◦, 34.1, 35.6◦, 39.9◦,
47.6◦, 49.9◦, and 53.6◦. The corresponding diffraction planes are evidenced in Figure 1.
The intense doublet, attributed to the presence of (211) and (112) planes, confirmed the
synthesis of stoichiometric crystalline HAp [72], according to the JCPDS09-0432 file and
previous results from the literature [73,74].

The presence of large, overlapped reflection peaks indicated the reduced crystallinity
of the synthesized material, a result expected due to the absence of additional thermal
treatments [75,76]. However, the formation of high purity HAp powder was confirmed, as
no secondary phases were noticed.

The SEM measurements (Figure 2) showed the presence of HAp aggregates, consisting
in needle-like nanosized individual particles (width of ~10 nm, length between 10−100 nm).
Those observations are in good agreement with other reports on the microstructure of
synthetic HAp [77,78].
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Figure 2. SEM images of HAp powder at (a) 5000×, (b) 10,000× and (c,d) 100,000× magnifications.

The IR spectrum of the HAp powder (Figure 3) revealed the presence of the follow-
ing characteristic absorption bands: the intense peaks from 1021 cm−1 and 1100 cm−1,
attributed to the asymmetric stretching of PO4

3− group (P–O bond), while the symmetric
stretch of the same functional group was identified at 960 cm−1 and 870 cm–1 [79,80].
Moreover, the asymmetric deformation of the O−P−O bond (originating from PO4

3−) was
confirmed by the presence of IR bands from ~601 cm−1 and ~560 cm−1 [81,82]. The partic-
ular presence of the latter doublet is characteristic for crystalline HAp [83], in compliance
with the XRD results.

3.2. Physicochemical Characterization of PLA/HAp/BMP4 Coatings

To experimentally identify the optimal conditions for the unaltered and efficient
transfer of MAPLE-processed coatings, compositional and microstructural studies are often
required. In literature, there are reported a wide array of techniques for the fabrication
of BMP related films [84,85]; however, the control and repeatability of the process are
known as one of the main bottlenecks of solution-based approaches. For the transfer of
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complex organic material with controllable stoichiometries laser-based technologies were
shown to be desirable alternatives. In our case, comparative IR investigations between
drop-cast (corresponding to pristine materials) and MAPLE-processed samples (obtained
with different laser fluences) were performed (Figure 4). In this respect, IR maps (Figure 4-
righthand side) were recorded by monitoring the intensity of the absorption bands of
the carbonyl group (~1750 cm−1), which originates from the polyester and phosphate
groups (~1030 cm−1) from the apatite phase. The chromatic changes, seen in the IR
maps, are directly related to absorbance intensity and provide valuable information on
the compositional distribution across the substrate and the efficiency of the laser transfer.
Complementary IR spectra (Figure 4-lefthand side), resulting from collecting data from
different points on the samples, offered information on the compositional integrity and
stoichiometry of the MAPLE-processed materials.
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Besides the characteristic absorbance maxima of HAp (identified at ~1100, ~1036 and
~980 cm−1), IR maxima corresponding to PLA were clearly seen and assigned as follows:
symmetric and asymmetric stretching of C–H band originating from –CH3 terminal groups
(between 3000–2850 cm−1), strong stretching of C=O moiety(~1750 cm−1), asymmetric
deformation of C–H (~1450 cm−1), –CH3 bending (~1380 cm−1), C–O–C asymmetric stretch-
ing (~1200 cm−1), and C–O stretch vibrations (~1100 cm−1) [86,87]. To further identify
the optimal laser fluence for processing the PLA/HAp/BMP4 materials, the IR spectra of
drop-cast samples were used as reference. A significant reduction (even disappearance) of
relevant absorption bands was observed for samples processed with minimal and maximal
laser fluence values. This observation was correlated with the poor transfer of composite
material that occurred at low fluence (200 mJ/cm2) or with the nonstoichiometric transfer
of composite material that occurred at high fluence (400 mJ/cm2), respectively. Those
results were supported by the IR mapping, which revealed the abundance of cool colored
areas. In terms of preserved stoichiometry and laser transfer efficiency, optimal results
were found for materials processed with the average laser fluence of 300 mJ/cm2.
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Based on the results provided by IR analysis, the following investigations were per-
formed only on PLA/Hap/BMP4 materials processed at 300 mJ/cm2 laser fluence. Rele-
vant microstructural information was obtained by both top-view and cross-section SEM
micrographs (Figure 5). Figure 5a revealed the uniform and compact transfer of composite
material onto the substrate, with HAp aggregates uniformly distributed in the polymer
matrix. At this level, no degradation of PLA film was noticed, confirming the conclusions
extracted from IR measurements. Figure 5b evidenced the efficient incorporation of HAp
nanoparticles within the PLA matrix, as they preserved their dimensional range during the
MAPLE transfer. Moreover, the preferential rod shape of HAp was observed at this level,
which was correlated with the individual coating of inorganic nanoparticles by the polymer
matrix. This observation was related to the formation of weak physical interactions be-
tween the two components, as previously evidenced by the spectral shift of HAp absorption
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bands in the MAPLE-processed materials. As observed from SEM investigations, the laser
fluence did not alter the uniform distribution of small aggregates of PLA/HAp/BMP4
composite material onto the substrate. The continuous sub-micron coating (Figure 5c) was
composed of particulates of different sizes, arbitrary scattered on the surface, which have a
positive outcome on cell adhesion and growth/proliferation [88–90].
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3.3. In Vitro Biocompatibility of PLA/HAp/BMP4 Coatings

The biocompatibility of the PLA/HAp/BMP4 coatings was investigated by multiple
assays that aimed to highlight the affinity of the MC3T3-E1 preosteoblasts cells to adhere to
the nanostructured surfaces, as well as the capacity of the materials to sustain cell viability
and proliferation.

Fluorescence microscopy investigation of the samples after live/dead staining (Figure 6)
showed that PLA/HAp/BMP4 coatings increase the affinity of MC3T3-E1 cells signifi-
cantly to adhere to the substrate, as revealed by the enhanced ratio of cells present on the
PLA/Hap/BMP4 material, 2 days post-seeding, as compared with the control. The cells
were well-distributed on the entire surface of the material, being identified exclusively cells
labeled in green (live cells). This particularity was maintained as well after 7 days of cul-
ture, where MC3T3-E1 cells uniformly covered the entire surface of the PLA/Hap/BMP4
material, unlike the control substrate, where a significantly lower ratio of viable cells was
identified onto the control surface. Even if both substrates provide support for MC3T3-E1
preosteoblasts cell proliferation, the reduced number of cells present on the reference
sample, as compared with the PLA/Hap/BMP4 coating, shows that the substrate tuning is
mandatory to promote cellular adhesion and maintain overtime cellular health.

The observations made via fluorescence microscopy were confirmed by the MTT
spectrophotometric assay that allowed the quantification of the viable cells cultured on
the surface of the sample, as well as the preosteoblasts proliferation rate (Figure 7). After
2 days of culture, no significant changes were observed between samples, in terms of cell
viability. In contrast, after 7 days of cell-materials interaction, the metabolic activity of
MC3T3-E1 cells was significantly increased in contact with the nanostructured substrates,
compared with the pristine substrates. More, while the cell viability of MC3T3-E1 cells,
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after 2 days of culture, was similar on both samples, after 7 days, a 2-fold increase of the
cell viability was observed between samples, confirming that the PLA/Hap/BMP4 coating
augments MC3T3-E1 cell proliferation.
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Figure 7. MC3T3-E1 cell viability and proliferation potential, after 2 and 7 days of culture of contact
with control surfaces and PLA/HAp/BMP4 materials, as revealed by the MTT assay (**** p < 0.0001).

More, LDH release in the culture media was quantified spectrophotometrically to
assess the cytotoxic potential of the investigated samples (Figure 8). After 2 days of cul-
ture, MC3T3-E1 pre-osteoblasts grown on the sample’s surfaces displayed a low LDH
release in the culture medium, with no significant differences observed between samples,
suggesting that none of these materials trigger cell membrane damage at this time point.
However, after 7 days of culture, the LDH activity was enhanced in both analysed samples,
with a significant increase in the control sample, as compared with the PLA/HAp/BMP4
materials, which sustain the enhanced cytotoxicity of the non-coated surface. More, corre-
lated with the cell viability assays results that sustain the excellent biocompatibility of the
PLA/HAp/BMP4 coatings, the increase of the LDH activity in the media samples collected
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from cells-PLA/HAp/BMP4 bioconstructs could be attributed to the prolonged cell culture
period, as well as from natural cell death process as a result of the rapid cell growth on the
material surface that reached monolayer confluence within 1-week.
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Figure 8. Quantification of LDH leakage, triggered by MC3T3-E1 cell membrane damage, as a
measure of samples cytotoxicity after 2 and 7 days of culture (**** p < 0.0001) of contact with the
control surface and PLA/HAp/BMP4 coating.

To investigate the effects of the investigated samples on MC3T3-E1 cellular morphol-
ogy, fluorescence microscopy was employed after fluorescent staining with FITC-phalloidin
for cytoskeleton’s actin filaments and DAPI for cells nuclei (Figure 9). After 2 days of
culture, the MCT3-E1 cells cultured in contact with the control samples were majority
round-shaped and exhibited short actin filaments, while the preosteoblasts cultured in
contact with the PLA/HAp/BMP4 coatings were spindle-shaped with long, well-defined
actin filaments, features that suggest a tight adhesion of cells to the nanostructured surface.
After 7 days, MC3T3-E1 cells also adopted their fibroblast-like morphology on the control
surface, but round cells, with little actin, condensed around the nuclei were still noticed.
The cells were erratic, scattered on the control surface and agglomerated in cell clusters,
leaving a large area of the material unpopulated, probably due to poor cell motility and
proliferative potential. In contrast, 3T3-E1 cells cultured onto PLA/HAp/BMP4 nanostruc-
tured surfaces covered the entire material surface and formed a compact cellular network,
distributed evenly onto the material surface.

3.4. In Vitro Osteoinductive Potential of PLA/HAp/BMP4 Coatings

MC3T3-E1 pre-osteoblasts, cultured on control samples and PLA/HAp/BMP4 coat-
ings, were exposed to osteogenic inductors for 21 days. Various assays were employed to
monitor several features specific to the osteogenic differentiation process. In this view, after
14 and 21 days, the activity of ALP was determined as being one of the earliest markers of
mature osteoblasts (Figure 10). As revealed by the ascending ALP activity during 21 days
of exposure to osteogenic inductors, both analyzed samples increased the activity of ALP.
However, between cell culture time points, the ALP activity was 3.6-fold increased at
21 days vs. 14 days in the media samples collected from PLA/HAp/BMP4 coatings, as
compared with 1.7-fold increase determined in the reference samples.
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Figure 10. ALP activity in culture media harvested from 3T3-E1 cells cultured in contact with
control samples and PLA/HAp/BMP4 coatings and osteogenic inductors for 3 weeks (*** p < 0.001;
**** p < 0.0001).

Moreover, as the ALP activity is tightly correlated with the expression of osteopontin
(OPN) and osteocalcin (OCN), key player molecules in the biological and mechanical
functions of bone and secreted by active osteoblasts, the protein expression of these late-
osteogenic markers was investigated by fluorescence microscopy (Figure 11). After 14 days
of osteogenic induction of MC3T3-E1, cultured on reference surfaces and PLA/HAp/BMP4
coatings, the positive expression of OPN and OCN was observed in both samples. However,
the ratio of MC3T3-E1 cells, cultured onto control surface expressing OPN and OCN, was
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significantly lower than the ratio of MC3T3-E1 cultured onto PLA/Hap/BMP4 coatings,
where almost all cells had various amount of OPN and OCN. On the nanostructured
coatings MC3T3-E1, expressing high amounts of OPN and OCN, cells organized in a 3D
cellular network, the expression of the osteogenic markers being significantly increased at
the level of intercellular junctions. After 21 days of osteogenic induction, no changes in the
OPN and OCN protein expression were observed for MC3T3-E1 cells cultured in contact
with the reference slides. Concerning the PLA/HAp/BMP4 coatings, an enhancement of
the OPN and OCN protein expression was noticed, compared with the 14-days expression
levels. A limited amount of MC3T3-E1 separate from the compact cellular network and
condensate to generate 3D cellular spheroids that lack the expression of OPN or OCN,
most probably because cells joining the condensation phase lose their active state and turn
into osteocytes.
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Figure 11. Protein expression of osteogenic specific markers OPN (green) and OCN (red), as revealed
by fluorescence microscopy, after 14 (A) and 21 (B) days of osteogenic differentiation induction of
MC3T3-E1 cells on control surfaces and PLA/HAp/BMP4 coatings (scale bar 100 µm). The cell nuclei
are stained with DAPI (blue).

In the end, to investigate the amount of calcium deposits generated after exposure of
MC3T3-E1 to control surfaces and PLA/HAp/BMP4 coatings and pro-osteogenic stimuli,
alizarin red S staining was performed (Figure 12). The obtained results showed that
moderate mineralization of the extracellular matrix process is present in both experimental
conditions after 14 days of culture, a greater amount of calcium deposits being present in
MC3T3-E1 cells cultured onto PLA/HAp/BMP4 coatings. While the amount of calcium
deposits increases significantly after 21 days of culture, in both MC3T3-E1-material samples,
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in comparison with 14 days of culture, the obtained results highlight a poor performance
of the reference sample to sustain the mineralization of the extracellular matrix, as the
level of alizarin red S staining are 4-fold lower to the level identified for MC3T3-E1-
PLA/HAp/BMP4 coatings bioconstructs at 21 days.
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Figure 12. Quantification of the alizarin red S staining after 14 and 21 days of MC3T3-E1 os-
teogenic differentiation in contact with control samples and PLA/HAp/BMP4 coatings (*** p < 0.001;
**** p < 0.0001).

4. Conclusions

In this study, the MAPLE technique was employed to obtain coatings based on mate-
rials that already showed great potential in bone tissue engineering (PLA, HAp), which
were blended with BMP4, a growth factor that induces the osteogenic differentiation of
osteoblasts and osteoprogenitors and promotes bone formation to improve the bioactiv-
ity of the metallic implants. Independent of the targeted medical application, a crucial
aspect is to obtain a biocompatible material, this aspect was investigated using the pre-
osteoblast MC3T3-E1 cell line by investigating the cell behavior and health, in contact
with the PLA/HAp/BMP4 coatings. The obtained results showed that, when using the
PLA/HAp/BMP4 coatings for substrates, an excellent biocompatible material is obtained,
which sustains cell adhesion, viability, and proliferation and lacks cytotoxicity. This ex-
cellent biocompatibility was attributed to the fact that the individual components (PLA,
HAp) used for synthesizing the hybrid nanostructured coatings are intensively used in
biomedical applications for good biocompatibility, besides other mechanical advantages.
The osteogenic potential of the PLA/HAp/BMP4 coatings was investigated to assess the ca-
pacity of the nanostructured surfaces, in order to improve the in vitro osteogenic response
of MC3T3-E1 preosteoblasts, after exposure to osteogenic inductors, by evaluation of ALP
activity, an early marker of osteoblast phenotype, as well as late markers, such as the bone
matrix proteins expression (OPN, OCN), which are by activated osteoblasts and extracellu-
lar matrix mineralization and condensation, as final steps of the osteogenic differentiation
pathway. Investigation of all these crucial features for the osteogenic differentiation path-
way showed that, in the absence of the PLA/HAp/BMP4 coatings, preosteoblasts present
a poor yield, regarding osteogenic differentiation, despite the pro-osteogenic inductors
provided. In contrast, combining materials with well-known osteoinductive proprieties
proved to be an excellent strategy for obtaining a novel biocompatible osteoinductive
coating that can improve the currently available implants for bone tissue engineering
applications. The results of this study support the use of PLA/HAp/BMP4 coatings in
future studies, to assess the ability of these nanostructured materials in supporting the
repair process of bone damage
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