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Abstract

Advanced backcross (AB) populations have been widely used to identify and utilize beneficial alleles in various crops such as rice, tomato,
wheat, and barley. For the development of an AB population, a controlled crossing scheme is used and this controlled crossing along
with the selection (both natural and artificial) of agronomically adapted alleles during the development of AB population may lead to unbal-
anced allele frequencies in the population. However, it is commonly believed that interval mapping of traits in experimental crosses such
as AB populations is immune to the deviations from the expected frequencies under Mendelian segregation. Using two AB populations
and simulated data sets as examples, we describe the severity of the problem caused by unbalanced allele frequencies in quantitative
trait loci mapping and demonstrate how it can be corrected using the linear mixed model having a polygenic effect with the covariance
structure (genomic relationship matrix) calculated from molecular markers.
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Introduction
QTL (quantitative trait loci) mapping has been proven to be very

useful in crop breeding to identify genetic regions associated with

a trait of interest (Morrell et al. 2011). Development of the experi-
mental populations is the first step in QTL mapping and biparen-

tal populations such as F2, backcrosses (BC), doubled haploids

(DH), or recombinant inbred lines (RIL), can be utilized for the

mapping. Advanced backcross QTL analysis (AB-QTL) proposed
by Tanksley and Nelson (1996) has been widely used as a method

for combining QTL analysis with variety development in plant

breeding programs (Bauer et al. 2009; Nagata et al. 2015; Wang

et al. 2017b), see Wang and Chee (2010) for a more detailed review.
One of the main purposes of the development of AB experimental

population is to transfer the favorable QTL alleles from unad-

apted (e.g., landraces, wild forms) to cultivated gene pool

(Tanksley and Nelson 1996). During the development of these
populations, selection (both natural and artificial) of agronomi-

cally adapted traits will remove the unfavorable alleles coming

from the donor parent from the population and this selection will

reduce the frequency of the donor genome in each of the AB lines.
In addition, due to distinct crossing (wild vs cultivated), there

may also be other biological phenomenon or disturbances pre-

sent that can influence selectively to the process [e.g., hybrid

necrosis (Bomblies and Weigel 2007); hybrid sterility (Ouyang
et al. 2010); hybrid lethality (Garner et al. 2016)]. Thus, the allele
frequencies in the AB families are skewed toward the alleles from
the recurrent parent (Grandillo and Tanksley 2005), which may
lead to substructure in the AB population.

Traditional methods for performing QTL mapping are based
on standard regression techniques and they assume that the
population is identically and independently distributed (i.e.,
individuals are equally related to each other). However, this as-
sumption is not valid when selection of favorable genes and ap-
propriate parents is performed during the development of the
experimental population. Such selection process will lead to
hidden substructure in the experimental population. It is well
known from association and QTL mapping studies based on
multiparental population that hidden population structure,
cryptic relatedness (some members of the population are more
closely related to another), and polygenicity (many small ge-
netic effects) all can yield false-positive QTL signals (Kang et al.
2008a; Würschum and Kraft 2015; Sul et al. 2018). However, it is
commonly believed that mapping traits in experimental crosses
of (biparental) populations are immune to cryptic relatedness
problem and the only motivation for including polygenic term
to the model in these crosses are because of polygenicity (see
e.g., Taylor and Verbyla 2011). Moreover, segregation distortion
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is a common phenomenon associated with QTL mapping stud-

ies in experimental population. Additionally, if the markers,
which cause segregation distortion is in linkage disequilibrium

(LD) with genes under selection, these markers cannot be

considered as neutral markers (Xu 2008). Thus, depending on

the type of population, prior to the QTL mapping study,

markers that show significant segregation distortion are com-

monly removed. However, in high LD populations such as ex-
perimental populations with high-density markers, this might

not be trivial due to the availability of genome-wide marker in-

formation.
Despite the availability of genome-wide marker information,

standard genome-wide association study (GWAS) analysis meth-

ods consider one marker at a time and identify the marker-trait

association using a single-locus model. The single-locus model is
the most commonly used model to identify marker-trait associa-

tion (Balding 2006; Huang et al. 2010; Zhao et al. 2011; Li et al.

2018). Various correction methods have been proposed to correct

for the hidden population structure in single-locus association

analysis [e.g., principal component analysis (PCA) (Price et al.

2006; McVean 2009); mixed-model approach (Yu et al. 2006; Kang
et al. 2008b); structured association (Pritchard et al. 2000)]. For a

review of different methods, see Sillanpää (2011). Mixed-model

approach including a random polygenic effect in the model,

which describes relationships between individuals in a popula-

tion, is the widely used method to correct for the population sub-

structure and polygenic effect in plant, animal, and human
GWAS studies (Kang et al. 2008a; Listgarten et al. 2010; Parks et al.

2013; Mora et al. 2016; Yano et al. 2016). However, current correc-

tion methods including mixed-model approach cannot distin-

guish between inflated test statistics due to population structure

(or cryptic relatedness) and polygenic genetic architecture be-

cause they both lead to increased number of false positives in
GWAS.

Multi-locus model (Pikkuhookana and Sillanpää 2009;

Kärkk�ainen and Sillanpää 2012; Wen et al. 2019) is another inter-

esting alternative to correct for the confounding due to popula-

tion structure/cryptic relatedness without having polygenic

effect in the model. In contrast to the single-locus model, multi-

locus model jointly fit all markers and by considering all markers
simultaneously in the model, it can increase the power to detect

association signals. However, Bayesian multi-locus association

analysis using Markov Chain Monte Carlo (MCMC) is computa-

tionally demanding.
The main focus of this study is to find out, if inclusion of

polygenic correction term (with genomic relationships) to the

single-locus model improves QTL mapping power and control of

false-positive QTL also in experimental crosses of AB population
(which is not common practice) similarly as in mixture of multi-

ple strains/multiparental populations (Pascual et al. 2015; Sul

et al. 2018) or in population association studies. Additionally, we

also want to explore the widely accepted view that mapping traits

in experimental crosses without notable genotype by environ-

ment interactions are immune to cryptic relatedness problem.
Finally, we want to see if multi-locus QTL model works similarly

in biparental populations as in multiparental populations or in

population association studies. We present the results based on

two wheat AB populations along with simulated data sets. In ad-

dition, we compare the results based on single-locus model with

the Bayesian multi-locus model along with the traditionally used
interval mapping method.

Materials and methods
Let us consider the single-locus model with the polygenic random
effect as:

Y ¼ Xbþ ZgþWvþ e: (1)

Here, Y is a phenotypic vector, which is the mean of pheno-
type over different environments and replications for n unique
varieties and b is the vector of fixed effects (in this case only the
grand mean) with known incidence matrix X, whereas, g is an n�
1 vector of polygenic effects with the incidence matrix Z and g �
Nð0;Kr2

aÞ (assuming no interaction between genotype and envi-
ronment). Here, K defines the covariance structure that describes
the relatedness among individuals and can be calculated either
based on marker information or with the pedigree. In this study,
we calculated the K matrix with the function A:mat available in
the R package rrBLUP (Endelman 2011) using the marker informa-
tion. Moreover, W is the incidence matrix for the marker being
tested for the association and with single-locus model, the
marker association is tested one marker at a time with the
null hypothesis, that is, v¼ 0 against the alternative hypothesis,
that is, v 6¼ 0, here v is treated as a fixed effect. Additionally, e cor-
responds to the vector of residuals, following a normal distri-
bution as e � Nð0; Ir2

e Þ. The multi-locus association model can be
defined as:

Y ¼ lþ
Xm

j¼1

Mjbj þ e: (2)

Here, Y ¼ fYign
i¼1 is a phenotypic vector, which is the mean of

phenotypes over different environments and replications for n
unique varieties, m is the total number of markers, Mij is the ge-
notypic value of line i at marker j coded as 0, 1, 2 for the genotype
AA, Aa, aa, respectively. Moreover, M:j is the vector of genotypic
values of a line, bj is the random marker effect associated with
marker j, and e corresponds to the residual, following a normal
distribution as e � Nð0; Ir2

e Þ.
In Bayesian estimation, one needs to specify the prior distribu-

tion for the unknown parameters in the Equation (2). Following
Xu (2003) and Meuwissen et al. (2001), the random marker effects
(bj) were assigned a normal distribution with mean zero and
marker-specific variance r2

j . Here, the marker-specific variances
were assigned a Jeffreys’ scale-invariant prior, thus, pðr2

j Þ / 1=r2
j

for j ¼ 1; . . . m. The prior density for the mean l is pðlÞ / 1. Let b ¼
fbjg and r2 ¼ fr2

j g for j ¼ 1; 2; . . . m be the unknown model
parameters, then the likelihood of the observation vector Y is:

pðYjb;r2Þ / ðr2
0Þ
�n=2 � expð� 1

2r2
0

Xn

i¼1

ðYi � l�
Xm

j¼1

MijbjÞ2: (2)

Here, r2
0 is the residual error variance. By Bayes theorem, the

joint posterior distribution of the model parameters is propor-
tional to:

pðb;r2jYÞ / pðYjb;r2Þpðb;r2Þ: (4)

Following Xu (2003), we applied Gibbs sampling to draw sam-
ples from the above joint posterior distribution. R code used in this
study is publicly available along with Supplementary materials.

When multi-locus association models are applied for Bayesian
association analysis, one needs to perform additional
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confirmatory-test for identifying the positive association signals.
Permutation test is one of the commonly used methods with
multi-locus model to identify the significant marker-trait associ-
ation (Xu 2003). However, the phenotype permutation test with
Bayesian multi-locus model is computationally challenging and
additionally it also highly depends on the collinearity in the
marker data. So in this study, as an alternative as proposed by
Mathew et al. (2018), we used five different MCMC chains, and
only picked markers that were constantly appearing in all chains
as evidence of decisive association. In each of the MCMC chains,
we used 50,000 iterations with a burn-in period of 10,000 itera-
tions and retained every 50th iteration (thinning). For the estima-
tion of the posterior mean of marker effect, we calculated the
average marker effect over five MCMC chains.

The package rrBLUP uses linear mixed model and includes a
random polygenic effect, which describes the genomic relation-
ships between individuals, in order to correct the sample struc-
ture and relatedness in the data set.

The field data sets used in this study were collected in multi-
ple environmental trial with replication. We used the mean of
phenotype over different environments and replications as the
phenotypic vector (Y) in both models because the data set was
collected in 2008 and we were not able to retrieve the raw data
set. But it is possible to identify QTL by joint analysis across mul-
tiple environments in multi-environment trials [see Gogel et al.
(2018) for more details, for package see Taylor and Verbyla
(2011)].

PCA (Jolliffe 2003) is a widely used method to identify patterns
of genetic substructure in populations (McVean 2009; Ma and
Amos 2012). The top principal components (PCs) reflect the varia-
tions due to genetic substructure in the sample and the scatter
plot of the lines based on the first two PCs can be used to visual-
ize the patterns of genetic variation in the population. In this
study, we used PCA in order to visualize the substructure among
the lines in the AB populations. Here, we also used the receiver
operating characteristic (ROC) curve (Fawcett 2006) to visualize
the estimation accuracy of single-locus and Bayesian multi-locus
model.

Field data of the AB populations
The following field data sets were used in this study along with
the simulation replicates to demonstrate the importance of cor-
recting genomic relationships in QTL mapping with AB popula-
tions.

B22 population
A mapping population designated as B22 comprising of 250
BC2F3 lines was used for this study. To develop this population,
the winter wheat cultivar Batis was crossed with the synthetic
wheat accession Syn022L and two backcrosses were made to
Batis (as recurrent parent), using the F1 and BC1F1 plants as the
maternal parents. Hereafter, we refer this population as B22 pop-
ulation. As described by Kunert et al. (2007), the resulting BC2F1
plants were self-pollinated, and single seed descent was used in
order to obtain 250 BC2F3 plants. We used the phenotype thou-
sand grain weight (TGW), which is the average weight of 1000
kernels for this study. This population was genotyped using 15k
iSelect single nucleotide polymorphism (SNP) arrays. After ex-
cluding markers with minor allele frequency (MAF) � 0.05 and
missing values �20%, 2745 SNPs were available for the QTL
analysis. After the SNP filtering, missing markers were imputed
by random sampling based on the allele distribution in the popu-
lation using the R package synbreed (Wimmer et al. 2012).

Z86 population
For the development of the Z86 population, the winter wheat cul-
tivar Zentos was crossed with synthetic wheat Syn086L and two
backcrosses were made to Zentos (as recurrent parent) resulting
in an AB population of 150 BC2F3 lines. This population was gen-
otyped using 15k iSelect SNP arrays. After excluding markers
with MAF � 0.05 and missing values �20%, 5149 SNPs were avail-
able for the analysis. In this population, we used the trait yield,
which is the average yield (YLD) of a plot as the phenotype for the
QTL analysis.

Phenotyping
The measurement of traits grain yield (YLD) and TGW in both AB
populations was carried out in field conditions at five different
locations in 2 years (10 environments) across Germany. The field
stations were distributed on the following locations: (1) research
station University of Bonn at Dikopshof (west Germany), (2)
Limagrain–Nickerson field stations at Adenstedt (central
Germany, (3) Fr. Strube Saatzucht field station at Jerxheim (cen-
tral Germany), (4) Saatzucht Josef Breun field station at
Morgenrot (East Germany), and (5) Lochow–Petkus field station at
Wohlde (North Germany). At each test location, AB lines and
their recurrent parents were sown in randomized block design
comprising of 1 plot of individual AB lines and 20 plots of Batis
and 10 plots of Zentos. The plot sizes were 4.5–6.3 m2 where in
each plot seed density was 310–360 kernels per m2. Standard field
management and fertilizer application were made according to
local practice. From each location, grain yield was measured in
one-tenth of a ton per hectare calculated from weight of grain
harvested per plot and designated as desi ton per hectare (dt/ha).
The net weight of 1000 kernels was taken and measured as TGW.

Simulated data sets
In order to estimate the QTL mapping accuracy of different mod-
els, we simulated two data sets conditionally on real genotype
data of the wheat BC2F3 population. For the first simulation, we
randomly selected five markers as QTL in such a way that not
two QTL are coming from the same chromosome, where the
marker effects were generated from a uniform distribution
U(8,10). In the second simulation to assess the effect of polygenic-
ity, along with the five main QTL, we randomly selected another
100 markers with small effects and their effects were generated
from a normal distribution with mean 0 and variance 1 (here 20%
of the genetic variance was due to the polygenic variance [see
Pikkuhookana and Sillanpää (2009) for more details]). Hereafter,
we refer to the first simulated data set as Simulation 1 and sec-
ond data set as Simulation 2. Additionally, we also analyzed an-
other 50 simulation replicates in order to compare the estimation
accuracy of single- and multi-locus association model. The simu-
lation replicates were generated based on the Simulation 2 data
set by sampling different error term. The joint heritability of the
simulated traits was about 0.6.

Data availability
Genotypic and phenotypic information of the B22 population are
contained in the files B22_geno.txt and B22_pheno.txt, respec-
tively. Whereas, the files Z86_genotype.txt and B22_pheno.txt
contain the genotypic and phenotypic information for the Z86
population. Additionally, the file Supplementary Figures contains
all the supplementary figures mentioned in the manuscript.
Supplementary material is available at figshare: https://doi.org/
10.25387/g3.12579737.
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Results
In this study, we identified the marker-trait association using sin-
gle-locus model as well the Bayesian multi-locus model using
real and simulated data sets. The results are presented in the fol-
lowing sections.

Marker-trait association using field data
The AB populations used in this study involve two backcrosses to
the recurrent parent and due to the selected back crossing the
lines will be closely related to the recurrent parent. In order to vi-
sualize the substructure among the lines in the AB populations,
we performed a PCA and plotted the scatter plot of the lines
based on the first two PCs, which is shown in Figure 1, A and B.
PCA shows that the lines in both populations are closely related
to the recurrent parents Batis and Zentos in B22 and Z86 popula-
tions, respectively. A primary reason behind this might lie on two
subsequent backcrosses in the development of this population.

In addition, heading date and grain threshability were primary
criterion behind selecting the favorable genotypes during the de-
velopment of the populations (Kunert et al. 2007). All these fac-
tors might have resulted in the skewed relationship toward the
corresponding recurrent parent. Thus, it is important to correct
for this skewed relationship, while identifying the marker-trait
association in this population.

First, we used the single-locus model with the polygenic effect
(estimated from the marker information) to identify the marker-
trait associations. In the B22 population, we used the trait TGW
and identified two significant QTL [at chosen level of false discov-
ery rate (FDR) ¼ 0.05]. FDR correction (Storey and Tibshirani 2003)
is commonly used to control the rate of false discoveries in QTL
mapping studies (Devlin et al. 2003; Nelson et al. 2017; Marees
et al. 2018). The Manhattan plot along with the name of signifi-
cant markers are shown in Figure 2A. Then, we also identified the

Figure 1 Population structure plot for the wheat B22 (A) and Z86 (B)
populations. This scatter plot presents the first two principal
components (PC1 and PC2) and the corresponding parent genotypes are
shown in red color. Additionally, the proportion of variance explained
the first two PCs are also provided.

Figure 2 Manhattan plot based on the single-locus model having the
polygenic effect in the model (A) and without the polygenic effect (B),
using the B22 population for the trait TGW. The dashed line corresponds
to an FDR rate of 0.05. Additionally, names of the significant markers
(RAC875_c48997_1160, wsnp_Ex_c16295_24772702) are also shown.
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marker-trait association for the trait TGW using the single-locus
model without the polygenic effect and the Manhattan plot is
shown in Figure 2B. The corresponding analysis based on the Z86
population is shown in Figure 3. From Figures 2 and 3, one can
see that single-locus model with the polygenic effect can sig-
nificantly reduce the number of false positives by correcting
for the sample structure in the data set. The quantile–quantile
(Q–Q) plot (which is the graphical representation of the propor-
tion of significant markers compared to the expected number
of significant SNPs based on P-values) is a commonly used
method in GWAS studies based on SNP analyses to monitor the
number of false positives (Balding 2006). Spurious Q–Q plot
inflation occurs when the population structure/cryptic related-
ness is not taken into account in the analysis. Thus, we also

checked the behavior of Q–Q plot with both the real data sets
to assess the number of false positives and the plots are shown
in Figures 4 and 5 for the B22 and Z86 populations, respec-
tively. From Figures 4 and 5, it is very clear that single-locus
model with polygenic effect is able to control the false-positive
association signals by effectively correcting the population
substructure in the data set.

For TGW, the most significant SNP marker RAC875_
c48997_1160 on chromosome 1D underlie a Dihydrolipoyl
dehydrogenase 1 (TraesCS1D02G067500) gene carrying FAD/
NAD(P)-binding domain, which involved in oxidation–reduction
process in plants (Timm et al. 2015). The second SNP marker
wsnp_Ex_c16295_24772702 on chromosome 5A was located at a
transmembrane protein-related (TraesCS5A02G485700) gene of
uncharacterized molecular function. In addition, the chromo-
somal 5A revealed association with trait YLD, where the most

Figure 3 Manhattan plot based on the single-locus model without the
polygenic effect (A) and having the polygenic effect in the model (B),
using the Z86 population for the trait yield (YLD). The dashed line
corresponds to an FDR rate of 0.05. Additionally, names of the significant
markers (RAC875_c62807_251) are also shown.

Figure 4 Q–Q plots based on the single-locus model without the
polygenic effect (A) and with the polygenic effect in the model (B) using
the B22 population for the trait TGW.

B. Mathew et al. | 5



significant marker RAC875_c62807_251 was located at
TraesCS5A02G447800 gene, which belongs to a family of hypo-
thetical protein abundantly present in cereal species. The can-
didate genes predictions are based on the location of associated
SNP markers and further work is needed to validate their
function using high-resolution recombination analysis. It is im-
portant to mention that the designed AB population does not
offer a high-resolution candidate gene analysis. Alternatively,
genome-editing method like CRISPR/Cas system can be
employed for the functional characterization of identified can-
didates.

Interval mapping is commonly used to identify QTL in experi-
mental crosses. Thus, we also identified the QTL in both popula-
tions with interval mapping approach using the R-package R/qtl
(Broman et al. 2003). Logarithm of the odds (LOD) curve based on

the interval mapping approach using B22 and Z86 populations is
shown in Figure 6. The LOD curve in Figure 6 confirms that the
interval mapping approach is not able to correct for the popula-
tion structure in AB populations.

We also identified the marker-trait association using the
Bayesian multi-locus model. The significant marker effects iden-
tified using the Bayesian multi-locus model is shown in Figure 7.
For the estimation of the posterior mean of marker effects, we
used five different MCMC chains, each having length 50,000 itera-
tions with a burn-in period of 10,000 iterations and averaged over
five different MCMC chains. Based on the plot it can be concluded
that Bayesian whole-genome regressions can estimate marker
effects while accounting for polygenicity at the same time by
regressing on the entire markers simultaneously.

Figure 5 Q–Q plots based on the single-locus model without the
polygenic effect (A) and with the polygenic effect in the model (B) using
the Z86 population for the trait yield (YLD).

Figure 6 LOD scores based on the interval mapping approach using the
population B22 for the trait TGW (a) and Z86 for the trait YLD (b). The red
line shows an LOD threshold for the significant QTL determined with r/
qtl using 1000 permutations at P¼ 0.05.
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Marker-trait association using simulated data
sets
We also identified the significant marker-trait association with
the two simulated data sets using the single- and multi-locus
models. The Manhattan plots based on Simulation 1 data set
with single-locus model without the polygenic effect in the model
is shown in Figure 8A, whereas the plot based on the single-locus
model having the polygenic effect is shown in Figure 8B. Both
models were able to identify the true simulated QTL; however,
the number of false positives was effectively controlled by the
single-locus model with the polygenic effect in the model
(Figure 8B). The Manhattan plots based on Simulation 2 data set
(here we also considered another 100 markers with small effects
along with the five main effect QTL) using the single-locus model
without and with the polygenic effect, is shown in Figure 9, A and
B, respectively. From Figure 9B, it can be seen that there is an in-
crease in the actual false positives when the marker-trait associa-
tion was identified using the single-locus model without the
polygenic effect in the model. The corresponding Q–Q plots for
the Simulation 1 and 2 data sets are provided as the
Supplementary material (S3 and S4). We also identified the QTL
in simulated data set (Simulation 1) using the interval mapping
approach and provided similar results like the single-locus model
without the polygenic effect. The corresponding plot is provided
as the Supplementary material (S5).

The significant marker effects identified using the Bayesian
multi-locus model with Simulation 1 and Simulation 2 data sets

are shown in Figure 10, A and B, respectively. Finally, we also

plotted the (ROC) curve to visualize the estimation accuracy of

single-locus and Bayesian multi-locus model based on 50 simula-

tion replicates, shown in Figure 11. Traditional ROC curve is plot-

ted based on the true-positive and false-positive rates; however,

in this study, we used the average number of true and false posi-

tives identified with the 50 simulation replicates to plot the ROC

curve. Based on Figure 11, one can conclude that Bayesian multi-

locus model is an efficient method to correct for the population

structure and polygenic effect in mapping studies.

Discussion
During the past decade, many statistical methods have been de-

veloped to correct for the population substructure and related-

ness in mapping studies using association panel. More recently,

many studies (Pascual et al. 2015; Wei and Xu 2016; Sul et al. 2018)

pointed out that it is important to include polygenic term while

perform mapping studies in multi-parent populations (which is a

compromise between biparental population and association

panel) and population based on mixture of multiple strains. In

this study, we showed the importance to account for genetic sub-

structure while identifying the marker-trait association in AB

populations. We believe that it was especially important here

that the covariance structure (genomic relationship matrix) of
the polygenic effect was calculated from the molecular markers,

because the genomic relationship matrix is able to provide more

Figure 7 Marker effects estimated for the trait thousand grain yield with the Bayesian multi-locus association model plotted against the corresponding
markers in the wheat BC2F3 population. Additionally, names of the significant markers (RAC875_c48997_1160, wsnp_Ex_c16295_24772702,
Kukri_c38732_225) are also shown.
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precise information on the proportion of genome shared by the
relatives than the conventional pedigree-based relationship
matrix. To our knowledge, this is the first study to point out the
importance of accounting for genomic relationships in QTL map-
ping with AB populations.

The single-locus model considers one marker at a time and
tests for the marker-trait association, which is computationally
less intensive. But the single-locus model is known to have some
limitations. One of the main drawbacks is that the effect of a sin-
gle marker may be quite small in a single-locus model, but might
have strong joint effects, and by estimating all marker effects
simultaneously, which will increase the statistical power to de-
tect their joint activity. Bayesian multi-locus model is an efficient
solution to this problem, because Bayesian multi-locus model

jointly estimates all marker effects. In our real data analysis,
using multi-locus model, we identified one significant marker,
which was not identified by the single-locus model and we be-
lieve that this is likely due to the better statistical power gained
by the joint estimation of all marker effects using the Bayesian
multi-locus model.

In the context of association mapping, many studies already
reported the capability of Bayesian multi-locus model to automati-
cally correct the confounding due to substructure in Bayesian
(Iwata et al. 2007, 2009; Pikkuhookana and Sillanpää 2009;
Kärkk�ainen and Sillanpää 2012) and non-Bayesian (Würschum and
Kraft 2015) framework. However, this is the first study to show the
effectiveness of Bayesian multi-locus model to control the false pos-
itives by accounting for the substructure in an AB population.

A permutation test proposed by Churchill and Doerge (1994)
and Xu (2003) for frequentist and Bayesian analyses, respectively,

Figure 8 Manhattan plot based on Simulation 1 using single-locus model
without the polygenic effect (A) and with the polygenic effect in the
model (B), additionally, the simulated QTL are also shown. The dashed
line corresponds to an FDR rate of 0.05

Figure 9 Manhattan plots based on Simulation 2 using single-locus
model without the polygenic effect (A) and with the polygenic effect in
the model (B), additionally, the simulated QTL are also shown. The
dashed line corresponds to an FDR rate of 0.05
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is commonly used in mapping studies to identify the significant
threshold for marker-trait association with single- and multi-lo-
cus model. However, permutation test with Bayesian multi-locus
model is sensitive to the collinearity in the marker data (Mathew
et al. 2018), so we decided to consider only the SNPs, which appear
repetitively in all separate analyses (in all five MCMC chains) as
the significant ones. In this calculation, all SNPs within the given
window were considered to be the same. For each chromosome,
the window size was determined based on LD-plot (see
Supplementary material). Running many MCMC chain is still
computationally challenging, as a complementary alternative
one can identify the significance level (at chosen level of FDR ¼
0.05) based on a single-locus model and use this significance level
as a base line to identify the significant markers in a multi-locus
association model.

In QTL mapping studies involving multi-environment data, it
is essential to account for both environmental main effects and

environment (GxE) interactions because the phenotypes can be
influenced by different environmental conditions. In the present
study, we were unable to account for environmental main effects
and GxE interaction effects in the QTL mapping model due to the
lack of data availability of individual environments. Thus, QTL
reported in this study might be biased due to the influence by
environments. Nevertheless, the aim of the present study was to
test the effect of genetic substructure caused by allele frequen-
cies on the outcome of QTL analysis. Our results suggested that
QTL mapping studies using experimental populations such as AB
populations, it is important to account for genetic substructure
in the population. We believe this outcome remain true for the
QTL analysis models with or without GxE interactions.

Interval mapping is seen as historical method of the time
when marker maps were very sparse. Genome-wide mapping
with high-density marker information can improve the precision
of QTL localization along with the detection of small- and me-
dium-sized QTL (Stange et al. 2013). Interval mapping is believed
to be robust to genetic substructure unlike genome-wide associa-
tion mapping; however, our results suggest that interval mapping
is suffering from allele frequency deviations in the population.
Thus, our results suggest it might be a good practice to use GWAS
model, which account for genetic substructure and allele fre-
quency deviations in mapping studies with experimental popula-
tions using genome-wide marker information.

AB populations (where an exotic donor parent crossed to an
adapted recurrent parent) have been successful to identify bene-
ficial alleles in several crops, such as tomato (Fulop et al. 2016),
rice (Thomson et al. 2003), wheat (Narasimhamoorthy et al. 2006),
maize (Ho et al. 2002), cotton (Wang et al. 2017a), and barley
(Pillen et al. 2003). These studies mainly relied on regression
methods to identify the significant QTL. However, the controlled
crossing scheme along with the phenotypic abnormalities caused
by factors such as hybrid necrosis (Bomblies and Weigel 2007),
hybrid sterility (Ouyang et al. 2010), hybrid lethality (Garner et al.
2016), and the selection of agronomically adapted traits during
the development of these lines will lead to unbalanced allele

Figure 10 Marker effects estimated with the Bayesian multi-locus
association model plotted against the corresponding markers in
Simulation 1 (A) and Simulation 2 (B), additionally, the simulated QTL
are also shown.

Figure 11 ROC curve based on average of 50 simulation replicates for the
multi-locus and single-locus model.
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frequencies in an AB population. In this study, we showed the im-
portance to correct for this during the QTL mapping in an AB pop-
ulation using the linear mixed model with a random polygenic
effect. Even though, in this study, we showed the importance of
correction in an AB population, it might be a good practice to use
the polygenic term in a QTL mapping model to correct for the pol-
ygenicity/substructure, when the progenies in other experimen-
tal biparental populations such as F2, DH, or RIL have
experienced the deviation from the expected genotype ratios due
to both natural and artificial selection. Finally, in this study, for
the single-locus marker-trait association, we used the R package
rrBLUP and for the Bayesian multi-locus association estimation,
we used the available code used in the study by Mathew et al.
(2018). However, for the Bayesian multi-locus association one can
also use the R packages such as BGLR (Pérez and de los Campos
2014) and VIGoR (Onogi and Iwata 2016).

B.M., J.L., M.J.S., and A.A.N. were involved in the conception
and design of the study. B.M. performed the statistical analyses,
simulation and drafted the manuscript. K.P. and S.D. were in-
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the manuscript.
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