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Simple Summary: Despite the increased use of neoadjuvant chemotherapy in the early setting of
breast cancer, there is a clinical need for predictive markers of response in daily practice. In the era
of precision medicine and personalized treatment, new predictive markers that enable the better
selection of patients for specific therapies are required. In this review, we describe the current
knowledge about the molecular biomarkers used for clinical decision making for patients with breast
cancer. We also report how microenvironment-driven intratumoral heterogeneity may influence
the validation of biomarkers useful for precision medicine. We provide an overview of promising
biomarkers, including pathological markers, genetic signatures, radiological techniques and liquid
biopsies, with a great potential to be implemented in routine clinical practice. Finally, we discuss the
use of relevant pre-clinical models of breast cancer to integrate microenvironmental specificities in
order to identify and validate reliable biomarkers of (non-)response to neoadjuvant chemotherapy.

Abstract: Pathological complete response (pCR) after neoadjuvant chemotherapy in patients with
early breast cancer is correlated with better survival. Meanwhile, an expanding arsenal of post-
neoadjuvant treatment strategies have proven beneficial in the absence of pCR, leading to an increased
use of neoadjuvant systemic therapy in patients with early breast cancer and the search for predictive
biomarkers of response. The better prediction of response to neoadjuvant chemotherapy could
enable the escalation or de-escalation of neoadjuvant treatment strategies, with the ultimate goal of
improving the clinical management of early breast cancer. Clinico-pathological prognostic factors
are currently used to estimate the potential benefit of neoadjuvant systemic treatment but are not
accurate enough to allow for personalized response prediction. Other factors have recently been
proposed but are not yet implementable in daily clinical practice or remain of limited utility due to the
intertumoral heterogeneity of breast cancer. In this review, we describe the current knowledge about
predictive factors for response to neoadjuvant chemotherapy in breast cancer patients and highlight
the future perspectives that could lead to the better prediction of response, focusing on the current
biomarkers used for clinical decision making and the different gene signatures that have recently
been proposed for patient stratification and the prediction of response to therapies. We also discuss
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the intratumoral phenotypic heterogeneity in breast cancers as well as the emerging techniques and
relevant pre-clinical models that could integrate this biological factor currently limiting the reliable
prediction of response to neoadjuvant systemic therapy.

Keywords: breast cancer; neoadjuvant chemotherapy; biomarkers; predictive factors; intratumoral
heterogeneity

1. Introduction

Breast cancer remains one of the most prevalent cancers in women, with 2,261,419 new
cases and 684,996 deaths worldwide in 2020, despite major improvements in terms of
prevention, diagnosis and treatment [1]. In current clinical practice, breast cancers are
classified in five subtypes based on the expression of hormone receptors (estrogen and/or
progesterone receptors (ER and/or PgR)), the overexpression of epidermal growth factor
receptor 2 (HER2/Neu) and the percentage of tumor cells expressing Ki-67. These subtypes
comprise luminal A, luminal B, HR+ HER2-positive, HR- HER2-positive and triple-negative
breast cancers (TNBC) [2]. The majority of patients are diagnosed with early-stage disease,
while 3–10% of patients are diagnosed with de novo metastatic breast cancer [3]. Although
most early breast cancers are curable with the current treatment options, up to 20% of pa-
tients will relapse within 10 years. At present, treatment decisions in both the early and the
metastatic settings depend on the immunohistopathological classification, with adaptation
of the chemotherapy regimen based on the surrogate molecular subtype (e.g., the addition
of anti-HER2 monoclonal antibodies in the HER2+ subtype, the addition of carboplatin in
the early triple negative subtype, adjuvant hormonotherapy in the HR+ subtypes, etc.) [2,4].
(Table 1) The implementation of neoadjuvant chemotherapy (NAC) as the current standard
of care for patients with high-risk early-stage or locally advanced breast cancer is one of
the major changes in the evolving breast cancer landscape [2]. The high-risk breast cancers
concerned by this change in the treatment paradigm are mainly TNBC and HER2-positive
tumors but also include hormone-receptor-positive (HR+) cancers larger than 2 cm and/or
with axillary lymph node involvement. While providing the same overall survival (OS) and
disease-free survival (DFS) as adjuvant chemotherapy, NAC has several advantages, such
as: allowing for more conservative surgeries by reducing the tumor size and down-staging
the lymph node status, assessing the sensitivity of the tumor to chemotherapeutic agents
and eradicating micro-metastases but also adding the possibility of escalating treatment
with adjuvant drugs in case of residual disease, a feature of worse prognosis [5–7]. Despite
this, NAC also has disadvantages, including: drug-related side effects (see Table 1), the
postponement of surgery in some cases (e.g., the postponement of NAC due to side effects
resulting in a longer delay before surgery), difficulties in healing after surgery and disease
progression that may occur during treatment [8] (Figure 1).

Pathological complete response (pCR) after NAC has been validated as a prognostic
factor with an improved event-free survival (EFS) and OS when the tumor is eradicated
from both breast and lymph nodes (corresponding to the pathologic stage ypT0 ypN0 or
ypTis ypN0) [9]. This statement is particularly true in triple-negative tumors and HER2-
positive, hormone-receptor-negative (HER2+ HR-) breast cancers [10]. Achieving pCR
is therefore one of the main objectives of NAC but occurs only in a minority of patients,
with 30–50% of pCR in TNBC, 50–80% in HER2-positive breast cancer and 5–20% in
high-grade luminal cancers. [11,12]. Predicting the response to NAC in early-stage breast
cancer represents a challenge for several reasons: (i) the surrogate molecular subtype
is not sufficient in and of itself to correctly classify patients since outcomes can be very
heterogeneous within each subtype, and (ii) the intra-tumoral heterogeneity is incompletely
assessed in routine (e.g., diagnosis biopsy, radiological examination) [13,14]. Importantly,
the prediction of response to NAC is of interest for better patient selection and tailoring (by
escalating or de-escalating) chemotherapy regimens. The better selection of patients for
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NAC could reduce the likelihood of facing residual disease, which is known to be more
resistant than the primary tumor [15]. It is of interest for clinical trials to test and validate
new drugs in the neoadjuvant setting, as is currently being done in the I-SPY 2 study [16].

Table 1. Drugs used in NAC regimens in early breast cancer, indications and side effects. AC:
doxorubicin and cyclophosphamide; EC: epirubicin and cyclophosphamide; CMF: cyclophosphamide,
methotrexate, 5-fluorouracile; TC: docetaxel and cyclophosphamide.

Breast Cancer
Subtype NAC Backbone Drug Added to NAC

Backbone Indications Side Effects

Luminal B

Sequential AC
or EC—taxanes

Hormone-receptor-
positive cancers larger
than 2 cm and/or with

axillary lymph node
involvement

Cardiotoxicity, hair loss, peripheral neuropathy,
febrile neutropenia, fatigue, nausea, diarrhea

CMF In elderly patients
Hair loss, peripheral neuropathy, febrile
neutropenia, fatigue, nausea, diarrhea,

hand-foot syndrome

TC If at risk of cardiac
complications

Hair loss, peripheral neuropathy, febrile
neutropenia, fatigue, nausea, diarrhea

HER2-positive

Sequential AC
or EC—taxanes Trastuzumab Node-negative

Chemotherapy side effects: Cardiotoxicity, hair
loss, peripheral neuropathy, febrile

neutropenia, fatigue, nausea, diarrhea
Trastuzumab side effects:

Transient cardiotoxicity, diarrhea

Sequential AC
or EC—taxanes

Trastuzumab and
pertuzumab Node-positive

Chemotherapy side effects:
Cardiotoxicity, hair loss, peripheral neuropathy,
febrile neutropenia, fatigue, nausea, diarrhea

Trastuzumab and pertuzumab side effects:
Transient cardiotoxicity, diarrhea, peripheral

neuropathy

TNBC

Sequential AC
or EC—

Carboplatin and
taxanes

Pembrolizumab

Chemotherapy side effects:
Cardiotoxicity, hair loss, peripheral neuropathy,
febrile neutropenia, fatigue, nausea, diarrhea

Pembrolizumab side effects:
Cutaneous, endocrinopathy, cardiotoxicity,

diarrhea, inflammatory pneumopathy, arthritis,
hepatitis, nephritis
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In this review, we describe the current knowledge about the molecular biomarkers
used for clinical decision making for patients with breast cancer and highlight the future
perspectives that could lead to the better prediction of response to NAC in early breast
cancer patients, focusing on the current biomarkers used in clinical decision making and
the different gene signatures that have recently been proposed for patient stratification
and the prediction of response to therapies. We also detail the intratumoral phenotypic
heterogeneity in breast cancers and discuss the emerging techniques and relevant pre-
clinical models that could integrate this biological factor currently limiting the reliable
prediction of response to neoadjuvant systemic therapy in this disease.

2. Breast Cancer Subtypes and Intratumoral Heterogeneity
2.1. Molecular Classification and Intrinsic Subtypes

Over the past 20 years, several molecular classifications have been determined by
genomic and transcriptomic clustering in order to better understand the intratumoral het-
erogeneity in breast cancer. However, these intrinsic subtypes have not yet supplanted the
surrogate molecular subtype (determined by immunohistochemistry) in clinical practice
for therapeutic decision making. In 2000, Perou et al. analyzed 65 surgical pieces of breast
cancers from 42 individuals and identified 4 intrinsic subtypes by gene expression analysis:
luminal-like, basal-like, normal-like and HER2-enriched [17]. Later, the PAM50 classifica-
tion distinguished the luminal A and luminal B categories within the luminal-like group.
Studies have shown that these subgroups differ in both their clinical characteristics and
their response to treatment. Prognosis also differs between the intrinsic subtypes, regardless
of the immunohistopathological subtype [18–22]. Within the immunohistochemical triple
negative subtype, Prat et Perou later highlighted two intrinsic subtypes: the claudin-low
and the basal-like subtypes, the claudin-low being associated with poorer prognosis [23,24].
The heterogeneity of the triple negative disease is nevertheless more complex, and in
2011, Lehmann et al. described seven subtypes (TNBCtype): basal-like 1 (BL1), basal-like
(BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), luminal
androgen receptor (LAR) and unstable (UNS) [25,26]. In a retrospective study, the response
to NAC containing anthracyclines and cyclophosphamide was different among subgroups,
with a better pCR rate in the BL1 subgroup (52%) in comparison to the BL2 and LAR
subgroups (0% and 10%) [25]. After refining this TNBCtype classification by considering
the transcript of normal stroma and immune cells, four subtypes have been largely studied
(TNBCtype-4): BL1, BL2, M and LAR [25] (Figure 2).

2.2. Intratumoral Heterogeneity in Breast Cancers

Intratumoral heterogeneity (ITH) in breast cancer refers to the diversity found within
tumors, existing at several levels [27,28]. ITH includes multiple concepts and principles
such as clonal heterogeneity and cell state heterogeneity [14,27,29]. Clonal heterogeneity
concerns the phenotypic variability between cells within a tumor depending on spatial and
temporal factors, leading to different clones of cells with different sensitivities to treatment.
Many spatial factors can influence the clones of cells: hypoxia variance from the center of the
tumor to the periphery, angiogenesis, pH variation inside the tumor and interactions with
cells from the tumor microenvironment (TME). Depending on their exposure to hypoxia, or
other factors, cells will acquire different metabolisms and different sensitivities to treatment.
Temporal factors are more related to the sequential exposure of the tumor to different lines
of treatment that could lead to a selection of resistant clones within the tumors [14,27].
Cell state heterogeneity is the fact that we can observe cells at different states in a single
tumor, with some cells exhibiting stem cell properties (CSC) and others with differentiated
properties or progenitor’s properties, altogether forming tumors with different levels of
mechanisms of resistance to treatment [27,29]. The heterogeneity found inside each breast
cancer has been described as a strong mechanism of resistance to chemotherapy, with
the evolution of cell-to-cell interactions but also genetic modifications under treatment
pressure [30]. In breast cancer, several molecular subtypes can also be found within
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a single tumor. Indeed, molecular subtypes are not a static state, and interconversion
between subtypes can occur and lead to tumor progression, metastasis or resistance to
chemotherapy [29,31]. Several hypotheses could explain molecular subtypes-associated
heterogeneity: the selection of clones during therapy, the change in the molecular expression
of ER/PR/HER2, the varying microenvironment influence, etc. This heterogeneity has
largely been studied in recent years by imaging techniques, pathology and, more recently, by
RNA sequencing, with the aim of better predicting the response to NAC [32,33]. Single-cell
RNA sequencing (scRNA-seq) was crucial to better understanding the genetic intratumoral
heterogeneity. In comparison to bulk RNA sequencing, scRNA-seq has the advantages of
analyzing each cell type within a tumor sample and differentiating malignant cells from
microenvironmental cells [34,35]. While bulk RNA sequencing reveals global features,
scRNA-seq can evaluate the cellular origin and spatial organization within the tumors [36].
In breast cancer, this sequencing technique has demonstrated that the TNBC subtype is
much more heterogeneous than other subtypes regarding molecular subtypes but also
transcriptional hallmarks activity [31,37]. ScRNA-seq also allowed for the evaluation of
resistance mechanisms due to the heterogeneity in breast cancer—notably, in TNBC [38,39].

Cancers 2022, 14, x FOR PEER REVIEW 5 of 32 
 

 

 
Figure 2. Breast cancer subtypes and intrinsic classification. (A) Comparison between immunohisto-
chemical classification and molecular classification [17,18,24,25]. (B) Distribution of immunohisto-
chemical subtypes in the molecular classification, as defined by Prat and Perou [24]. HR+: hormone 
receptor-positive; TNBC: triple negative breast cancer; BL1: basal-like 1; BL2: basal-like 2; M: mes-
enchymal; LAR: luminal androgen receptor. 

2.2. Intratumoral Heterogeneity in Breast Cancers 
Intratumoral heterogeneity (ITH) in breast cancer refers to the diversity found within 

tumors, existing at several levels [27,28]. ITH includes multiple concepts and principles 
such as clonal heterogeneity and cell state heterogeneity [14,27,29]. Clonal heterogeneity 
concerns the phenotypic variability between cells within a tumor depending on spatial 
and temporal factors, leading to different clones of cells with different sensitivities to treat-
ment. Many spatial factors can influence the clones of cells: hypoxia variance from the 
center of the tumor to the periphery, angiogenesis, pH variation inside the tumor and 
interactions with cells from the tumor microenvironment (TME). Depending on their ex-
posure to hypoxia, or other factors, cells will acquire different metabolisms and different 
sensitivities to treatment. Temporal factors are more related to the sequential exposure of 
the tumor to different lines of treatment that could lead to a selection of resistant clones 

Figure 2. Breast cancer subtypes and intrinsic classification. (A) Comparison between immunohisto-
chemical classification and molecular classification [17,18,24,25]. (B) Distribution of immunohisto-
chemical subtypes in the molecular classification, as defined by Prat and Perou [24]. HR+: hormone
receptor-positive; TNBC: triple negative breast cancer; BL1: basal-like 1; BL2: basal-like 2; M: mes-
enchymal; LAR: luminal androgen receptor.



Cancers 2022, 14, 3876 6 of 31

3. Resistance to Neoadjuvant Chemotherapy

The inherent phenomena linked to resistance to neoadjuvant chemotherapy are still
under investigation but can be partially explained by several hypotheses related either to
the metabolism of the drug or to the tumor cells themselves [40,41].

3.1. Drug-Associated Resistance

It has been demonstrated that drug-metabolizing enzymes (DME) could be differen-
tially expressed between cancer cells and normal cells, leading to resistance to chemother-
apy. It is well known that the metabolism of most chemotherapy drugs involves cytochrome
P450 enzymes (CYP) [42]. Polymorphisms in the CYP1B1 gene appear to correlate with
resistance to taxanes, while CYP2B6 is involved in the metabolism of cyclophosphamide
and doxorubicin [43,44]. In one study, CYP2C9*2 heterozygote breast cancer patients had a
decrease in the efficacy in neoadjuvant chemotherapy compared to patients with wild-type
alleles [45]. Many other CYP enzymes were reported to be associated with the efficacy of
neoadjuvant chemotherapy in breast cancer, and this could explain the clinical resistance to
certain drugs [42].

Chemotherapy drug concentration is also regulated by the efflux of drugs out of the
cells via transmembrane proteins. These proteins include the ATP-binding cassette (ABC)
transporter family, in which the P-glycoprotein (P-gp) has already been associated with
drug resistance in breast cancer [40]. In TNBC, several related genes are more expressed,
such as ABCC1, ABCC11 or ABCG2, and those could be involved in chemoresistance to
commonly used drugs [41].

3.2. Cancer Cell-Associated Resistance

Several studies were dedicated to cancer cells resistance itself, highlighting the po-
tential role of the selection of clones during the treatment and the role of cancer stem cells
(CSCs), the change in the expression of genes involved in the DNA damage repair (DDR)
system, epithelial-mesenchymal transition (EMT) and the inhibition of apoptosis [15,40].

CSCs are a population of cells with self-renewal properties present in breast cancer
tumors, and they have been found in residual tumors after NAC, indicating that these
cells are resistant to conventional treatment [46,47]. Moreover, CSCs are found more
often in TNBC than in other subtypes and could be involved in the poor survival of
this subtype [48,49]. Changes in the genes involved in the DDR system have also been
pointed out as a cause of resistance to chemotherapy. Among the incriminated genes,
HORMAD1 could play a role in chemoresistance in TNBC [50]. EMT plays an important
role in breast cancer, which could lead to chemotherapy resistance and metastasis [51].
Cells that undergo EMT have common characteristics with CSCs, explaining part of their
resistance to chemotherapy. The evasion of apoptosis is another mechanism leading to the
resistance to several drugs such as doxorubicin, cyclophosphamide and paclitaxel. The
overexpression of factors such as Bcl2, MCL1 or NF-KB has been shown to decrease the
sensitivity to chemotherapy [52–54].

4. Current Biomarkers Used for the Clinical Decision Making of Breast Cancer Patients
4.1. Ki-67 before NAC

Ki-67 is a marker of cell proliferation used in clinical practice to assess the aggres-
siveness of the tumor at the time of diagnosis [55]. Ki-67 is expressed in all the cell cycle
phases, with the exception of the G0 phase, and high Ki-67 expression is related to high
tumor proliferation and thus a large number of dividing cells [56]. Ki-67 has been eval-
uated in several studies for its predictive potential, but its use in that indication is still
controversial [57]. Nevertheless, in a meta-analysis, Chen et al. [58] analyzed 44 studies and
concluded that high Ki-67 expression at diagnosis was associated with increased pCR rates
in breast cancer patients treated with anthracycline- and/or taxane-containing NACs. This
finding concerned all subtypes of breast cancer and remained significant using different
thresholds of Ki-67 (e.g., >15%, >20%, >50%). Even though Ki-67 has not been validated as
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a predictive marker of pCR, its prognostic value has been largely studied at the moment
of diagnosis but also in residual tumors after NAC [55]. In their meta-analysis, Li et al.
showed that a high percentage of Ki-67 at diagnosis but also after NAC was correlated
with worse outcomes in terms of OS and DFS. Moreover, the absence of a decrease or a
low decrease in Ki-67 after NAC were also associated with poorer OS and DFS [55]. One
limitation of the available studies that could easily explain the controversial use of Ki-67 as
a predictive or prognostic marker is that there is no consensus on the classification of Ki-67
as “high” or “low”. Depending on the studies, cut-offs range from 15% to 50%, sometimes
depending on the molecular subtypes [55,58]. Inter-laboratory and inter-observer variabil-
ity have been pointed out as being responsible for the high variability of this cut-off [59]. In
clinical practice, and in accordance with international recommendations, Ki-67 should be
interpreted according to local laboratory values, and the cutoff should be determined on a
“laboratory-by-laboratory” basis, although the suggested cutoff is 20% [2].

4.2. Tumor Size

Tumor size plays a key role in the response to chemotherapy. Livingston-Rosanoff et al.
included 38,864 patients between 2010 to 2013 in a retrospective study. These patients
underwent NAC and surgery for unifocal lesions ranging in size from cT1 to cT3. This
study demonstrated that tumors with a size > 5 cm have a lower chance to achieve pCR,
regardless of their immunohistological subtype [60]. This could be explained by the fact
that larger tumors have a higher probability of displaying increased heterogeneity, with
different populations of cells susceptible to having a variable sensitivity to treatment.
Tumor size is therefore a relevant predictive factor of non-response to NAC, but it is not
sufficient to predict whether patients will achieve a pCR or not.

4.3. Surrogate Molecular Subtypes as Determined by Immunohistochemistry

Tumor subtype is defined by hormone receptor and HER2 status, as well as by Ki-67
immunoreactivity, and has extensively been described as a feature that could influence
response to NAC [7,9,10,12,61,62].

The CTNeoBC study pooled data from 12 international trials that included 11,955 early
BC patients treated with NAC. The more aggressive subtypes were associated with pCR
and better long-term outcomes. Those aggressive subtypes were TNBC, HER2-enriched
and high-grade HR-positive tumors. These results are similar to the ones obtained by
the pooled analysis of the German neo-adjuvant chemotherapy trials conducted by von
Minckwitz et al. [62].

More recently, in the study from Haque et al. including 14,000 women, the highest
rate of pCR was seen in HER2-enriched subtypes, followed by TNBC and luminal B [10].
In this study, the luminal A subtype had the lowest pCR rate.

The association of the HER2-enriched subtype with pCR was evaluated in the presence
of HER2-targeted agents in the NAC regimen but also with mono or dual blockade and
different HER2-targeted agents such as pertuzumab, trastuzumab, T-DM1 and lapatinib.
In the meta-analysis of Shen et al., pCR was achieved in the HER2-subtype, irrespective
of the NAC regimen and targeted therapy used, as long as an HER2 targeting agent was
used [61].

Despite the fact that pCR is predictable in the TNBC subtype, TNBC with pCR still
has more of a risk of relapse than other subtypes with pCR, which could be explained by
the high degree of heterogeneity within the TNBC subtype, in terms of both genomic and
transcriptomic profiles.

4.4. Tumor-Infiltrating Lymphocytes (TILs)

TILs are evaluated on hematoxylin and eosin slides and can be assessed in the stroma
and in the intratumoral area. Stromal TILs are present in the tumor microenvironment
without contact with the tumor cells, whereas intratumoral TILs are defined as TILs found
in the tumor zone or in the peritumoral area in contact with tumor cells. In breast cancer,
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stromal TILs evaluation is considered the most reproducible parameter since stromal TILS
are more abundant than intratumoral TILs [63–65].

The correlation between the levels of TILs and pCR in the neoadjuvant setting has been
evaluated in several studies and in all immunohistological subtypes (Table 2). Luminal
breast cancer presents fewer TILs than the HER2-enriched and TNBC subtypes.

In early luminal breast cancer, the GeparDuo and GeparTrio randomized clinical
trials (RCT) both evaluated TIL levels in patients receiving neoadjuvant chemotherapy
with anthracyclines and taxanes. In those studies, higher TIL levels in pre-treatment
biopsies were associated with a higher rate of pCR [66]. The same conclusion was drawn
in the GeparQuinto trial [67]. In the pooled analysis of the six studies performed by the
German Breast Group (n = 3771 patients) (GBG), a high percentage of TILs at diagnosis
correlated with a higher chance of achieving pCR, but not in the luminal subgroup alone
(n = 1366) [68].

The HER2-enriched subtype is known to be associated with more TILs in both the
stromal and tumor areas. In the HER2-positive cohort of the GeparTrio trial, in which no
trastuzumab was given in NAC, a complete response was correlated with higher TILs [66].
In the six studies from the GBG, wherein 1379 HER2-positive tumors were assessed for TILs,
the pCR rates differed significantly between high-TILs tumors (> or =60% TILs) and low-
TILs tumors (<10% TILs) (49 vs. 32% respectively, p < 0.005) [68]. Solinas et al. conducted a
meta-analysis of five RCTs evaluating TILs in the neoadjuvant setting of HER2-positive
disease, in which trastuzumab was given alone or in combination with lapatinib [63]. The
results of this meta-analysis were also in favor of an increased likelihood of achieving a pCR
in the presence of higher baseline TIL levels. Moreover, the benefit obtained was indepen-
dent of the backbone chemotherapy or anti-HER2 agents used. Currently, dual blockade
with the combination of trastuzumab and pertuzumab is increasingly administered in
high-risk patients. In this context, three clinical trials have evaluated TILs in patients
receiving the combination [69–71]. Two of the three studies, NeoSphere and GeparSepto,
did not show any association between the levels of TILs and pCR. A pooled analysis of
these exploratory small subgroups could provide more answers.

In TNBC, lymphocyte infiltrates have been found to be increased compared to other
subtypes, with stromal TILs ranging from 15 to 90% and intra-tumoral TILs ranging from
5 to 10% [63,72]. The GeparSixto trial evaluated 314 patient samples and showed that
highly infiltrated tumors were associated with pCR [73]. In the GeparQuinto trial, the
exploratory analysis of the 104 TNBC patients did not show any significant correlation
between TIL and pCR levels [67]. Nevertheless, the correlation between TILs and pCR was
confirmed in the meta-analysis of the six studies from the GBG (906 TNBC patients) [68].
Loibl et al. have reported that stromal TILs are associated with higher pCR rates in both
cohorts of the GeparNuevo trial, but in contrast, intratumoral TILs were not [74]. Despite
all the conducted RCTs and retrospective studies, the data regarding TILs do not yet appear
mature enough to be used in clinical practice as a predictive biomarker, although the
results are encouraging for both HER2-enriched and TNBC patients [64]. The variability
between centers and pathologists remains an important issue to be solved for future trials.
Nevertheless, Van Bockstal et al. showed that, despite the inter-observer variability, stromal
TILs were significantly correlated with pCR [72,75].

4.5. PD-L1 Expression

Breast cancer is considered less immunogenic than other cancer types. Nevertheless,
TNBC has been highlighted as the subtype with the highest expression of PD-L1 due to the
genomic instability found in this particular subtype [76]. Several studies have evaluated
PD-L1 expression in breast cancer, especially in TNBC, with conflicting results concerning
the correlation between PD-L1 expression and its predictive value in the neoadjuvant
setting [77,78]. These reported conflicting results could be explained by several factors:
the heterogeneity of breast cancer itself, the biopsy type (surgical piece vs. needle), the
use of different FDA-approved PD-L1 antibodies, and the different methodologies used
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across studies to evaluate PD-L1 (the consideration of the tumor cells and/or immune
cells, the calculation of the combined positive score (CPS) or tumor proportion score (TPS),
the use of different cut-offs) [77,79]. In early-stage TNBC, the phase 1 KEYNOTE-173 trial
evaluated the addition of pembrolizumab to neoadjuvant chemotherapy. Samples from
pre-treatment tumors were stained for PD-L1 with the 22C3 antibody, and the analysis
was based on CPS calculation. PD-L1 positivity was associated with increasing rates of
pCR when combining the checkpoint inhibitor with common chemotherapy [80]. In the
second interim analysis of the phase 3 KEYNOTE-522 study, the pCR rate was significantly
higher in the pembrolizumab group, independent of PD-L1 expression. In addition, PD-
L1-positive patients had a higher rate of pCR in both arms [81]. The GeparNuevo and
Impassion031 studies also reported a higher pCR rate in the PD-L1-positive subgroup in
comparison to the PD-L1-negative subgroup [74,82]. In contrast, in the NeoTRIPaPDL1 trial,
no difference in pCR rates was observed between the PD-L1-positive and the PD-L1-negative
groups [83]. Again, these contradictory results might partly be explained by the relatively
high degree of inter-observer variability among pathologists in PD-L1 immunohistochemical
assessment, as reported for both primary and metastatic TNBC [84,85].

Table 2. Secondary analysis studies evaluating TILs as predictive biomarkers in the neoadjuvant setting.

Trials Year of TILs
Subanalysis

Number of
Patients

Number of
Patients for TILs

Subanalysis
Subtypes (n) NAC Regimens pCR Rates

GeparDuo
[66,86] 2010 913 218 All

4× doxorubicin + docetaxel
q2w (ADoc) vs.

4× doxorubicin +
cyclophosphamide and

4× docetaxel q3w (ACDoc)

7% (ADoc) vs.
14% (ACDoc)

GeparTrio
[66,87] 2010 2090 840 All

docetaxel + doxorubicin +
cyclophosphamide (TAC) vs.
vinorelbine + capecitabine (NX)

5.3% (TAC) vs.
6% (NX)

GeparQuattro
[67,88] 2016 1509 178

HER2-negative
(n = 1058)

HER2-positive
(n = 451)

4× epirubicin +
cyclophosphamide +

4× docetaxel + trastuzumab
+/− capecitabine in HER2

positive 4× epirubicin +
cyclophosphamide +

4× docetaxel +/−
capecitabine in HER2

negative

31.7%
(HER2-positive)

vs. 15.7%
(HER2-negative)

GeparQuinto
[67,89] 2016 615 320 HER2-positive

4× epirubicin +
cyclophosphamide + 4×

docetaxel + trastuzumab (T)
vs. lapatinib (L)

30.3% (T) vs.
22.7% (L)

GeparSixto
[73,90] 2015 588 580

HER2-positive
(n = 273)

TNBC (n = 315)

In HER2-positive: paclitaxel
+ doxorubicin +

trastuzumab + lapatinib
+/− carboplatin

In TNBC:
paclitaxel + doxorubicin
+/− carboplatin +/−

bevacizumab

NeoALTTO
[91] 2015 455 387 HER2-positive

Lapatinib (L) vs.
trastuzumab (T) vs.

lapatinib + trastuzumab
(LT)

20% (L) vs. 27%
(T) vs. 44% (LT)

CherLOB [92] 2016 121 121 HER2-positive

Paclitaxel + FEC +
trastuzumab (T) vs.

lapatinib (L) vs. lapatinib +
trastuzumab (LT)

25% (T) vs. 26.3%
(L) vs. 46.7% (LT)
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Table 2. Cont.

Trials Year of TILs
Subanalysis

Number of
Patients

Number of
Patients for TILs

Subanalysis
Subtypes (n) NAC Regimens pCR Rates

GeparSepto
[71,93] 2017 1206 1206

HER2-negative
(n = 810)

HER2-positive
(n = 396)

Nab-paclitaxel (nP) or
paclitaxel (P) + EC +/−

trastuzumab and
pertuzumab

38% (nP) vs. 29%
(P)

TRYPHAENA
[70] 2016 225 213 HER2-positive

Arm A: FEC + trastuzumab
+ pertuzumab followed by
docetaxel + trastuzumab +

pertuzumab
Arm B: FEC followed by

docetaxel + trastuzumab +
pertuzumab

Arm C: docetaxel +
carboplatin + trastuzumab +

pertuzumab

61.6% (arm A) vs.
57.3% (arm B) vs.

66.2% (arm C)

NeoSphere
[69] 2015 417 350 HER2-positive

Group A: trastuzumab +
docetaxel

Group B: trastuzumab +
pertuzumab + docetaxel
Group C: pertuzumab +

trastuzumab
Group D:

pertuzumab + docetaxel

29% (group A) vs.
45.8% (group B)
vs.16.8% (group

C) vs. 24% (group
D)

GeparNuevo
[74] 2019 174 171 TNBC Nab-paclitaxel +/−

durvalumab followed by EC

53.4%
(durvalumab) vs.
44.2% (placebo)

TILs: tumor-infiltrating lymphocytes; NAC: neoadjuvant chemotherapy; pCR: pathological complete response;
ADoc: doxorubicin and docetaxel; ACDoc/TAC: doxorubicin, docetaxel and cyclophosphamide; NX: vinorelbin
and capecitabine; T: trastuzumab; L: lapatinib; LT: lapatinib and trastuzumab; P: paclitaxel; nP: nab-paclitaxel.

5. Predictive Biomarkers under Investigation
5.1. Imaging and Radiomics Biomarkers

Imaging plays an important role in the management of early breast cancer, in the
initial staging of the tumor and lymph nodes and in the evaluation of response to NAC.
In clinical practice, assessments of response are mostly conducted by ultrasound (US) or
magnetic resonance imaging (MRI), the second one being the most sensitive technique to
determine the presence of a residual tumor. The prediction of response to NAC by imaging
before the completion of the treatment has been proposed but is still subject to debate, as
will be discussed below. For this purpose, radiomics bring new horizons with the analysis
of data extracted from radiological imaging such as textural variables. Using dedicated
algorithms, these could help predict response to treatment [94–99]. As a non-invasive tool
for predicting response to NAC in breast cancer, radiomics data from magnetic resonance
imaging, quantitative ultrasound (QUS) or even 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) show promising results in the
evaluation of the outcomes of patients [100,101].

5.1.1. MRI

Functional imaging with diffusion weighted imaging MRI (DWI-RMI) and dynamic
contrast-enhanced MRI (DCE-MRI), used in daily practice, can be of help by detecting early
changes in the properties of the tumors (e.g., angiogenesis, cellularity) with the extraction
of quantitative parameters. These changes in cellularity or angiogenesis have been studied
after several cycles of NAC and could be correlated with pCR in small cohort studies [102].

Several studies used artificial intelligence (AI) to analyze the value of multiparamet-
ric data from pre-treatment MRI to predict response to NAC. Studies have evaluated
gadolinium-T1-weighted MRI images from pretreatment acquisition and have shown that
these images could predict the subgroup of patients achieving pCR [103–105]. Unfortu-
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nately, using gadolinium is not always possible, as it is contra-indicated in cases of renal
insufficiency or allergy. Pre-treatment T2-weighted MRI (without contrast) features from
tumor cores and margins have also been evaluated in 102 patients by Kolios et al., revealing
that non-responding tumors have disorganized structures in comparison to chemo-sensitive
tumors. Using machine learning classifiers, the evaluation of the tumor texture in these
T2-weighted images had an accuracy of 90% to predict response to NAC [100]. Multiple
multivariate machine learning-based models using pre-treatment MRI data have been
studied in recent years, such as the model developed by Cain et al., which was able to
predict pCR in TNBC and HER2-positive patients with an acceptable discrimination (AUC
at 0.707, 95%CI: 0.582–0.833, p < 0.002) [106]. Chamming and colleagues analyzed texture
features on MRI data before NAC and found that some of them were associated with pCR
in TNBC [107]. Another study suggested that, with the parameters from intratumoral
and peri-tumoral texture, molecular subtypes could be identified by radiomics [108]. Liu
et al. developed a radiomics signature with a combination of images from T2-weighted
imaging, diffusion-weighted imaging and contrast-enhanced T1-weighted imaging. The
signature itself had an accuracy of predicting pCR of 0.79, while the addition of clinical in-
formation (e.g., age, molecular classification, Ki-67 status, stage) to this signature improved
the accuracy to an AUC of 0.86. They furthermore validated their models on an external
dataset [95].

5.1.2. Quantitative Ultrasound

Compared to MRI, ultrasound imaging has several advantages such as its lower cost,
the absence of the injection of exogenous contrast agents and the fact that it is transportable.
It is therefore more accessible for the screening and evaluation of all patients. QUS is a tech-
nique that extracts characteristics of the physical properties of tissues (e.g., elastography)
both in intratumoral and marginal regions. Different studies have evaluated the evolution
in the structure of the tumor tissue after treatment by QUS. This technique can detect
tumor cell death in response to chemotherapy and, in addition, could predict response
to NAC after one-to-four weeks of chemotherapy [109–114]. Recently, Taleghamar et al.
acquired multiple parametric images with QUS from 181 locally advanced breast cancer
patients before NAC [115]. After creating a QUS signature composed of four specific
features from intratumoral regions, they could predict response to NAC with a sensitivity
of 87% and a specificity of 85%. Osapoetra et al. and Dasgupta et al. have also developed
their models based on a texture-derived method with the inclusion of 78 patients and 100
patients, respectively, with encouraging results (88% and 87% of sensitivity, 78% and 81%
of specificity) [116,117].

5.1.3. 18F-FDG PET/CT
18F-FDG PET/CT is a molecular imaging technique used in clinical practice in oncol-

ogy [118]. In breast cancer, PET/CT is essentially used to screen for distant metastases, but
numerous studies from the past decade have described a potential role of PET/CT as an
instrument for predicting response to NAC [4,101,119–121]. Higher glycolytic activities at
diagnosis and significant reductions in the standardized uptake value (SUVmax) of the
tracer during NAC have been described as predictive factors of response to NAC, but they
are still controversial [118].

Recently, the use of radiomics in PET/CT imaging was able to document intratumor
heterogeneity and has provided encouraging new results, but this has, until now, only been
described in small cohorts of patients [122,123]. In one study, Li et al. retrospectively studied
100 breast cancer patients and showed that PET/CT features could predict pCR. Moreover,
the prediction of pCR by their model showed more pCR in TNBC and HER2-positive
patients. Luo et al. combined radiomics features from PET/CT with clinic-pathological
information such as the patient’s age and Ki-67 levels on diagnostic biopsies, and they also
obtained encouraging results concerning the prediction of pCR after the first two cycles of
NAC [124].
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In conclusion, these models show the potential of radiomics and machine learning to
predict response to NAC in breast cancer on MRI, QUS and even 18F-FDG PET/CT. This
could be of help to individualize the treatment of patients in clinical practice but needs
further validation in prospective trials before any conclusion regarding clinical utility can
be drawn.

5.2. Plasmatic Biomarkers
5.2.1. Peripheral Blood Cells and Ratios

Systemic inflammation at the time of cancer diagnosis is of interest, as it may re-
flect tumor-associated inflammation. Moreover, neutrophil and lymphocyte counts have
been described as predictors of survival and response to therapy in multiple cancer
types [125,126]. The neutrophil-to-lymphocyte ratio (NLR), which is the ratio between
the absolute numbers of neutrophils and lymphocytes, has been evaluated in several stud-
ies in breast cancer, but its use in clinical practice has not yet been implemented because
of contradictory findings [125–130]. In 2021, Zhu et al. performed a retrospective study of
NLR in 346 patients with BC and concluded that NLR could be an independent predictor
of pCR after NAC [131]. A higher NLR was indeed associated with lower pCR. In this
study, patients were rigorously selected, and patients with a recent surgery or biopsy
or with an autoimmune disease or recent infection were excluded. All selected patients
received the same NAC regimen, which was not always the case in previous studies. The
threshold value in this study was 1.695 and was determined by ROC curve analyses, which
is consistent with previous studies using cut-off values ranging from 1.7–4 [126].

Other ratios such as the pan-immune-inflammation-value score (PIV) have been eval-
uated in cancer patients. PIV is an immune score that is calculated as follows: neutrophil
absolute count × platelet absolute count × monocyte absolute count/lymphocyte absolute
count [132]. It has been studied in different cancer types such as melanoma and metastatic
colorectal cancer [132,133]. In a study including melanoma patients (n = 228), high PIV was
independently associated with poorer OS, poorer PFS and resistance to immunotherapy
and targeted therapy [133]. The same conclusions were drawn in two studies conducted
with 438 and 163 metastatic colorectal patients, respectively [132,134]. In breast cancer, a
small cohort study of 57 HER2+ patients, all treated with pertuzumab and trastuzumab in
combination with chemotherapy, also demonstrated that higher PIV was associated with
worse PFS [135]. Nevertheless, none of these previous studies evaluated PIV as a predictive
marker of pCR. In 2021, Sahin et al. conducted a retrospective study with 743 recruited
BC patients in order to analyze different peripheral blood cell populations and ratios
including NLR and PIV, along with the platelet-to-lymphocyte ratio (PLR) and monocyte-
to-lymphocyte ratio (MLR) [136]. Their results indicated that low PIV was associated with
better pCR rates and therefore better DFS and OS, with PIV being superior to NLR, PLR
and MLR [136].

In conclusion, ratios of peripheral blood cell counts could be interesting, easily acces-
sible and inexpensive predictive markers of response to NAC, but before using them in
clinical practice, more validation studies with a rigorous selection of patients need to be
conducted, such as prospective multi-centric studies including a higher number of patients.

5.2.2. Liquid Biopsies

Liquid biopsies offer a minimally invasive technique for diagnosis, disease monitoring
and the evaluation of the response to treatment. Several components of the tumor can be
analyzed with liquid biopsy samples, such as circulating tumor DNA (ctDNA), circulating
tumor cells (CTCs) and tumor-educated platelets (TEPs) and exosomes. While TEPs and
exosomes are currently studied primarily as diagnostic tools, ctDNA and CTCs show
promising results in assessing response to treatment and predicting resistance in early
breast cancer [137–142].



Cancers 2022, 14, 3876 13 of 31

• ctDNA

Several studies have already been performed with the objective of evaluating the role
of ctDNA to predict response to NAC in breast cancer [137,143–147]. Nevertheless, the
methodology, inclusion criteria and conclusions remain variable, and these studies should
therefore be interpreted with caution (Table 3).

Table 3. Studies evaluating ctDNA in early breast cancer.

Authors Year N Subtypes Timepoint

Before NAC During NAC Before
Surgery

After
Surgery

Garcia-Murillas et al. [142] 2015 55 All subtypes Yes Yes

Riva et al. [143] 2017 46 TNBC Yes Yes Yes Yes

Rothé et al. [144] 2019 69 HER2-positive Yes Yes Yes

Butler et al. [145] 2019 10 All subtypes Yes Yes Yes Yes

McDonald et al. [146] 2019 22 All subtypes Yes Yes Yes

Magbanua et al. [136] 2021 84 All subtypes Yes Yes Yes

Zhou et al. [147] 2021 145 HR+ and TNBC Yes Yes Yes

Garcia-Murillas et al. were pioneers of the use ctDNA analysis in early breast cancer
patients to identify patients with a high risk of relapse [143]. They recruited 55 patients,
identified somatic mutations on tumor biopsies and designed ddPCR assays for each
detected mutation. They tracked ctDNA presence in serial samples during follow-up. At
baseline, ctDNA was found in 69% of the plasma samples and was correlated with more
aggressive features such as a high histological grade and ER negativity. Nevertheless, the
baseline detection of ctDNA was not predictive of disease-free survival or early relapse.
The results from samples collected 2-to-4 weeks after surgery showed that only 19% of
patients had residual ctDNA. At this timepoint, the presence of ctDNA was associated with
early relapse. Tracking the presence of ctDNA in serial plasma samples after surgery was
also predictive of early relapse in patients positive for ctDNA.

In 2017, Riva et al. evaluated 46 early TNBC patients, also with personalized ddPCR
probes based on mutations found in tumor biopsies [144]. In this study, plasma samples
were collected at four timepoints: before NAC, after one cycle of NAC, before surgery and
after surgery. Before NAC, 75% of patients had ctDNA detected, and all patients experienced
a decrease in ctDNA during the course of the treatment, except for one patient who had
tumor progression during NAC. The results of this study were not in favor of an association
between ctDNA detection (at any timepoint) and pCR after NAC. However, patients with a
slow decrease in the ctDNA level had shorter disease-free and overall survival.

In the NeoALTTO substudy, which only enrolled HER2-positive patients, ctDNA was
also analyzed, but only patients with PIK3CA and/or TP53 mutations were selected for
further personalized analysis (69/455) [145]. Samples were analyzed at three timepoints:
before NAC, during NAC (at week 2) and before surgery. With this method, ctDNA was
found in 41% of patients at baseline, 20% of patients at week 2 and 5% of patients before
surgery. As seen by Garcia-Murillas et al., ctDNA detection at baseline was also associated
with ER-negative status. In this study, the detection of ctDNA before NAC was associated
with a decreasing rate of pCR.

In a small study recruiting 10 patients, in which plasma samples were collected prior
to NAC and before each infusion of NAC until 1-to-3 years after the completion of NAC,
ctDNA “rapid” clearance was correlated with the probability of reaching a pCR. Once
again, patients with residual ctDNA after the initiation of the treatment did not achieve
pCR, and in those patients, two patients out of the three had a rapid recurrence (<2 years
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following the start of NAC) [146]. McDonald et al. came to the same conclusion in a cohort
of 22 patients, in which they used a more sensitive technique to detect ctDNA [147].

More recently, in the neoadjuvant I-SPY 2 TRIAL evaluating standard NAC alone
or combined with MK-2206 (an AKT inhibitor), the plasma samples of 84 patients were
collected at different timepoints: pretreatment (T0), 3 weeks after the initiation of paclitaxel
(T1), between paclitaxel and anthracycline treatment (T2) and prior to surgery (T3). Per-
sonalized tests were performed on primary tumor sections to identify 16 patient-specific
mutations, and these mutations were subsequently searched in the plasma samples. At the
pretreatment timepoint (T0), 73% of the patients were ctDNA-positive. The patients who
achieved pCR were ctDNA-negative after NAC, and moreover, in the case of no ctDNA
clearance at T1, the patients had a higher risk to have residual disease after NAC. After
a median follow-up of 4.8 years for survival analysis, this study showed that non-pCR
patients positive for ctDNA at T3 have an increased risk of metastatic relapse in comparison
with those who were also non-pCR but were ctDNA-negative at T3, who had excellent
outcomes [137]. Zhou et al. also evaluated ctDNA in 145 patients and demonstrated that
the persistence of ctDNA during the treatment was correlated with non-response to NAC
(Residual Cancer Burden of II/III) [148].

Taken together, ctDNA is clearly an interesting tool in the arsenal of predictive biomark-
ers of response to NAC. Although none of the currently available studies have been able to
predict response with baseline ctDNA detection, it appears that the early assessment of
ctDNA clearance could be a stratification tool to design escalation or de-escalation studies
in early breast cancer.

• CTCs

Until now, CTC detection has been performed mainly in the metastatic setting, but
recent studies have focused on CTC detection in early breast cancer and its kinetics during
NAC and adjuvant therapy [149]. CTCs can be detected in single cells (SC) or in clusters
(CC) depending on the technique used. CC-CTCs are mostly evaluated in the metastatic
setting. Intuitively, in early breast cancers, clusters may be of the most interest, as they
are most likely to progress to metastasis in comparison to single cells, which have to
overcome several obstacles to survive and disseminate [150]. However, Reduzzi et al.
have demonstrated the limitations of the detection of agglomerates of CTCs in early breast
cancer [149]. Although the presence of CC-CTCs was found in small study cohorts, no
correlation was found with the likelihood of obtaining a pCR [149,151,152]. Moreover, these
studies have shown a decrease in CC-CTCs after surgery and not during NAC [149,152].
The CellSearch system used for the detection of SC-CTCs could detect 20–30% of SC-
CTCs in the early breast cancer setting before treatment [151,153,154]. In those studies,
SC-CTC positivity was correlated with worse outcomes in terms of OS and DFS [151,154].
Concerning the SC-CTC detection during and after the treatment, the persistence of SC-
CTCs after the treatment was correlated with a worse outcome [153]. In conclusion, the
predictive value of CTCs is still uncertain and needs to be further explored before being
used in clinical practice.

5.3. Gene Signatures

Several multigene signature assays have been developed in the last decade. They
aim to better classify patients based on their intrinsic subtypes and enhance prognosis
evaluation [155].

Some of them have already been validated in clinical practice, essentially in HR-
positive and HER2-negative tumors: EndoPredict, Oncotype DX, MammaPrint and PAM50.
Their utility in daily routines consists in providing an individual risk assessment of disease
recurrence and prognostic information in order to better guide adjuvant therapy selection
in early disease. The potential value of these well-known multigene profiles as predictive
biomarkers of response to NAC has also been evaluated, with interesting results. Nev-
ertheless, their indication in this setting has not yet been validated in clinical practice
(Table 4).
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Table 4. Available gene signatures and their current indications.

Gene Signature Number of Genes Genes Validated Indications Utilization

EndoPredict (MS) 12

BIRC5, UBE2C, DHCR7,
RBBP8, IL6ST, AZGP1,

MGP, STC2, CALM2, OAZ1,
RPL37A

Evaluation of
recurrence at 5–10 years

Score range from 0 to 15
<5: low risk
≥5: high risk

Oncotype DX (RS) 21

CCNB1, MYBL2, MMP11,
CTSL2, GRB2, ESR1, PGR,

BCL2, BAG1, Ki-67,
ACTB,

GAPDH, RPLPO, GUS,
TRFC, STK15, BIRC5, HER2,

SCUBE2, GSTM1, CD68

Evaluation of 10-year
recurrence in patients

Score range from 0 to 100
(TAILORx)

<11: low risk
11–25: intermediate risk

>25: high risk

Mammaprint 70

BBC3, EGLN1, TGFB3,
ESM1, IGFBP5, FGF18,

SCUBE2, TGFB3, WISP1,
FLT1, HRASLS, STK32B,
RASSF7, DCK, MELK,
EXT1, GNAZ, EBF4,

MTDH, PITRM1,
QSCN6L1, CCNE2, ECT2,

CENPA, LIN9, KNTC2,
MCM6, NUSAP1, ORC6L,
TSPYL5, RUNDC1, PRC1,
RFC4, RECQL5, CDCA7,
DTL, COL4A2, GPR180,

MMP9, GPR126, RTN4RL1,
DIAPH3, CDC42BPA,

PALM2, ALDH4A1, AYTL2,
OXCT1, PECI, GMPS,

GSTM3, SLC2A3, FLT1,
FGF18, COL4A2, GPR180,

EGLN1, MMP9,
LOC100288906, C9orf30,

ZNF533, C16orf61, SERF1A,
C20orf46, LOC730018,

LOC100131053,
AA555029_RC, LGP2,

NMU, UCHL5, JHDM1D,
AP2B1, MS4 A7, RAB6B

Early and distant
relapse

Low risk
High risk

PAM50—Prosigna 50

UBE2C, PTTG1, MYBL2,
BIRC5, CCNB1, TYMS,
MELK, CEP55, KNTC2,
UBE2T, RRM2, CDC6,
ANLN, ORC6L, KIF2C,
EXO1, CDCA1, CENPF,

CCNE1, MKI-67, CDC20,
MMP11, GRB7, ERBB2,
TMEM45B, BAG1, PGR,
MAPT, NAT1, GPR160,

FOXA1, BLVRA, CXXC5,
ESR1, SLC39A6, KRT17,

KRT5, SFRP1, BCL2, KRT14,
MLPH, MDM2, FGFR4,

MYC, MIA, FOXC1,
ACTR3B, PHGCH, CDH3,

EGFR

-Risk of Recurrence
Score (ROR)

-Relapse at 10 years

-Risk of recurrence: low,
intermediate, high

-Relapse at 10 years in %
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5.3.1. EndoPredict—Molecular Score (MS)

EndoPredict is a 12-gene signature measuring the expression of 8 cancer-related genes,
3 reference genes and 1 control gene. The prognostic value of this signature has been
validated, stratifying patients treated with adjuvant endocrine treatment (tamoxifen) into a
low or a high risk of recurrence at 10 years [156]. Moreover, the addition of clinical features
such as nodal status and tumor size to the EndoPredict score is also a good indicator
of late recurrence (EPclin) and can help clinicians to decide if additional treatments are
needed in case of high-risk scores. In a comparative, non-randomized analysis of two
prospective studies of HR-positive and HER2-negative early breast cancer, this multigene
score could predict the chemotherapy benefit [157]. Regarding the NAC setting, only a
few studies have shown the feasibility of using the MS score in this indication [158–161].
Bertucci et al. were the first to retrospectively analyze the EndoPredict signature in a
cohort of breast cancer patients (n = 553) treated with anthracyclines and taxanes-based
NAC. They showed that patients with a high MS score have higher pCR rates than those
with a low-risk score [160]. In 2020, Soliman et al. analyzed the expression data from
six public datasets from the Gene Expression Omnibus (GEO) database, with a total of
764 ER-positive and HER2-negative patients. These 764 samples were selected based on
the availability of clinical information such as pCR, IHC status, FISH status and the NAC
scheme administered. They compared the EndoPredict score and the Oncotype DX score
(see below) and showed that EndoPredict was a good predictive marker of response to
NAC [159]. Mazo et al. also published similar results comparing a new six-gene signature
(OncoMasTR) to different prognostic signatures, including EndoPredict, in seven GEO
datasets, including four common datasets with Soliman et al. [161] Finally, Dubsky et al.
evaluated the EndoPredict score in samples from the ABCSG-34 trial, where patients
received either NAC or neoadjuvant endocrine therapy based on menopausal status, HR
expression, grade and Ki-67. In this analysis, tumors with a high MS score were more likely
to be resistant to neoadjuvant endocrine therapy, whereas low-MS-score tumors did not
benefit from NAC [158].

5.3.2. Oncotype DX—Recurrence Score (RS)

The Oncotype DX recurrence score is the result of the relative expression quantification
of 21 genes (16 cancer-related genes and 5 reference genes). This score allows for the
classification of patients into three categories: low risk, intermediate risk and high risk.
The prognostic value of RS was validated in the prospective TAILORx and RxPONDER
studies, demonstrating that patients with intermediate risk could be spared adjuvant
chemotherapy in addition to endocrine therapy [162,163]. Later, the potential predictive
value of the RS was evaluated in several retrospective and prospective studies. Various
studies reported that a higher RS was associated with a higher rate of achieving pCR by
NAC [164–166]. More recently, Morales Murillo et al. also described 26% of pCR in high
RS (>30) in comparison to patients with RS from 0–30, where no pCR was achieved [167].
In studies evaluating neoadjuvant hormonal therapy, low RS was associated with a better
response in comparison to intermediate- and high-risk RS [168–170]. However, in a cohort
of non-PCR patients (n = 60), Soran et al. found that the RS measured on initial samples
was not correlated with the percentage of tumor size reduction [171]. Most of the studies
used the threshold of RS below 25 or 30 to conclude that there was no benefit of NAC
despite the clinical criteria indication for NAC [165,172,173].

5.3.3. Mammaprint

The Mammaprint assay is a 70-gene signature used in post-menopausal early breast
cancer patients. This signature classifies tumors in two groups that are associated with
good or poor prognosis based on the recurrence risk at 5 and 10 years. In the prospective
MINDACT study, patients with ER-positive and HER2-negative early breast cancer and a
low Mammaprint score who received endocrine therapy could safely be spared adjuvant
chemotherapy [174]. The use of Mammaprint as a predictive marker of response to NAC
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has only been evaluated in small exploratory studies. Straver et al. studied 167 patients
who received NAC [175]. Of those, 144 (86%) had a high Mammaprint score. Interestingly,
no pCR was observed in the low-risk group, while 20% of the high-risk patients achieved
a pCR. Later, Glück et al. retrospectively evaluated 437 patients from neoadjuvant trials
and came to the same conclusion [176]. Nevertheless, these results need to be carefully
interpreted since the initial Mammaprint score was established from tumor specimens from
the surgical piece and not from diagnosis biopsies.

5.3.4. PAM50—Prosigna Assay

PAM50 is a 50-gene signature used and validated to identify intrinsic molecular sub-
types of breast cancer (luminal A, luminal B, HER2-enriched, basal-like) but also to estimate
a Risk of Recurrence (ROR) score capable of classifying tumors into low, intermediate or
high risk of distant recurrence [177]. This gene signature was developed in order to evaluate
the risk of relapse in patients with HR+ and HER2-negative breast cancer and to evaluate
the indication of adjuvant chemotherapy in high-risk cases. In the neoadjuvant setting,
Prat et al. studied this assay in core needle biopsy samples to evaluate if it was suitable for
core biopsies [178]. They found that the Prosigna assay performed on core needle biopsies
was reliable in terms of ROR score and intrinsic subtypes classification. Moreover, the
Prosigna could predict response to NAC, which was confirmed by Rodriguez et al. [179].
Later, the phase II PROMIX trial evaluated 150 patients with NAC in combination with
bevacizumab [180]. By comparing the baseline and on-treatment biopsies, they discovered
that an early change in the intrinsic subtype during NAC may be predictive of pCR and
EFS. Ohara et al. showed that the luminal A intrinsic molecular subtype defined by PAM50
was a significant predictor of non-pCR in patients receiving NAC and, conversely, that
the immunohistochemistry-defined luminal A subtype was not correlated with a low pCR
rate [181]. The intrinsic molecular subtype was furthermore associated with pCR indepen-
dently of standard clinical variables in a study evaluating 957 patients, including 350 triple
negative breast cancer patients [182]. Depending on the intrinsic subtypes, different pCR
rates were achieved, ranging from 9.3% to 14.2%, 20% and 50% (luminal A, luminal B,
HER2-enriched and basal-like, respectively) [179]. More recently, the Prosigna assay was
used in a trial including 43 IHC-defined luminal B patients receiving a combination of
anthracyclines and anti-PD1 antibodies. The tumors with the basal-like intrinsic subtype
had better response to this combination [183].

6. Future: Patients-Derived Tumor Organoids (PDTO)

Organoids are defined as 3D in vitro models generated from in vivo tissue or organ
that functionally and architecturally recapitulate the original tissue. The 3D culture is
established from digested tissue and cultured in suspension either in a hydrogel matrix
that mimics the extracellular matrix (ECM) or in an “air-liquid interface”. Culturing
processes, including passaging and medium composition, can drastically differ between
tissues [184,185].

In cancer research, organoids, and, more specifically, patient-derived tumor organoids
(PDTO), are a promising tool since they replicate the heterogeneity but also cell interactions
of the tumors [186]. Until today, cancer research has been dominated by other culture
models such as 2D immortalized cell lines and patient-derived xenografts (PDX) (Table 5).

Cell lines have been used in the development of drugs and are still used in basic cancer
research, which could be explained by the ease of maintenance, the lower cost and the
ease of genetic manipulations or use in high-throughput drug screening. Nevertheless,
2D cultures present several limitations. While the maintenance of cell lines is less time-
consuming than that of PDX models, the establishment of permanent cell lines from tumors
is poorly efficient within breast cancer, with a success rate estimated between 1 and 10%.
Furthermore, these cell lines do not represent tumor diversity, since in vitro adaptation
modifies heterogeneity by selecting the surviving clones [184]. Moreover, considering the
fact that metastatic tumors have more of an ability to generate cell lines than primary
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tumors or normal tissue, the available immortalized cell lines hardly represent the entire
spectrum of cancer disease. Even if co-culture is feasible, the culture conditions of cell lines
cannot recapitulate the environment and cell–cell interactions of in vivo tumors and lack
other cell types usually present in the neighborhood of the tumor such as fibroblasts or
immune cells [187]. The lack of heterogeneity may thus misestimate the biological process
as compared to in vivo models.

Table 5. Comparison between cell lines, PDTO models and PDX models.

Features Cell Lines PDTO PDX

Establishment + ++ ++
Maintenance +++ + −

Heterogeneity − + ++
Patient-specific − +++ +++

Environment interactions − − +++
Preservation of tissue feature − ++ +++

Co-culture + + ++
Genetic manipulation +++ ++ −

High-throughput screening +++ +++ −
Cost + ++ +++

Time-consuming + ++ +++
Expertise + +++ +++

−: less likely; + to +++: likely to highly likely.

On the other hand, PDX models allow for the study of transplanted tumors in mice
with cells that can be engrafted in a physiological environment but from a different species.
The success rate of establishment of PDX is higher than that of cell lines but remains
notoriously difficult in breast cancer. The disadvantages of this model are that it is time-
consuming and costly in comparison to 2D cultures [184,188]. Xenografts can more accu-
rately recapitulate drug response or response to radiation in tumors, even if these responses
are mediated by the host environment. PDX models can thus be used to better study drug
response but are not amenable for high-throughput screening.

Between 2D cell lines and PDXs, PDTOs are certainly a promising new tool for the
study of drug response but also for disease modeling, gene editing and high-throughput
drug screening, owing to their capacity for long-term expansion similar to that of cells
in 2D cultures. Compared to xenograft models, PDTOs can be easily cultured and are
also less costly and time-consuming [184,189–191]. Despite the lack of vascularization and
interaction with the immune system, drug sensitivity prediction has proven to be correct in
numerous studies evaluating PDTO from different origins [192].

In breast cancer, Sachs et al. established 95 breast cancer organoid cell lines out of
155 tumors, with the majority of organoids matched with the original breast tumor regard-
ing histopathology and hormone/HER2 receptor status. Moreover, the gene expression
analysis in organoids appears to be less confounded by variation given the absence of
normal cells. This, in theory, also allows for the easier detection of somatic mutations.
Out of the 95 lines, 28 were tested with 6 drugs targeting the HER signaling pathway. Re-
sponses were seen in models overexpressing HER2. Since the PDTO models were derived
from surgical pieces, it was not possible to follow, in parallel, the response to treatment in
patients. Nevertheless, xenograft models were generated from one HER2-sensitive PDTO-
line and one HER2-resistant PDTO-line. The in vivo and in vitro responses to afatinib
were similar [189]. More recently, Guillen et al. established paired PDX and PDX-derived
organoids (PDxO). In total, 40 PDxOs were derived from PDX out of 47 attempts. The initial
validation involved a comparison of matched tumors, PDXs and PDxOs, which revealed
that PDxO models were similar to the corresponding primary tumors in 11 models and
that, overall, the mutational drivers were stable despite multiple passages of the PDxO
lines. Moreover, the drug responses in PDxOs models were concordant with the responses
in PDXs models, suggesting that PDxOs could predict response in PDXs correctly. After
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receiving a biopsy from an early TNBC and the derivation of PDXs and PDxOs, in vivo
drug screening performed at clinical relapse demonstrated resistance to 5-fluorouracil,
cabozantinib and the NAC regimen (doxorubicin, cyclophosphamide, paclitaxel), as was
seen in the clinical setting. The sensitivity to eribulin noted in both models was also present
in the clinical setting for a period of nearly 5 months [193]. Given this concordance be-
tween clinical and PDX/PDxO responses, high-throughput drug screening in organoids
could help to identify resistance and guide treatment decisions in the future. Up to now,
the majority of clinical trials involving PDTO have been observational, comparing drug
screening in vitro and clinical response (Table 6) [194]. In breast cancer, PDTO models are
also of interest as direct functional assays to assess PARP inhibitors’ sensitivity [195]. As
discussed by Morice et al., next-generation sequencing (NGS) can fail to identify patients
who could benefit from PARP inhibitors in several cancer types (ovarian, breast, pancre-
atic). In the same way, Sachs et al. have tested four of their breast-PDTO models with the
PARP inhibitors olaparib and niraparib. Two models out of the four were sensitive and
presented a high BRCA1/2 signature, despite the fact that one of the sensitive models was
not BRCA1/2-mutated, showing one limitation of NGS [189]. Pauli et al. have described
the creation of a robust precision medicine platform associating whole exome sequencing
(WES) and high-throughput drug screening after reporting that only 9.6% of analyzed
advanced cancer patients had potentially targetable gene alterations [196]. After collecting
145 tumor samples from several origins (e.g., prostate, colorectal, breast, etc.), 56 PDTO
lines were successfully established. PDTO lines have been used for further drug screening
with drug libraries combining ~160 drugs (chemotherapeutics and FDA-approved targeted
agents). Based on the best results obtained with PDTO, PDX models were also screened
with these drugs in monotherapy or in combination. In two cases of gynecological can-
cer harboring the same mutation in PIK3CA and PTEN, the drug response profiles were
completely distinct, showing that, used together, PDTO and NGS/WES could better select
patients who could benefit from these therapies [195].

Assays-guided treatment trials have been introduced in colorectal cancer patients, aim-
ing to investigate the sensitivity of PDTO to different drugs and, depending on the results,
to guide the treatment of patients in a personalized manner. The SENSOR trial included
54 patients, from whom 31 organoid lines were derived [197,198]. Of the 25 PDTO-lines
tested for 8 selected drugs, 19 responded to at least one drug. A total of six patients received
treatment based on PDTO response, but no durable clinical response was observed. The
APOLLO trial successfully derived organoids from peritoneal metastases in 19 colorectal
cancer patients out of the 28 attempts [199]. Drug screening allowed for the adaption of the
systemic treatment in two multi-resistant patients. Despite these first translational encour-
aging data, this culture model still remains in its infancy, notably regarding breast cancer.
The highly variable success rate (ranging from 30 to 90%) and the delays (from 10 days to
2 months) required to establish the models, as well as the non-standardized experimental
culturing methods for drug-screening, remain important limitations concerning PDTO
cultures that do not allow for the scale-up to large clinical trials [200]. Nevertheless, PDTOs
remain an interesting model offering an optimistic perspective for the future in terms of
personalized treatment and the prediction of response [201] (Figure 3).

Table 6. Clinical trials investigating PDTO models in breast cancer.

Studies Status Type of Study Aim

NCT04450706 Recruiting Interventional Treatment decision based on genome sequencing (blood) and
drug screening on organoids

NCT05177432 Recruiting Interventional QPOP-based drug screen assay to select patients for therapy

NCT04727632 Recruiting Interventional
Evaluation of the use of [18F] Fluoroestradiol (FES)-PET/CT
imaging and the correlation of the results with the drug profiling
conducted in organoids
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Table 6. Cont.

Studies Status Type of Study Aim

NCT04531696 Recruiting Interventional
Post-mortem tissue donation program with multi-level and
multi-region sample analysis to unravel metastatic breast cancer
evolution, biology, heterogeneity and treatment resistance

NCT04281641 Recruiting Interventional

Evaluation of the correlation between early changes in multiple
markers and pathological complete response in patients with
HER2-positive breast cancer receiving carboplatin, docetaxel and
trastuzumab plus pertuzumab (TCHP) pre-operatively. Markers
are examined by gene expression assays, 18F-FDG-PET, 68
Ga-Affibody HER-2 Imaging PET and organoid drug sensitivity

NCT02732860 Recruiting Observational Personalized patient-derived xenografts (pPDX) and organoids
for drug screening

NCT04703244 Recruiting Observational Generate PDX and PDTO models from residual tumors after
NAC for drug testing and the study of mechanisms of resistance

NCT03896958 Recruiting Observational Establish a data and tissue biobank

NCT05134779 Recruiting Observational
Live biobank study with samples collected at inflection points in
the course of the disease (at the time of initial diagnosis, at the
time of surgery and during recurrence or metastasis)

NCT04723316 Recruiting Observational Create a national framework with molecular profiling of
circulating tumor DNA and/or tumor tissue (optional)

NCT04526587 Recruiting Observational
Investigate the clinical course of CDK4/6 inhibitor-treated
patients in the real-world setting (cfDNA, organoids,
PDX models)

NCT05007379 Not yet recruiting Observational Test the new CAR-macrophages drug on PDTO

NCT04504747 Not yet recruiting Observational
Establishment of PDTO models from tumors exposed to NAC in
parallel with the study of CTCs, along with tumors before and
after NAC, to better identify mechanisms of resistance

NCT05317221 Not yet recruiting Observational Study of the heterogeneity and mechanisms of resistance

NCT05381038 Not yet recruiting Interventional
QPOP drug selection followed by CURATE.AI-guided dose
optimization for azacitidine combination therapy (docetaxel or
paclitaxel or irinotecan)

NCT04655573 Not yet recruiting Observational Assess the feasibility of generating patient-derived
micro-organospheres (PDMO) and drug screening
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7. Conclusions

Predicting the response to NAC in early breast cancer still needs dedicated investi-
gations, since most of the studies performed until now only considered one parameter,
limiting their performances. This field remains an area of unmet clinical need, as exempli-
fied by triple negative early breast cancer, where neoadjuvant escalation strategies have
recently changed the treatment landscape. In the recently published Keynote-522 trial,
the NAC backbone contained carboplatin in both treatment arms, and the addition of
pembrolizumab led to a significantly higher pCR rate (64.8 vs. 51.2%) compared to placebo.
Nevertheless, in the patients achieving pCR, recurrence rates were not significantly different
between the treatment groups [202]. Thus, 50% of the patients do not require the addition
of immunotherapy to chemotherapy. As treatment side effects were more pronounced in
the more heavily treated patient population, finding a biomarker predictive of response
to chemotherapy would be clinically and economically useful. At the same time, a better
selection of patients for NAC would avoid directly ruling out promising new agents but
also avoid the emergence of resistant clones due to prolonged drug exposure [8]. For a
better selection of patients, for developing new drugs and avoiding the residual disease, it is
therefore essential to explore and develop new predictive biomarkers with high sensitivity
and specificity.

Furthermore, further analyses of these biomarkers could also provide insights into more
effective and rational treatment escalation trials. Promising techniques such as radiomics
data, liquid biopsies and their combination with more common clinical and histological
features may be of great help in deriving effective new biomarkers of response to NAC and
circumventing the inter- and intra-heterogeneity that characterize breast cancer.

Author Contributions: Writing—original draft preparation, F.D., F.P.D., C.C. and C.v.M.;
writing—review and editing, F.D., F.P.D., C.v.M., C.C., M.B., A.G., M.R.V.B., C.G., L.F. and I.L.
All authors have read and agreed to the published version of the manuscript.

Funding: Françoise Derouane is a research fellow supported by a grant from FSR (26.05.2020). Cédric
van Marcke is the recipient of a postdoctoral mandate funded by the Fonds de Recherche Clinique.
Mieke R Van Bockstal received funding from the not-for-profit organizations ‘Foundation Against
Cancer’ (grant number 2019-089) and ‘Fondation Saint-Luc’. FPD is the recipient of a postdoctoral
mandate funded by the Fondation Belge contre le Cancer (grant number 2017-034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: All figures were created with https://biorender.com (accessed on 9 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Loi, S. The ESMO clinical practise guidelines for early breast cancer: Diagnosis, treatment and follow-up: On the winding road to
personalized medicine. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1183–1184. [CrossRef] [PubMed]

3. Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer:
ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30,
1194–1220. [CrossRef]

4. Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.;
Biganzoli, L.; et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann. Oncol. Off. J. Eur.
Soc. Med. Oncol. 2020, 31, 1623–1649. [CrossRef] [PubMed]

5. Mauri, D.; Pavlidis, N.; Ioannidis, J.P. Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. J. Natl.
Cancer Inst. 2005, 97, 188–194. [CrossRef] [PubMed]

https://biorender.com
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1093/annonc/mdz201
http://www.ncbi.nlm.nih.gov/pubmed/31287498
http://doi.org/10.1093/annonc/mdz173
http://doi.org/10.1016/j.annonc.2020.09.010
http://www.ncbi.nlm.nih.gov/pubmed/32979513
http://doi.org/10.1093/jnci/dji021
http://www.ncbi.nlm.nih.gov/pubmed/15687361


Cancers 2022, 14, 3876 22 of 31

6. Charfare, H.; Limongelli, S.; Purushotham, A.D. Neoadjuvant chemotherapy in breast cancer. Br. J. Surg. 2005, 92, 14–23.
[CrossRef] [PubMed]

7. von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.;
Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various
intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [CrossRef]

8. Asaoka, M.; Gandhi, S.; Ishikawa, T.; Takabe, K. Neoadjuvant Chemotherapy for Breast Cancer: Past, Present, and Future. Breast
Cancer Basic Clin. Res. 2020, 14, 1178223420980377. [CrossRef]

9. Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.;
Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis.
Lancet 2014, 384, 164–172. [CrossRef]

10. Haque, W.; Verma, V.; Hatch, S.; Suzanne Klimberg, V.; Brian Butler, E.; Teh, B.S. Response rates and pathologic complete response
by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2018, 170, 559–567. [CrossRef]

11. Houssami, N.; Macaskill, P.; von Minckwitz, G.; Marinovich, M.L.; Mamounas, E. Meta-analysis of the association of breast cancer
subtype and pathologic complete response to neoadjuvant chemotherapy. Eur. J. Cancer 2012, 48, 3342–3354. [CrossRef] [PubMed]

12. Cortazar, P.; Geyer, C.E., Jr. Pathological complete response in neoadjuvant treatment of breast cancer. Ann. Surg. Oncol. 2015, 22,
1441–1446. [CrossRef] [PubMed]

13. Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer.
Nat. Rev. Dis. Primers 2019, 5, 66. [CrossRef]

14. Lüönd, F.; Tiede, S.; Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during
malignant progression. Br. J. Cancer 2021, 125, 164–175. [CrossRef] [PubMed]

15. Chica-Parrado, M.R.; Godoy-Ortiz, A.; Jiménez, B.; Ribelles, N.; Barragan, I.; Alba, E. Resistance to Neoadjuvant Treatment in
Breast Cancer: Clinicopathological and Molecular Predictors. Cancers 2020, 12, 2012. [CrossRef]

16. Marczyk, M.; Mrukwa, A.; Yau, C.; Wolf, D.; Chen, Y.Y.; Balassanian, R.; Nanda, R.; Parker, B.A.; Krings, G.; Sattar, H.; et al.
Treatment Efficacy Score-continuous residual cancer burden-based metric to compare neoadjuvant chemotherapy efficacy between
randomized trial arms in breast cancer trials. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 814–823. [CrossRef]

17. Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al.
Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [CrossRef]

18. Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised
risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [CrossRef]

19. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al.
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA
2001, 98, 10869–10874. [CrossRef]

20. Hugh, J.; Hanson, J.; Cheang, M.C.; Nielsen, T.O.; Perou, C.M.; Dumontet, C.; Reed, J.; Krajewska, M.; Treilleux, I.; Rupin, M.; et al.
Breast cancer subtypes and response to docetaxel in node-positive breast cancer: Use of an immunohistochemical definition in
the BCIRG 001 trial. J. Clin. Oncol. 2009, 27, 1168–1176. [CrossRef]

21. Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.;
Weckstein, D.J.; et al. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2
Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. J. Clin. Oncol.
2016, 34, 542–549. [CrossRef] [PubMed]

22. Rouzier, R.; Perou, C.M.; Symmans, W.F.; Ibrahim, N.; Cristofanilli, M.; Anderson, K.; Hess, K.R.; Stec, J.; Ayers, M.;
Wagner, P.; et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. Off. J. Am.
Assoc. Cancer Res. 2005, 11, 5678–5685. [CrossRef] [PubMed]

23. Marra, A.; Trapani, D.; Viale, G.; Criscitiello, C.; Curigliano, G. Practical classification of triple-negative breast cancer: Intratumoral
heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020, 6, 54. [CrossRef]

24. Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 2011, 5, 5–23. [CrossRef] [PubMed]
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