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Metabolic energy can be used as a unifying principle to control neuronal activity. However,

whether and how metabolic energy alone can determine the outcome of synaptic

plasticity remains unclear. This study proposes a computational model of synaptic

plasticity that is completely determined by energy. A simple quantitative relationship

between synaptic plasticity and postsynaptic potential energy is established. Synaptic

weight is directly proportional to the difference between the baseline potential energy

and the suprathreshold potential energy and is constrained by the maximum energy

supply. Results show that the energy constraint improves the performance of synaptic

plasticity and avoids setting the hard boundary of synaptic weights. With the same set of

model parameters, our model can reproduce several classical experiments in homo- and

heterosynaptic plasticity. The proposed model can explain the interaction mechanism of

Hebbian and homeostatic plasticity at the cellular level. Homeostatic synaptic plasticity

at different time scales coexists. Homeostatic plasticity operating on a long time scale

is caused by heterosynaptic plasticity and, on the same time scale as Hebbian synaptic

plasticity, is caused by the constraint of energy supply.

Keywords: computational model, synaptic plasticity, metabolic energy, homeostatic plasticity, homo- and

heterosynaptic plasticity

INTRODUCTION

Although the brain accounts for only 2% of body mass, it consumes 20% of the resting metabolic
energy produced by the whole body (Attwell and Laughlin, 2001; Harris et al., 2012). Within the
brain, neurons utilize 75–80% of this energy, and the remainder is used by the neighboring glial
cells. Housekeeping tasks use 25% of the total neuronal energy. Maintaining resting membrane
potential (15%), firing action potentials (16%), and synaptic transmission (44%) compose the
energetically most expensive processes (Harris et al., 2012; Howarth et al., 2012). Thus, the majority
of energy used by neurons is locally consumed at the synapse. In addition to the energetic
costs of neural computation and transmission, experimental evidence indicates that synaptic
plasticity is metabolically demanding (Mery and Kawecki, 2005; Jaumann et al., 2013; Placais
and Preat, 2013; Placais et al., 2017). The energy cost of synaptic plasticity is estimated based
on the neurophysiological and proteomic data of rat brains depending on the level of protein
phosphorylation; this cost constitutes a small fraction of the energy used for fast excitatory
synaptic transmission, which is typically 4.0–11.2% (Karbowski, 2019). However, the quantitative
relationship between the changes in synaptic weights (potentiation or depression) and energy
consumption remains unclear.

Considering the consistency of corresponding experiments, a large number of synaptic plasticity
models have been established. These models are mainly biophysical models based on calcium

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.804604
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.804604&domain=pdf&date_stamp=2022-02-17
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hwchen@csu.edu.cn
https://doi.org/10.3389/fncom.2022.804604
https://www.frontiersin.org/articles/10.3389/fncom.2022.804604/full


Chen et al. Energy Determines Synaptic Plasticity

hypothesis (Shouval et al., 2002; Graupner and Brunel, 2012)
and phenomenological models based on pre- and post-synaptic
spikes or voltage (Bienenstock et al., 1982; Pfister and Gerstner,
2006; Clopath et al., 2010). Although these models are successful
in experimental reproduction, they ignore the role of metabolic
energy. Growing evidence suggests that metabolic energy may
be a unifying principle governing neuronal activities (Laughlin,
2001; Niven and Laughlin, 2008; Hasenstaub et al., 2010; Yu
and Yu, 2017), thereby naturally leading people to focus on the
relationship between metabolic energy and synaptic plasticity in
recent years. Sacramento et al. (2015) showed that unbalanced
synaptic plasticity rules can lead to sparse connectivity and
energy-efficient computation. Li and van Rossum (2020) assumed
that the metabolic energy for every modification of a synaptic
weight is proportional to the amount of change, regardless of
whether this is positive or negative. They proposed a synaptic
caching algorithm based on this assumption. The proposed
algorithm can enhance energy efficiency manifold by precisely
balancing labile forms of synaptic plasticity with many stable
forms. However, energy is expressed by synaptic weights in these
studies. Whether synaptic plasticity can be fully quantified by
energy remains unclear.

Potential energy is stored in transmembrane ion gradients.
When postsynaptic neurons are stimulated by external stimuli
(such as synaptic input), the changes in gating state, channel
conductance, and current are driven by the energy stored in the
Na+ and K+ gradients, and no adenosine triphosphate (ATP) is
consumed in this process. These gradients and stored potential
energy are partially depleted and must be actively restored.
The change in postsynaptic potential energy indirectly reflects
the consumption or supply of metabolic energy because the
active recovery of potential energy needs ATP. In this study,
we express the postsynaptic potential energy as the integral
of the product of postsynaptic membrane potential and the
postsynaptic membrane current density on stimulation time.
The potential energy with membrane potential lower than a
certain threshold is called subthreshold potential energy. The
part with membrane potential greater than the threshold is called
suprathreshold potential energy. The baseline potential energy
is the result of downscaling the amplitude of the subthreshold
potential energy. The synaptic weights are expressed by a simple
linear relationship between the subthreshold potential energy
and the suprathreshold potential energy and are constrained by
the energy supply. The simulation results show that the model
can reproduce a series of classic synaptic plasticity experiments,
which indicate that our model is feasible.

RESULTS

Construction of Synaptic Plasticity Model
Our model uses postsynaptic potential energy to express the
change in synaptic weights. Postsynaptic potential energy P is the
integral of the product of postsynaptic membrane potential Vm

and postsynaptic membrane current density Im to stimulation
time t, that is, P =

∫
Vm Im dt. To explain more clearly how

the model works, we divide the operation process of the model
into four stages at each time step (Figure 1A). In stage (1), if no

stimulation occurs, the postsynaptic neuron is in a resting state.
At this time, postsynaptic potential energy P is the resting state
potential energy Prest . Taking the resting state potential energy
as the reference point of potential energy, let P = Prest = 0.
In stage (2), stimulation causes potential energy P to deviate
from the resting state potential energy. Potential energy P after
stimulation is separated into two parts. The first part is called
subthreshold potential energy Psub, and its membrane potential
Vm is less than the threshold potential Vth. The second part is
called suprathreshold potential energy Psup, and its membrane
potential Vm is greater than Vth. Thus, P = Psub + Psup. In stage
(3), the subthreshold potential energy is multiplied by a constant
Ar between zero and one, which is called the baseline coefficient,
and the baseline potential energy Pbas is obtained. Thus, Pbas =Ar

Psub. In stage (4), we assume that the change in synaptic weights
is proportional to the difference between the baseline potential
energy and the suprathreshold potential energy and then test the
rationality of this hypothesis by comparing it with a series of
synaptic plasticity experimental results. Therefore, the change in
synaptic weight 1W is expressed as follows:

1W = A(Pbas − Psup) = A(ArPsub − Psup), (1)

where A is a positive constant, which represents the linear
transformation between potential energy and synaptic weight
and is called the amplitude coefficient (equivalent to the learning
rate). The synaptic weights increase when the baseline potential
energy is greater than the suprathreshold potential energy
(Figure 1B). The synaptic weights decrease when the baseline
potential energy is less than the suprathreshold potential energy
(Figure 1C). The synaptic weights do not change when they are
the same.

We assume that the amplitude of postsynaptic potential
energy P cannot be greater than the maximum energy supply S
because the change in potential energy is constrained by energy
supply. Unless otherwise specified, the energy supply in this study
represents the maximum energy supply that can be provided.
We call the maximum potential energy Pmax where its amplitude
is the same as energy supply S, but the sign is consistent with
potential energy P. Then, Pmax = S sign (P), where sign is the sign
function, and |P| ≤ S and |P| ≤ |Pmax|. Given that the dynamic
characteristics of energy supply are unclear, we propose a simple
formula for calculating the energy supply with time

S(t) = Rte−t/τ + S0, (2)

where t is the time of stimulation, and τ is the time constant of
energy supply which is usually much larger than the membrane
time constant (Attwell and Laughlin, 2001). R is equivalent to the
total energy supply of synapses per unit time, which is a constant
and is called the rate of energy supply. S0 is the minimum energy
supply to maintain the normal function of neurons, which is a
constant greater than zero and equivalent to the energy supply
in the resting state. The formula represents the maximum energy
that can be provided at time t by multiplying Rt of the energy
supply linearly increasing with time and a damping factor Sdamp

= e−t/τ , which decreases exponentially with time. S= S0 at t = 0
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FIGURE 1 | Model schematic. The height of the bars represents the amplitude of different potential energy (P, Psub, Psup, etc.). P is the change value relative to Prest.

Because we assume that Prest is 0, we call P the potential energy. (A) Mathematical expression of synaptic plasticity Model; (B) calculation of synaptic weights when

the baseline potential energy is greater than the suprathreshold potential energy. In the resting state, the potential energy of the postsynaptic membrane is assumed to

be zero. The potential energy P of the postsynaptic membrane is lower than that of the resting state. Thus, P < Prest is negative. Subthreshold potential energy Psub
and suprathreshold potential energy Psup are negative. Baseline coefficient Ar is greater than zero, so baseline potential energy Pbas has the same sign as

subthreshold potential energy Psub and is also negative. Here, Pbas > Psup, and the synaptic weight increases; (C) calculation of synaptic weights when Pbas < Psup.

Similar to that in (B), the synaptic weight decreases at this time because Pbas < Psup; (D) calculation of synaptic weight when the amplitude of potential energy P

exceeds energy supply S at every time step. The amplitude of P is adjusted to the maximum potential energy Pmax , which is the same as S. Assuming that the

membrane potential is greater than the threshold potential, the amplitude of Psup is reduced. The amplitude of Psub is reduced if the membrane potential is less than

the threshold potential. Thus, Psub + Psup = P = Pmax .
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or t→∞, the energy supply is minimum, and the energy supply
is maximum at t = τ .

Some researches showed that the relationship between Na/K
pump current and intracellular sodium ion concentration and
ATP concentration can be expressed by the Hill equation
(Figure 4 in Despa and Bers, 2003; Figures 2, 10 in Glitsch,
2001). Therefore, many scholars take the intracellular sodium
ion concentration as the measurement of energy consumption
(Hasenstaub et al., 2010). The concentration of sodium ions
in stimulated neurons increases from the concentration in the
resting state to a peak (at the end of stimulation) and then returns
to the concentration in the resting state due to the action of
the ion pump. The changes in postsynaptic membrane potential
and ionic current caused by spikes in neurons also have the
characteristics of first rising and then returning to the original
position with time, which is usually described in the exponential
form of t e−t/τ (Gerstner, 1995; Bohte et al., 2002). Given this,
we also use this exponential form to describe the kinetics of
intracellular sodium ions as an expression of energy consumption
or energy supply. A similar exponential expression has also been
successfully applied in the constraints of metabolic energy on the
synaptic connection (Yuan et al., 2018).

Potential energy P is adjusted to Pmax if its amplitude
exceeds energy supply S (Figure 1D) so that its amplitude is
equal to energy supply S. This adjustment results in a decrease
in the amplitude of suprathreshold potential energy Psup or
subthreshold potential energy Psub so that their sum is equal
to Pmax. The subthreshold potential energy is adjusted, and the
suprathreshold potential energy remains unchanged when the
membrane potential at time t is smaller than the threshold
potential. The suprathreshold potential energy is adjusted, and
the subthreshold potential energy remains unchanged when the
membrane potential at time t is greater than the threshold
potential. The adjustment of subthreshold potential energy
causes the amplitude of baseline potential energy Pbas to change
in the same proportion (as shown in the next section). The
specific implementations of Equations (1) and (2) and Figure 1

are shown in the section Methods.

Determination of Model Parameters
In accordance with Equations (1) and (2), the model includes six
parameters, namely, amplitude coefficient A, baseline coefficient
Ar , threshold potential Vth, energy supply rate R, minimum
energy supply S0, and time constant of energy supply τ . For the
frequency-dependent pairing protocol used by Sjöström et al.
(2001), we chose the final parameter by trial and error. We
simulated and tested 27 sets of parameters R = 100, 150,200, τ

= 1, 2, 3 and S0= 10, 20, and 30, respectively. By comparing
the simulation results with the results of synaptic plasticity
experiment, the parameter set which is most consistent with the
experimental results was selected: A = 0.02, Ar = 0.2, Vth =

−60mV, R= 175 fJ/(µm2 s), τ = 2 s, S0 = 25 fJ/µm2. In the next
section, we introduce several classical experimental protocols of
synaptic plasticity and illustrate how our model reproduces these
different experimental results with the same set of parameters
through potential energy and energy supply.

Reproduction of the Experimental Results
of Homosynaptic Plasticity
Nineteen distal and proximal compartments (magenta,
Figure 2A) were simulated in the basal dendrites of the
L5 pyramidal neuron model. We followed two different
experimental protocols on homosynaptic plasticity to compare
our model with the experimental data. The first protocol was
the classical spike-timing-dependent plasticity (Markram et al.,
1997; Bi and Poo, 1998; Sjöström et al., 2001). Each distal
and proximal compartments were connected to one synapse.
Postsynaptic spikes were induced by the injection of 1 nA and
3ms current pulses into the soma of postsynaptic neurons.
The initial synaptic weights were set to 0.5. For the study of
spike frequency dependence, pairs of pre–post (Figure 2B) or
post–pre (Figure 2C) spikes separated by 10ms were repeated
five times at different frequencies of 5Hz up to 50Hz with steps
of 5Hz and for 0.1Hz. For the study of spike timing dependence
(Figure 3A), pairs of pre–post or post–pre spikes at 20Hz were
repeated five times for different time intervals 1t (1, 2.5, 5, 7.5,
10, 12.5, 15, 17.5, and 20ms). The computational results (weights
and potential energy) repeated five times were multiplied by a
scaling factor of 12 (60/5) to mimic 60 pairs of presynaptic and
postsynaptic spikes in the experimental protocols of Sjöström
et al. (2001). The study of Sjöström et al. (2001) focused on the
weight change as a function of the frequency for a fixed 1t in
this pairing protocol. The second protocol was synaptic afferent
where only presynaptic spikes were induced (Bliss and Lømo,
1973; Dudek and Bear, 1992). To test our model on a consistent
set of data, we took the measurements of Dudek and Bear (1992)
in this study because sufficient quantitative information can be
found in their study. Each distal and proximal compartments
were connected to one synapse. The activation of the synapse
connected to each compartment consisted of 20 pulses delivered
by a Poisson process at input frequencies ranging from 1 to 50Hz
(1, 3, 5, 10, 20, 30, 40, and 50Hz) (Figure 3B).

For the frequency-dependent pairing protocol without energy
supply constraints, the amplitude of postsynaptic potential
energy decreased with the increase in spike frequency (blue
solid lines; top; Figures 2B,C); this finding is consistent with
the calculation results of the relationship between metabolic
energy and frequency in neurons (Yi et al., 2016). With
the decrease in spike frequency, the time of stimulation
increased gradually. Increasing cases were found, where the
amplitude of postsynaptic potential energy without energy
constraint (named as unconstrained energy) exceeded that of
the maximum potential energy Pmax (blue shaded area under
the red dotted line; top; Figures 2B,C). The unconstrained
energy with amplitude greater than that of Pmax was adjusted
to the same as Pmax to obtain the postsynaptic potential
energy with energy supply constraints (named as constrained
energy) (black solid lines; top; Figures 2B,C). The amplitudes
of unconstrained energy in all postsynaptic compartments were
greater than the amplitudes of Pmaxwhen the frequency was
<10Hz. At this time, the amplitudes adjusted were the largest,
resulting in the overlap between the constrained energy and
Pmax. The adjustment of potential energy reduced the amplitude
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FIGURE 2 | Reproducing the pairing experiment of spike frequency dependence. (A) Action potentials in the soma are paired with either proximal or distal (magenta)

synaptic activations on a thin basal branch of the L5 pyramidal neuron. (B,C) Potential energy (top), the potential energy of baseline and suprathreshold (middle), and

weight (bottom) change as a function of pairing repetition frequency using pairings with a time delay 1t of +10ms (pre–post, B) and −10ms (post–pre, C). Dots with

errors (bottom) represent the experimental data from Sjöström et al. (2001). The lines (solid and dashed) and the shaded regions are the mean and standard deviation

(SD), respectively, and overall proximal and distal compartments (magenta) shown in (A). The black and blue lines (solid and dashed) represent the computational

results with and without energy supply constraints, respectively. For clarity, the SDs of the potential energy with constraints (black lines, top), baseline and

suprathreshold energy (middle), and weights without constraints (blue lines, bottom) are not shown.

of baseline potential energy Pbas and suprathreshold potential
energy Psup (from blue dashed and solid lines to the black
dashed and solid lines, respectively; middle; Figures 2B,C),
especially when the frequency was 0.1Hz. The weights without
energy constraints (blue solid lines; bottom; Figures 2B,C) were
adjusted to a biologically reasonable range due to the limitation
of energy supply. The adjusted synaptic weights were in good
agreement with the experimental data (black solid lines; bottom;
Figures 2B,C).

For the time-dependent pairing protocol (Figure 3A), the
stimulation time of different pairing time intervals is the same
because the spike frequency was fixed at 20Hz. Thus, the
maximum potential energy does not change with the time
interval (red dashed lines; top; Figure 3A). Similar to the analysis
in the previous section, the unconstrained energy with amplitude
greater than Pmax was adjusted the same as Pmax. The amplitude
of constrained energy (black solid lines; top; Figure 3A) was
smaller than that of the unconstrained energy (blue solid lines;
top; Figure 3A). These adjustments led to the corresponding
changes in the baseline potential energy and suprathreshold
potential energy (middle; Figure 3A) and made the synaptic
plasticity constrained by energy supply more consistent with the
experimental results than that without energy supply constraint
(bottom; Figure 3A).

In the synaptic afferent protocol (Figure 3B), increasing cases
were found, where the amplitude of postsynaptic potential
energy without energy constraint exceeded that of Pmax, when
the input frequency was <5Hz. The adjustment of this
unconstrained energy to themaximumpotential energy led to the
gradual approaching and overlapping of the constrained energy
and the maximum potential energy (top; Figure 3B). If the
amplitude of unconstrained energy is less than that of maximum
potential energy, the constrained and unconstrained variables
(i.e., potential energy, baseline and suprathreshold potential
energy, and weights) should overlap because it is unnecessary
to adjust the potential energy. However, the constrained and
unconstrained variables did not overlap when the frequency
was >5Hz although the amplitude of unconstrained energy
(blue solid lines; top; Figure 3B) was less than that of the
maximum potential energy (red dashed lines; top; Figure 3B).
This phenomenon was because all the calculation results in
this study were the values at the end of stimulation. However,
the adjustment of potential energy was conducted at every
moment from the beginning to the end of stimulation (section
Methods). These results indicated that before the end of
stimulation, the unconstrained energy was adjusted several
times because the amplitude exceeded that of the maximum
potential energy. During the stimulation, the main adjustment
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FIGURE 3 | Reproducing the time-dependent pairing and synaptic afferent

experiments. The lines (solid and dashed) and the shaded regions are the

mean and SD, respectively, and overall proximal and distal compartments

(magenta) shown in Figure 2A. The black and blue lines (solid and dashed)

represent the computational results with and without energy supply

constraints, respectively; (A) potential energy (top), the potential energy of

baseline and suprathreshold (middle), and weight (bottom) change for different

time intervals 1t between pre- and postsynaptic firing using 60 pre–post pairs

at 20Hz. Dots with errors (bottom) represent the experimental data from

Sjöström et al. (2001); (B) potential energy (top), the potential energy of

baseline and suprathreshold (middle), and weight (bottom) change for the

synaptic afferent protocol. Dots with errors (bottom) represent the

experimental data from Dudek and Bear (1992).

was reflected in the suprathreshold potential energy if the input
frequency was >5Hz. However, the baseline potential energy
was mainly adjusted if the input frequency was <5Hz (middle,
Figure 3B). The computational results showed that our model
can quantitatively reproduce the results of the synaptic afferent
experiment (bottom, Figure 3B).

Reproduction of Mexican Cap-Like
Heterosynaptic Long-Term Depression
Heterosynaptic plasticity can be induced at synapses that
are inactive during the induction of homosynaptic plasticity
(Chistiakova et al., 2015; Zenke et al., 2017). High-frequency
afferent tetanization induces a Mexican hat-like profile of
response amplitude changes: Homosynaptic long-term
potentiation (LTP) at stimulated inputs is surrounded by
heterosynaptic long-term depression (LTD) (White et al., 1990;
Royer and Paré, 2003). Each compartment on the thin basal
branch of the L5 pyramidal neuron model is connected to
two synapses. The initial synaptic weights were set to 0.5. To
reproduce the heterosynaptic LTD, we used a similar protocol to
that of Royer and Paré (2003). Homosynaptic LTP was induced

with high-frequency stimuli (HFS) at the synapses connected
to each distal or proximal compartment. HFS consisted of four
series of 10 trains separated by 0.3 s, where each train consisted
of 10 shocks (Poisson process) at 100Hz. Each basal dendrite was
divided into seven sites to compare with the experimental results.
Site 0 was a compartment corresponding to homosynaptic LTP
(magenta dots; Figure 4). Other compartments connected by
heterosynapses were divided into six sites in accordance with the
distance from site 0 (cyan dots; Figure 4). The value in each site
(such as potential energy, weight, etc.) was the average for the
values of all compartments in the site.

Homosynaptic LTP was induced in the synapses at the
stimulation site, and heterosynaptic LTD (bottom, Figures 4B,D)
occurred in the non-activated synapses of the same branch
when HFS was performed at the proximal (Figure 4A) or distal
(Figure 4C) in a thin branch. The statistical results for proximal
and distal stimulation in all basal branches (Figure 4E) showed
that the heterosynaptic LTD decreased with the increase in
distance from the stimulus site whereas homosynaptic LTP
was induced. This Mexican hat-like heterosynaptic plasticity
was in good agreement with the experimental results (bottom,
Figure 4F). For heterosynaptic sites (sites 1–6), the amplitudes
of unconstrained energy were always lower than that of the
maximum potential energy. Therefore, the maximum potential
energy did not have a constraining effect, which results in the
overlap of constrained and unconstrained potential energy (top;
Figures 4B,D,F). The homosynaptic LTP increases unlimitedly
if it was not constrained by energy. This condition was because
the unconstrained energy with amplitude greater than the
maximum potential energy was not adjusted, and the difference
between the baseline and suprathreshold potential energy was
extremely large (middle; Figures 4B,D,F). The energy constraint
made the postsynaptic potential energy equal to the maximum
potential energy, thereby reducing the difference between the
baseline and suprathreshold potential energy and controlling the
homosynaptic LTP in a biologically reasonable range (bottom;
Figures 4B,D,F). Although the sites of hetero LTD were more
than that of homosynaptic LTP, the amplitude of homosynaptic
LTP was larger than that of heterosynaptic LTD by comparing
homosynaptic LTP and heterosynaptic LTD. As shown in the top
panel of Figures 4B,D,F, the difference in themaximumpotential
energy was due to the different signs of the corresponding
potential energy, and their energy supply was the same.

DISCUSSION

We presented a computational model of synaptic plasticity
completely determined by energy and established a simple
quantitative relationship between synaptic plasticity and
postsynaptic potential energy. The synaptic weight is directly
proportional to the difference between the baseline and
suprathreshold potential energy and is constrained by the
maximum energy supply. Considering that the dynamic
characteristics of energy supply are unclear, we proposed a
simple dynamic equation of energy supply and provided the
upper limit of the amplitude of postsynaptic potential energy.
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FIGURE 4 | Reproducing a Mexican hat-like heterosynaptic LTD. The black and blue lines (solid and dashed) represent the computational results with and without

energy supply constraints, respectively; (A,B) schematic (A) of homosynaptic (magenta) and heterosynaptic (cyan) connected sites on the branch and the

corresponding computational results (B) when stimulating the proximal synapses of a dendrite branch; (C,D) same as (A,B), but for distal stimulation; (E,F) all

stimulated sites (E) and the corresponding computational results (F). The lines (solid and dashed) and the shaded regions are the mean and SD, respectively, and

overall proximal and distal compartments (magenta) shown in (E). Dot line with errors (bottom, F) represents the experimental data from Royer and Paré (2003). For

clarity, the SDs of the potential energy with constraints (black lines, top), baseline and suprathreshold energy (middle), and weights without constraints (blue lines,

bottom) are not shown.

The constraint of energy supply improves the performance
of synaptic plasticity and avoids setting the hard boundary of
synaptic weights. In the classical frequency-dependent pairing
protocol, six parameters of the model were determined by trial

and error. With such a set of parameters, our model reproduced
several experimental results of homosynaptic plasticity and the
Mexican hat-like heterosynaptic LTD, showing that our model
can unify the homo- and heterosynaptic plasticity.
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Quantitative Relationship Between
Synaptic Plasticity and Metabolic Energy
The absolute value of potential energy can be regarded as the
metabolic energy consumed because it restores postsynaptic
potential energy to the resting state. Our model assumes that
the synaptic weight is proportional to the difference between the
baseline and suprathreshold potential energy and is constrained
by the maximum energy supply. The model can reproduce
a series of experimental results of homo- and heterosynaptic
plasticity, which shows that our hypothesis is feasible. Can
metabolic energy replace potential energy to express this linear
relationship? If the potential energy, baseline, and suprathreshold
potential energy are all negative, the absolute value of the
baseline potential energy is called the baseline metabolic energy.
The absolute value of the suprathreshold potential energy is
called the suprathreshold metabolic energy. If the baseline or
suprathreshold potential energy is a constant that does not
change with time, then Li and van Rossum’s (2020) hypothesis
that metabolic energy is directly proportional to the change
in synaptic weight is correct. The linear relationship between
synaptic weights andmetabolic energy is only valid in some cases.

Interaction Mechanism Between Hebbian
and Homeostatic Synaptic Plasticity
At present, the biological significance of Hebbian synaptic
plasticity (positive feedback) and homeostatic synaptic plasticity
(negative feedback) remains controversial. Specifically, how these
opposing forms of plasticity that share common downstream
mechanisms work in the same networks, neurons, and synapses
remain unclear (Turrigiano et al., 1998; Feldman, 2002;
Turrigiano and Nelson, 2004; Swanwick et al., 2006; Rannals
and Kapur, 2011). In recent years, these conditions have been
discussed extensively by leading experts in the field (Vitureira
and Goda, 2013; Fox and Stryker, 2017; Keck et al., 2017; Yee
et al., 2017). One view is that homeostatic plasticity operates on
a long time scale and does not interfere with synaptic changes
induced by Hebbian plasticity (Turrigiano, 2012; Tononi and
Cirelli, 2014; Hengen et al., 2016). Another view is that Hebbian
and homeostatic synaptic mechanisms may be parallel; thus, they
can interfere with each other in the same synaptic subset (Desai
et al., 2002; Kim and Tsien, 2008; Keck et al., 2011; Vlachos
et al., 2013; Frank, 2014; Li et al., 2014). Based on observing the
existence of fast and input-specific homeostatic mechanisms, a
signal pathway-based model was proposed to adjust the balance
between Hebbian and homeostatic synaptic plasticity. The model
was used to explain the interaction mechanism between Hebbian
and homeostatic plasticity on the same time scale (Galanis and
Vlachos, 2020).

Our model can integrate the two different viewpoints and
give a unified explanation. The homeostatic synaptic plasticity
at different time scales coexists. First, we believe that the
homeostatic plasticity operating on a long time scale is
caused by heterosynaptic plasticity. Our simulation showed
that the amplitude of heterosynaptic LTD is extremely small,
especially under high-frequency tetanic stimulation (bottom;
Figures 4B,D,F). This condition indicates that the changes in

heterosynaptic plasticity caused by normal neural activities are
extremely small or difficult to confirm under the Hebbian
time scale. Experiencing a longer stimulation than the Hebbian
time scale is necessary before these changes can be evident.
This heterosynaptic plasticity accumulated over a long period
becomes homeostatic plasticity on a long time scale. Second,
homeostatic synaptic plasticity on the same time scale as Hebbian
synaptic plasticity is caused by the constraint of energy supply.
The synaptic strength does not increase continuously under
high-frequency stimulation nor does it decrease unlimitedly
under low-frequency stimulation due to the constrained energy
(bottom; Figures 2, 3B). On the contrary, the amplitude of
synaptic enhancement or inhibition is reduced to match the
energy supply because the energy supply gradually decreases after
the time of stimulation is greater than its time constant (Equation
2). The final result is a homeostatic synaptic plasticity parallel to
the Hebbian time scale. We propose a unified mechanism for the
interaction between Hebbian and homeostatic synaptic plasticity
based on the above analysis. The homeostatic homo- and
heterosynaptic plasticity coexist with homo- and heterosynaptic
plasticity. The time scale of homeostatic homosynaptic plasticity
is the same as that of homosynaptic plasticity (i.e., Hebbian
synaptic plasticity), which is rapid and input-specific and is
caused by the limitation of energy supply. The homeostatic
heterosynaptic plasticity has a long time scale, which is caused
by the long-term accumulation of heterosynaptic plasticity.
Although we do not fully understand the molecular mechanism
of heterosynaptic plasticity and energy supply and the actual
energy supply dynamics, we believe that the analysis of this
mechanism from the cellular level is still valuable.

Limitations of Our Approach
First, our synaptic plasticity model can reproduce a series
of classical synaptic plasticity experiments using a detailed
biophysical model of a single pyramidal neuron. Although the
feasibility of the model can be confirmed, further examining
the consistency between the model and the experimental results
under many stimulation protocols is necessary. Second, in
our model parameters, the threshold potential Vm of −60mV
corresponds to the leakage potential EL (section Methods) in
the biophysical model of neurons. The baseline coefficient Ar

of 0.2 indicates that the baseline potential energy is one-fifth of
the subthreshold potential energy. Whether the two parameters
are universal for different neuron models and their biophysical
significance remains unclear. Third, the proposed dynamic
equation of energy supply (Equation 2) is not supported by
experimental data. Can the equation be used as a theoretical
prediction to guide future experiments? Can different dynamic
equations supported by experiments achieve the same effect of
energy constraint in our model? These questions are worthy
of further exploration. Finally, the interaction between Hebbian
and homeostatic plasticity for large-scale neural networks has an
important influence on the learning andmemory ability of neural
networks. We did not study the validity and scalability of the
model in the neural network environment, especially in large-
scale neural networks, which is an important direction of our
future work.
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METHODS

Model of Neuron and Synapse
All simulations in this study were conducted on Brian 2 neuron
simulator in Python (Goodman and Brette, 2009). We used
the model and parameters of the biophysical neurons and
synapses developed by Bono and Clopath (2017) on Brian 2.
The implementation of the pyramidal neuron and synaptic
model completely adopted the codes posted by Bono and
Clapath on ModelDB (https://senselab.med.yale.edu/modeldb/).
Given that L5 and L2/3 pyramidal neuron models are found to
have similar results, we only conducted simulation studies on
synaptic plasticity in L5 pyramidal neurons (Bono and Clopath,
2017). L5 pyramidal neurons are composed of a spherical soma,
an axon, and many dendrite branches, with a total of 1,181
compartments. The leakage potential EL and resting potential of
each compartment are −60 and −69mV, respectively. Following
codes of the neuron and synaptic model of Bono and Clopath
(https://senselab.med.yale.edu/modeldb/), we can obtain the
membrane potential Vm and membrane current density Im of
each compartment under any stimulation protocol. The unit of
membrane potential is mV, and the unit of membrane current
density is ampere/meter2, abbreviated as A/m2. We chose the
unit of membrane current density as pA/µm2 equivalent to A/m2

because the geometric size of neurons in Brian 2 is usually
expressed in µm.

Synaptic Plasticity
The variables in Brian 2 simulator are usually expressed and
calculated in the form of differential equations. Thus, our
synaptic plasticity model needs to be realized in the form of
differential equations.

The energy supply (Equation 2) is calculated using two
differential equations. The differential equation of exponential
decay factor Sdamp = e−t/τ is expressed as dSdamp/dt = –Sdamp/τ
with an initial value of one. The part of energy supply that
increases linearly with time, Slin = R t, is expressed as dSlin/dt
= R, and the initial value is zero. Therefore, the energy supply of
t is S= Sdamp Slin+ S0.

Postsynaptic potential energy P is expressed as the integration
of postsynaptic unit membrane power to time and is constrained
by energy supply. The differential expression is as follows:

dP/dt = VmImsign(S− |P|), (3)

where sign (·) is a symbolic function. The value of the function is
−1 when the parameter is negative and is 1 when the parameter
is positive. The value of this function is 0 when it is equal to 0.
The unit of P is fJ/µm2, that is, 10−15 J/µm2, and the initial value
is 0. The unit of S and S0 is the same as that of P, and the unit of
R is fJ/(µm2 s).

Following the definition and considering the limitation of
energy supply, the differential forms of baseline potential energy
and suprathreshold potential energy are expressed in Vm and Im
as follows:

dPbas/dt = ArVmImΘ(Vth − Vm)sign(S− |P|), (4)

dPsup/dt = VmImΘ(Vm − Vth)sign(S− |P|), (5)

where Θ(·) is the Heaviside step function. The function value
is zero when the parameter is negative; otherwise, it is one. The
initial values of baseline potential energy Pbasand suprathreshold
potential energy Psup are zero.

After substituting Equations (4) and (5) into Equation (1), the
differential form of synaptic weights can be expressed completely
as follows:

dW/dt = AVmImΦ(Vm − Vth)sign(S− |P|), (6)

where Φ(Vm – Vth) denotes that if Vm < Vth, then Φ(Vm – Vth)
= Ar , otherwise Φ(Vm – Vth)=−1.

The pseudocodes of our synaptic plasticity model is described
in Python as follows:
######################################################
###### Codes of parameter setting and variable initialization for
synaptic plasticity model
if “data from Sjöström”: # in fig2b and fig3a

Ascale = 60/5
else:

Ascale = 1
A= 0.02 # amplitude coefficient
Ar = 0.2 # baseline coefficient
Vth =−60 ∗mV # threshold potential
R= 175 # dimensionless-energy-supply rate
τ = 2 ∗second # time constant of energy supply
S0 = 25 # dimensionless-minimum-energy supply
W = 0.5 # initial weights of all synapses with energy
supply constraints
Sdamp = 1 # initial Sdamp of all synapses
Slin = 0 # initial Slin of all synapses
P = 0, Pbas = 0, Psup = 0 # initial P, Pbas, and Psup of all synapses
with energy supply constraints
W’ = 0.5 # initial weights of all synapses without energy
supply constraints
P’ = 0, P’bas = 0, P’sup = 0 # initial P, Pbas, and Psup of all synapses
without energy supply constraints
###### The main codes of our model
dSdamp/dt= -Ascale

∗Sdamp/τ # differential form of equation Sdamp

= e−t/τ

dSlin/dt = Ascale
∗R/second # differential form of equation Slin =

R t
dP/dt = Ascale

∗ sign(Sdamp
∗Slin+S0-abs(P))∗ Vm

∗Im1

/mV /second
# codes of Equation 3, dP/dt = Vm Imsign(S – |P|), Im1 is
dimensionless Im

dW/dt = Ascale
∗ sign(Sdamp

∗Slin+S0-abs(P))∗A∗(Ar
∗(Vm <Vth) -

(Vm≥Vth))
∗Vm

∗Im1 /mV /mV /second
# codes of Equation 6, dW/dt = A Vm Im Φ(Vm – Vth)
sign(S – |P|)

dPbas/dt = Ascale
∗ sign(Sdamp

∗Slin+S0-abs(P))∗ Ar
∗(Vm <Vth)

∗

Vm
∗Im1 /mV /mV /second

# codes of Equation 4, dPbas /dt = Ar Vm Im Θ(Vth – Vm)
sign(S – |P|)
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dPsup/dt = Ascale
∗ sign(Sdamp

∗Slin+S0-abs(P))∗ (Vm≥Vth)
∗

Vm
∗Im1 /mV /mV /second

# codes of Equation 5, dPsup /dt = Vm Im Θ(Vm – Vth)
sign(S – |P|)

dP′/dt = Ascale
∗Vm

∗Im1 /mV /second
# codes of Equation 3 without energy supply constraints,
dP/dt = Vm Im

dW′/dt = Ascale
∗A∗(Ar

∗(Vm <Vth) - (Vm≥Vth))
∗Vm

∗Im1 /mV
/mV /second

# codes of Equation 6 without energy supply constraints,
dW′/dt = A Vm Im Φ(Vm – Vth)

dP′
sub

/dt = Ascale
∗ Ar

∗(Vm <Vth)
∗ Vm

∗Im1 /mV /mV /second
# codes of Equation 4 without energy supply constraints,
dP′

bas
/dt = Ar Vm Im Θ(Vth – Vm)

dP′sup/dt = Ascale
∗ (Vm≥Vth)

∗ Vm
∗Im1 /mV /mV /second

# codes of Equation 4 without energy supply constraints,
dP’sup /dt = Vm Im Θ(Vm – Vth)

######################################################
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