
INTRODUCTION

It becomes a major public health issue that, as the elderly popula-
tion grows, the number of AD patients has been correlatively and 
rapidly increased over the world for last several decades [1, 2]. AD 
is known as a typical neurodegenerative disorder of dementia and 
is characterized by progressive cognitive decline and memory loss 
[1-3]. There are several plausible causes of AD pathology includ-
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ing deposition of β-amyloid plaques (Aβ), hyperphosphorylation 
of tau protein, inflammation, abnormal metal homeostasis, mito-
chondrial dysfunction, disruption in energetic and neurotrans-
mitter pathways, oxidative stress and genetic mutations [1, 4-8]. 
However, the exact etiology of AD has not been fully identified yet 
except familial cases. AD is diagnosed by examinations of psychi-
atric history, family history, physical and neurological symptoms [1, 
9]. The sensitivity and specificity of clinical diagnosis methods are 
quite low and only effective in patients with significant cognitive 
decline. Moreover, there is no single and simple test for AD diag-
nosis. 

Currently, the pathological examination of postmortem brain 
is widely accepted as the final diagnostic method of AD by con-
firming senile plaques and fibrous Tau tangles using a staining 
method such as Gallyas-Braak (GB) after the patient's death [10]. 
The identification of highly sensitive biomarkers for diagnosing 
AD at the early stage is critical for the development of therapeutic 
drug or strategy to treat AD. As we have learned from previous 
studies that therapeutic approaches for clearing Aβ has a 99.6% 
failure rate, now it is a common sense not only novel effective drug 
targets need to be discovered but also treatments may have to be 
initiated before the onset of the AD. In this context, metabolomics 
technology can be a useful tool to detect altered metabolites that 
are closely associated with AD pathogenesis. Metabolomics is 
one of the ‘omics’ technologies that can analyze the repertoire of 
small molecules (<1500 Da) present in cells, tissue, urine, blood, 
plasma, serum and other specimens [11, 12]. Indeed, metabolo-
mics approach has been used to explore metabolic changes and 
to monitor disease progression of AD [13-17]. In general, the 
postmortem brain tissue represents a “Gold Standard” to diagnose 
the pathological conditions of AD. The postmortem brain-based 
metabolomics is advantageous over other samples such as urine, 
plasma, and serum because it can identify de novo diagnostic and 
drug targets that are linked to specific metabolism pathway in the 
AD pathogenesis [18, 19].

In this study we aimed to investigate what metabolome signa-
tures are affected in the cortex of postmortem brain tissues from 
AD patients and control subjects by ultra high performance liq-
uid chromatography coupled with linear ion trap-Orbitrap mass 
spectrometer (UPLC-LTQ–Orbitrap-MS). We further conducted 
multivariate analysis approaches to determine changes of me-
tabolite levels in the brain tissue and to identify potential/possible 
biomarkers for the diagnosis and treatment of AD. 

MATERIALS AND METHODS

Chemicals and reagents

All chemicals, reagents and solvents were analytical reagent 
grade unless otherwise stated. Deionized water for aqueous solu-
tions was prepared by Milli-Q purification system (Millipore, 
Bedford, MA, USA). HPLC-grade acetonitrile (ACN) and ethanol 
were purchased from Burdick & Jackson (Muskegon, MI, USA). 
Formic acid, ammonium acetate and phosphate-buffered saline 
(PBS) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Homogenization of brain sample was conducted by TissueLyser 
from Qiagen (West Sussex, UK). 

Human brain samples

Neuropathological processing of control and AD postmortem 
brain samples was performed as previously established by the 
Boston University Alzheimer’s Disease Center (BUADC) [20]. The 
postmortem brain tissues were selected based on the Braak stage 
score, a gold standard pathological criteria. Severe AD group was 
selected from above 5 Braak stage score. The superior temporal 
cortex (mainly gray matter) was obtained from frozen brain sam-
ples. All brains were donated with consent of the next of kin after 
death. Institutional review board approval was obtained through 
the BUADC. The study was performed in accordance with insti-
tutional regulatory guidelines and principles of human subject 
protection in the Declaration of Helsinki. Detailed information of 
the brain tissues is described in Supplementary Table 1.

Sample preparation

One hundred milligram of frozen postmortem brain tissue 
(the superior temporal cortex mainly containing the gray matter) 
samples were precisely weighed, and 500 μl of degassed extraction 
solvent (ethanol/10 mM phosphate buffer saline; 85:15, v/v) were 
added into 2 mL Safe-Lock tube (Eppendorf, Germany) contain-
ing ceramic beads. Degassed extraction solvent was used to avoid 
oxidizing oxidize thiols or antioxidants [27]. The samples were ho-
mogenized using a TissueLyser at 25 Hz for 5 min. Homogenates 
were centrifuged at 12,000g, 4℃ for 10 min, subsequently, a 100 μl 
of the supernatant was transferred into another test tube and evap-
orate to dryness under gentle nitrogen stream. The residue was 
reconstituted with 100 μl of 0.1% formic acid in 5% ACN solution. 
After reconstitution, the 5 μl (RPC separation mode)/3 μl (HILIC 
separation mode) of samples were analyzed by UPLC-LTQ–
Orbitrap MS. The whole schematic view of human postmortem 
brain tissue sample preparation step is described in Suppl. Fig 1. In 
order to validate system stability and repeatability, a pooled quality 
control (QC) sample was prepared by mixing equal amounts of 



378 www.enjournal.org https://doi.org/10.5607/en.2019.28.3.376

Yoon Hwan Kim, et al.

samples. To ensure system stability, 10 QC samples were injected 
prior to analysis and solvent blank and QC sample was injected 
every 9 sample injections for verifying system reproducibility dur-
ing sample sequence.

Metabolomic profiling by LTQ–Orbitrap MS

Metabolite profiling was performed on Ultimate 3000 UH-
PLC system from Thermo Fisher Scientific (San Jose, CA, USA) 
coupled with an LTQ-OrbitrapVelos Pro hybrid mass spectrom-
eter from Thermo Fisher Scientific equipped with an electrospray 
source operating at either positive (ESI+) or negative ionization 
mode (ESI−). MS operation parameters were as follows: spray 
voltage, 3.5~5 kV; sheath gas, 5~45 (arbitrary units); auxiliary gas, 
1 (arbitrary units); sweep gas, 1 (arbitrary units); and capillary 
temperature, 320℃. Each sample was analyzed in FTMS full scan 
mode at a resolving power of 100,000 and the m/z ranges were 
set to 50~1200 in centroid mode. The system was controlled by 
Xcalibur software v2.2, Tune Plus 2.7, and Chromeleon MS Link 
software v6.80 from Thermo Fisher Scientific. The data analysis 
was achieved using Xcalibur software v2.2 and SIEVE software 
v2.1 from Thermo Fisher Scientific.

Reversed-phase separation was performed on an AcquityTM 
UPLC BEH C18 column (2.1 mm×100 mm, 1.7 μm, Waters, 
Milford, MA, USA) UPLC analytical column. The mobile phase 
solvents were 95% water, 5% ACN and 0.1% formic acid (mobile 
phase A) and 95% ACN, 5% water and 0.1% formic acid (mobile 
phase B). The elution gradient was as follows: 100% mobile phase 
A from 0 to 3 min; linear increase to 50% mobile phase B from 3 
to 10 min; linear increase of mobile phase B from 50% to 90% 10 
to 12 min; maintain of mobile phase B for 90% 12 to 12.5min; re-
equilibration with 100% mobile phase A from 12.5 to 14 min. The 
column was maintained at 40℃; total run time was 14 min. A 5 μl 
aliquot of each sample was injected for analysis. The samples were 
kept at 4℃ in an autosampler during the analysis.

HILIC separation was performed on an AcquityTM UPLC BEH 
HILIC C18 column (2.1 mm×100 mm, 1.7 μm, Waters, Milford, 
MA, USA) UPLC analytical column. The mobile phase solvents 
were 5% water, 95% ACN and 10mM ammonium acetate (mobile 
phase A) and 50% ACN, 50% water and 10mM ammonium ac-
etate (mobile phase B). The elution gradient was as follows: 100% 
mobile phase A from 0 to 2 min; linear increase to 30% mobile 
phase B from 2 to 8 min; linear increase of mobile phase B from 
30% to 50% 8 to 12 min; re-equilibration with 100% mobile phase 
A from 13 to 22 min. The column was maintained at 40℃; total 
run time was 22 min. A 3 μl aliquot of each sample was injected for 
analysis. The samples were kept at 4℃ in an autosampler during 
the entire analysis. A pooled quality control (QC) sample which 

made by mixing equal amounts of samples and blank solvent used 
for checking system stability and sample carryover.

Data processing and analysis

The data processing procedure was as follows. The raw data were 
analyzed by Thermo Scientific SIEVE software v2.1 with “Small 
molecule”, “Chromatographic Alignment and Framing”, and “Non-
differential single class analysis” options. All data was scaled by the 
Pareto (Par) scaling method before analysis [21].

Multivariate analysis (MVA) was performed using SIMCA-P 
software v14.0+ from Umetrics (Umeå, Sweden) for the principal 
component analysis (PCA) and orthogonal projection to latent 
structures-discriminant analysis (OPLS-DA). Pathway impact 
analysis and heatmap visualization were performed by Metabo-
analyst 3.0 (Montréal, QC, Canada), a web-based metabolomics 
data processing tool and visualization metabolomics. The pathway 
mapping and chemical similarity analysis were generated by R ver-
sion 3.2.2, MetaMapp and CytoScape 3.4.0 (Boston, MA, USA) [22, 
23]. SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and Origin were used 
for statistical analysis and fitting.

Statistical analysis such as multivariate analysis was conducted 
to identify metabolites that showed differences between AD 
group and control group. The variable importance in projection 
(VIP) value>1 was considered as significant metabolites. Statisti-
cal significance was analyzed with SPSS 22.0 (SPSS Inc., Chicago, 
IL, USA). Mann-Whitney U-test was performed for determining 
two-group comparison. Differences with p-value<0.05 were con-
sidered statistically significant. Fold change was measured using 
the variation of the measured value.

After finding potential discriminative ion by VIP value and p-
value, the characteristic masses were submitted to the web server 
MassTRIX (Mass TRanslator into Pathways) using Homo sapi-
ens  (human) as reference species with a maximum error of 0.05 
Da through the database “KEGG/HMDB/LipidMaps without 
isotopes” [24]. Then KEGG mapper-Search & Color Pathway 
tool was used for mapping the annotation result on the KEGG 
pathway database [25]. Pathway impact analysis was conducted by 
web-based metabolomics data processing tool MetaboAnalyst 3.0 
(Montréal, QC, Canada). In order to understand the correlation 
between metabolites which not appearing in pathway maps, the 
biochemical similarity between metabolites were analyzed using 
MetaMapp and Cytoscape [22, 23, 26]. 
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RESULTS

Brain metabolome signatures in the postmortem brain of 

AD patients

In order to discover disease-specific metabolites and to iden-
tify biomarkers of AD, we conducted an untargeted metabolite 
profiling workflow in this study (Suppl. Fig. 2).The QC samples 
were analyzed to evaluate analytical drift after the performance 
of pre-acquisition normalization. The RSD of the metabolite ions 
in all QC samples was less than 30%, indicating that the reproduc-
ibility of the analytical performance was sufficient for further 
metabolomics study [27, 28]. Also, all samples were evaluated by 
principal component analysis (PCA) score plot to visualize more 
specific data about analytical performance stability. A total of 13 
QC samples were analyzed during the entire analysis. The result 
showed that QC samples were tightly clustered on all separation 
mode except for RPC-negative mode (Fig. 1) [29]. To investigate 
whether the variation in the metabolic profile is altered in the post 
mortem brain of AD patients, all obtained data from four differ-
ent methods were analyzed using PCA plots. As we expected, both 
RPC-positive and negative mode showed apparently separated 
clusters of metabolites between AD patients and control subjects. 
But HILIC separation mode did not show clustering between AD 
patients and control subjects (Fig. 2). Subsequently, an additional 

discriminant analysis, orthogonal projection to latent structure-
discriminant analysis (OPLS-DA) modeling, was conducted for 
getting more information [30, 31].

Multivariate analysis (MVA) of brain metabolite profile

MVA was performed to obtain a list of variables from the varia-
tion of the metabolic profiles in the postmortem brain of AD 
patients and control subjects. All variables from four different 
analytical methods were separately analyzed using OPLS-DA 
model [30]. OPLS-DA model was applied to identify possible 
biomarker metabolites which can be used to distinguish AD from 
control groups. The supervised OPLS-DA model is shown in Fig. 
3. The results showed clearly separated categories for all models. 
An explained variance (R2Y) and predictability (Q2Y) was as fol-
low; RPC positive mode: 0.927, 0.752, RPC negative mode: 0.987, 
0.752, HILIC positive mode: 0.762, 0.119 and HILIC negative 
mode: 0.613, 0.119. The variable ions with higher VIP values had 
a greater impact on differential categorization in the model. The 
variable ions to be used for metabolic screening have been deter-
mined based on VIP value larger than 1 and p-value less than 0.05. 
A total 89 variables met this criteria (RPC positive mode: 59, RPC 
negative mode: 11, HILIC positive mode: 11 and HILIC negative 
mode: 2). Detailed information is shown in Suppl. Table 2.

Fig. 1. Unsupervised PCA-X 
analysis with QC samples. (a) 
RPC-Positive mode, (b) RPC-
Negative mode, (c)  HILIC-
Positive mode, and (d) HILIC-
Negative mode. QC samples 
were represented in black dot. 
Control subjects (blue dots); AD 
patients (red dot).
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Fig. 2.  Unsuper vised PCA-
X analysis showing that me-
tabolites are uncorrelated in the 
postmortem brain of AD (red) 
compared to control subjects 
(blue). (a) RPC-Positive mode, 
(b) RPC-Negative mode, (c) 
HILIC-Positive mode, and (d) 
HILIC-Negative mode. Control 
subjects (blue dots); AD patients 
(red dot).

Fig. 3. Supervised OPLS-DA 
analysis score plots showing that 
metabolites are differentially 
categorized in the postmortem 
brain of AD patients (red) com-
pared to control subjects (blue). 
(a) RPC-Positive mode, (b) RPC-
Negative mode, (c)  HILIC-
Positive mode, and (d) HILIC-
Negative mode.
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Metabolic pathway analysis and interpretation

Of the 86 variable ions which met screening criteria (VIP> 1 and 
p value <0.05), 62 variable ions were identified by the web server 
MassTRIX (Supple. Table 2) [24]. In order to better illustrate the 
difference in metabolite concentrations between AD and control, 
semi-identified metabolites were used for clustering and heatmap 
analysis as shown in Fig. 4. The metabolic clustering distribution 
can be divided into are A and area B. Metabolites in area A were 

significantly reduced in AD (n=25).On the contrary, most of the 
metabolites of area B were increased in AD (n=64).

MVA of the functional metabolite profile by OPLS-DA further 
verified that the metabolite concentration was changed in the 
post mortem brain of AD. To better understand how metabolome 
changes in the postmortem brain of AD were interrelated, we 
implemented the metabolic pathway analysis. The pathway im-
pact analysis was based on KEGG database and MetaboAnalyst 

Fig. 4. Heat map analysis visualizing that the levels of 89 metabolites are differentially regulated in the postmortem brain of AD patients compared to 
control subjects. The darker maroon color is, the higher is the concentration, whereas the darker blue color is, the lower is the concentration.
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3.0 for comprehensive metabolic data analysis, visualization, and 
interpretation [24, 32]. Altered metabolic pathways in the post 
mortem brain of AD were visualized in Fig. 5. The x-axis repre-
sents the pathway topology analysis and the y-axis represents the 
pathway enrichment analysis. The results of the pathway impact 
analysis are shown in Table 1. The pathway analysis identified 
that metabolic deregulations in AD pathogenesis were signifi-
cantly associated alanine, aspartate and glutamate metabolism, 
D-glutamine and D-glutamate metabolism, purine metabolism, 
and arginine and proline metabolism. Additionally, metabolic up/
down regulation in the postmortem brain of AD was marked on 
Homo sapiens metabolic pathway as shown in Fig. 6. Not only the 
pathway impact analysis does not reflect fold changes but also it is 
impossible to analyze metabolite signatures that have not yet been 
identified in the database. Since we aware of these problems, we 

performed additional chemical similarity analysis as shown in Fig. 
7 to confirm the correlation between additional metabolites. It is a 
statistical enrichment approach that is based on chemical similar-
ity. Taken together, the final selection of 9 metabolites was selected 
by considering VIP value, u-test p-value, pathway impact analysis, 
chemical similarity and examine with previous studies by other 
researchers. Overall, the pathway analysis indicated that the ala-
nine, aspartate and glutamate metabolism, and six metabolites (ci-
trate, alanine, argininosuccinate, 2-oxoglutarate and glucosamine 
6-phosphate) were increased while N-acetyl-aspartate (NAA), N-
acetyl-aspartyl-glutamate (NAAG) and glutamate were decreased 
(Fig. 8).

Mass spectrometer-based non-target metabolomic analysis of-
ten includes new metabolites that have not been reported for the 
enzyme reaction yet. Accordingly, network analysis which relies on 
current biochemical databases does not properly visualize the rela-
tionship between new metabolites that are not structurally identi-
fied. In order to overcome this problem, the biochemical similarity 
between AD-associated metabolites was analyzed and visualized 
using MetaMapp and Cytoscape [22, 23] (Fig. 7). MetaMapp ex-
hibited the correlation between the AD-associated metabolites 
based on their chemical structure and functional groups classified 
by the PubChem [33]. Importantly, there were metabolite signa-
tures which met appropriate VIP, p-value, and fold-change criteria 
such as hypotaurine, lipo-AMP, myo-inositol, citrate, and neuros-
teroids. 

DISCUSSION

In the current study, we performed untargeted metabolite profil-
ing approach to specifically explorer the metabolic signatures in 
human postmortem brain tissues that is associated with AD. To 
gather the deeper insight of view about the AD pathogenesis in 
the brain, two (2) different ionization mode and chromatographic 
method were applied (ESI+, ESI-, RPC and HILIC). Meaningful 
metabolite profile fluctuations were identified by MVA and semi-
identified by its m/z values and retention time. As a result, we 

Fig. 5. Scatter plot of pathway impact analysis showing that amino acids 
metabolism is significantly changed in the postmortem brain of AD pa-
tients. Y axis represents p value.

Table 1. Pathway impact analysis shows that amino acid metabolisms are most significantly changed in the postmortem brain of AD patients

Total
Ex

pected
Hits Raw p log (p)

Holm ad
just

FDR Impact

Alanine, aspartate and glutamate metabolism 24 0.55 6 1.06E-05 11.5 0.000846 0.000846 0.23
Aminoacyl-tRNA biosynthesis 75 1.71 7 1.31E-03 6.63 0.104 0.0327 0.06
Arginine and proline metabolism 77 1.76 7 1.54E-03 6.48 0.12 0.0327 0.19
D-Glutamine and D-glutamate metabolism 11 0.25 3 1.64E-03 6.42 0.126 0.0327 0.11
Purine metabolism 92 2.1 6 1.69E-02 4.08 1 0.226 0.1

*Raw p<0.05 and pathway impact >0.05 was used as cutoff value. 
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identified metabolome profiles that are significantly altered in the 
frontal cortex of AD patients compared to control subjects. The 
metabolomic signatures have similarities or differences in com-
parison to the metabolomic profiles in previously reported studies 
[34-43].

For the first time, we discovered new metabolome profiles that 
were not previously known in the brain of AD while some of me-
tabolome profiles were consistent with the observation by other 
researchers. Notably, out study identified that hypotaurine is very 
significantly increased in the brain of AD patients. The elevation 
of hypotaurine in AD has not been reported and clarified in the 
previous studies yet. Hypotaurine is known an immediate precur-
sor of taurine. In astrocytes, hypotaurine and taurine act as partial 
agonist of GABA-A receptors [44]. The previous study discovered 
that hypotaurine-induced responses are mediated by glycine re-
ceptor activation in the substantia gelatinosa (SG) neurons [45]. 
Hypotaurine is enzymatically oxidized to yield taurine by hypo-
taurine dehydrogenase. Taurine can cross the blood brain barrier 
(BBB) and involves in a wide array of physiological phenomena 
including inhibitory neurotransmission, long-term potentiation 

in the striatum/hippocampus, and possible protection against 
glutamate excitotoxicity and prevention of epileptic seizures [46-
49]. Interestingly, recent studies on glioma have shown that hy-
potaurine interferes with hypoxia signaling, leading to malignant 
phenotypes [50, 51]. Hypotaurine acts as a competitive inhibitor 
to activate signals in prolyl hydroxylase domain-2 (PHD2), which 
regulates hypoxia signals. PHD2 activates the signal by converting 
proline and 2-oxoglutarate to 4-hydroxyproline and succinate [51]. 
In fact, we checked our metabolomic profiles and confirmed that 
succinate and 4-hydroxyproline were not detected, but a signifi-
cant increase in 2-oxoglutarate was observed in the brain of AD 
patients.

On the other hand, our finding on the variation of NAA, NAAG, 
glutamate, myo-inositol, cortisol, and amino acid metabolism in 
AD was consistent with the observation from previous studies. 
NAA is a biomarker of neuronal health, axonal viability and den-
sity [34]. The decrease in NAA and NAAG concentration in the 
brain of AD patients is correlated with the presence of nerve fiber 
entanglement [35]. In general, human and animal postmortem 
brain tissue homogenates include both pre- and post-synaptic 

Fig. 6. Significantly altered metabolisms in the postmortem brain of AD patients are marked on Homo sapiens’ metabolic pathways.
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structures, indicating that the quantity of metabolites including 
glutamate is determined from the most of intact intracellular 
compartments [52, 53]. At the moment, due to a limitation of 
methodology when we process the frozen human postmortem 
brain, it is quite difficult to distinguish the exact localization site 
of metabolites (for example, in pre-synapse versus post-synapse). 
In this context, development of a novel and advanced quantifica-
tion technology may facilitate the precise quantitation of brain 
tissue metabolites in various cellular compartments and cell types. 
In the current study, we analyzed the temporal cortex (gray mat-
ter) of postmortem brain and found the significant reduction of 
NAA, whereas other groups have previously shown no change or 
slight increase of NAA in the frontal cortex of AD postmortem 
brain [54, 55]. Otherwise, global metabolomics through the brain 
region mapping combined with LC-MS showed that the NAA 
level is elevated in the brain stem of animal model of inflamma-
tion [56]. We may propose two possible reasons of the inconsistent 
NAA level between other studies and our study. First, the different 

brain region may possess a different level of metabolite. Secondly, 
the species difference between human and rodents can be a criti-
cal factor for determining the variability of metabolite levels and 
signatures. Additionally, considering that drug treatments such 
as NMDA receptor antagonists or acetylcholinesterase inhibitors 
might affect the metabolome changes in the postmortem brains, 
lack of detailed medication history in AD patients and control 
subjects is possible limitations to interpret metabolome data in the 
current study.

NAA is a well-known reservoir of glutamate in neuronal tissues 
and it replenishes glutamate in response to dynamic neuronal 
signaling and stresses [36]. We found that NAA and NAAG levels 
were significantly decreased in the postmortem brain of AD. In 
contrast, we observed that myo-inositol is significantly increased 
in AD. Myo-inositol is a marker of gliosis or microglial activation. 
Therefore, increased myo-inositol concentration indicates the ac-
tivation of glial cell proliferation or microglial activation. Notably, 
microglial activation is known to be associated with formation 

Fig. 7. Network analysis (pathway mapping) presenting that amino acid metabolite signatures is most prominently changed in the postmortem brain of 
AD patients. Red circles : level up, blue circles: level down.
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of amyloid plaques in a transgenic mouse TgCRND8 model (ex-
pressing a mutant form of the amyloid precursor protein 695 with 
both the Swedish and Indiana mutations and developing extra-
cellular amyloid beta-oligomer deposits as early as 2~3 months)
[43]. Otherwise, network analysis (pathway mapping) indicated 
that specific metabolites related to hypotaurine and amino acid 
catabolism are significantly increased in the brain of AD patients 
compared to control subjects. Not only there was fluctuation of 
various amino acid levels such as alanine, proline, valine, tyrosine, 
threonine, citrate and alpha-glutarate, but also chemical similarity 
analysis revealed significant changes in metabolite signatures re-
lated to the amino acid metabolism and TCA cycle in the brain of 
AD patients (Fig. 9).

Amino acids are essential substrates in the body and they play 
an important role as regulators in many metabolic pathways [57]. 
In this context, dysregulation of amino acid metabolism could be 
a one of pathological markers of AD. Indeed, the fluctuation of 
glutamate and alanine and tyrosine are observed in AD brain tis-
sues. We observed that glutamate level was significantly decreased 
in AD as similar to NAA. Glutamate is the most abundant amino 
acid in the brain and acts as an excitatory neurotransmitter in the 
central nervous system of mammals. Glutamate plays an impor-
tant physiological role in processes such as brain development, 
learning, memory, sensory activity, and synaptic transmission. 
Accordingly, the reduced level of glutamate can be regarded as a 
pathological brain biomarker in AD [37-42]. During amino acid 

Fig. 8. The peak intensity of representative metabolites is significantly changed between AD patients (red) and control subjects(blue). (a) N-acetylaspar-
tate (NAA), (b) N-acetylaspartylglutamate (NAAG), (c) glutamate, (d) oxo-proline, (e) myo-Inositol, (f) acetylcholine, (g) cortisol, (h) alanine, and (i) hy-
potaurine. Significantly different from control at *p<0.05; **p<0.01;***p<0.001. Student unpaired t-test was used to determine the significant difference 
between control (N=9) and AD subjects (N=9).



386 www.enjournal.org https://doi.org/10.5607/en.2019.28.3.376

Yoon Hwan Kim, et al.

catabolism, nitrogen wastes such as ammonia are formed, which 
can adversely affect neuronal cells in the brain. In general, to pro-
duce energy in healthy cells, the carbon skeleton is used in the 
TCA cycle to produce carbon dioxide, and excess nitrogen is treat-
ed as a non-toxic element rather than ammonia. However, in case 
of stress conditions such as AD, when neurons cannot efficiently 
break down glucose and gain energy, they become dependent on 
amino acid catabolism for energy production. Depletion of amino 
acids in the cells or dysfunctions of metabolic pathway may trigger 
neuronal cell damage and death according to the progression of 
AD. Otherwise, ammonia released during continuous amino acid 
metabolism can directly cause the damage of neuronal cells. To 
prevent this event, astrocytes play a role to protect neuronal cells 
from ammonia by overexpressing glutamine synthetase [58]. In 
the present study, we observed an apparent disturbance of TCA 
cycle metabolism in the AD brain. Our data exhibited a marked 
decrease in glutamate level and an increase in 2-oxoglutarate level, 
which could be evidence of abnormal amino acid catabolism. De-
spite our study was derived from severe sporadic AD cases, a clear 
distinction of amino acid metabolism between AD and control 
subjects were appeared and coincided with the previous studies. 
Because we collected severe cases of AD based on the Braak stage 
criteria, it was indispensable to have the age variation among the 
subjects. Indeed, when we compared the average age of subjects, 
the difference of age was marginal between control (Average±SEM: 
81.56±4.09) and AD subjects (Average±SEM: 80.67±4.07). How-
ever, considering a fact that age and sex are important parameters 
influencing the metabolome signatures in serum and urine, the 

age difference of subjects should be considered for the future me-
tabolomics studies using the postmortem brain [59, 60]. 

In summary, we performed metabolomic approach combined 
with the high ranked pathway analysis and found that deregula-
tion of amino acid metabolism pathway is closely linked to the 
pathogenesis of AD. Accordingly, variations of brain amino acid 
metabolites could be useful diagnostic markers of AD. Moreover, 
modulation of amino acid metabolism may be a plausible thera-
peutic approach to AD.
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