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Abstract Finding new therapeutic targets of glomerulosclerosis treatment is an
ongoing quest. Due to a living environment of various stresses and pathological
stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative
potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus,
sufficient understanding of factors and underlying mechanisms of podocyte injury
facilitates the advancement of treating and prevention of glomerulosclerosis. The
clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney
functions progressing to glomerulosclerosis. Injury-induced changes in podocyte
physiology and function are actually not a simple passive process, but a complex
interaction of proteins that comprise the anatomical structure of podocytes at molec-
ular levels. This chapter lists several aspects of podocyte injuries along with potential
mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS
activation, micro-inflammation, immune disorder, and other factors. These aspects
are not technically separated items, but intertwined with each other in the pathogen-
esis of podocyte injuries.
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10.1 Introduction

10.1.1 The Structure and Physiology of Podocytes

The glomerular filtration membrane constituted by three components, porous
endothelial cells, glomerular basement membrane (GBM), and epithelial cells in
the GBM, which also called podocytes. Podocytes are highly differentiated epithe-
lial cells consist of three distinct parts: cell body, major processes, and foot processes
(FPs). Podocytes have a voluminous cell body, which is at the central position of the
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cell and lies in the urinary space. The cell body contains a nucleus, abundant endo-
plasmic reticulum, a well-developed Golgi system, lysosomes, and mitochondria.
The densely distributed organelles in the cell body suggest a high level of anabolic
and catabolic activity.Microtubules and intermediate filaments, such as vimentin and
desmin, are the dominated cytoskeleton components in cell body to accounts for the
unique shape of podocytes (Pavenstadt et al. 2003). From the cell body, podocytes
give rise to primary processes that reach to glomerular capillary, forming an affixation
by FPs.

Podocytes are polarized epithelial cells which contain a apical/luminal and a basal
cell membrane. The apical surface domain forms a few fingerlike protrusions which
bulge into Bowman’s space. The apical domain is negatively charged, which limits
the passage of albumin (also negatively charged) andmaintain the separation of adja-
cent podocytes by anion charge. The basal cell membrane mediates the affixation
to the GBM by α3β1 integrin and α- and β-dystroglycans, which play the function
by connecting to certain matrix proteins within the GBM (Kreidberg et al. 1996;
Raats et al. 2000). Both of apical and basal membranes contain numerously dis-
tributed cholesterol-rich domains, and it was found that specific membrane proteins
of podocytes are obviously arranged in rafts (Schwarz et al. 2001; Simons et al.
2001).

FPs functionally consist of a luminal or apical membrane domain and a basal cell
membrane domain. FPs are characterized by a podosome-like cortical network of
short, branched actin filaments and by the presence of highly ordered, parallel con-
tractile actin filament bundles, which are thought to modulate the permeability of the
filtration barrier through changes in FP morphology (Greka and Mundel 2012). The
foot processes of neighboring podocytes are bridged by slit diaphragm (SD), which
is the site of convective fluid flow through the visceral epithelium and the final bar-
rier to urinary protein loss. Similar to the apical membrane domain of podocytes, the
SD is also covered by a thick surface coat mainly constituted by sialoglycoproteins,
including podoendin, podocalyxin, and others, which are responsible for the high
negative surface charge of the podocytes. In addition, several molecules, including
ZO-1 (zonula occludens protein), nephrin, CD2AP (CD2-associated protein), FAT,
and P-cadherin, have all been shown to be expressed within the SD, and some of
those molecules play a major role for its integrity (Pavenstadt et al. 2003).

The unique shape of podocyte and the maintenance of its processes are owing to a
well-developed cytoskeleton, which serves as the podocyte’s “backbone.” And also,
the actin-rich cytoskeleton makes podocytes to be able to alter shape continually and
dynamically. The cytoskeleton is comprised by microfilaments (7–9 nm diameter),
intermediate filaments (10 nm diameter), and microtubules (24 nm diameter), which
are mainly defined by their diameter. Microtubules and intermediate filaments are
predominant cytoskeletal constituents in the cell body and the primary processes.
In the FPs, microfilaments are the main cytoskeletal component, which consist of
a network with densely accumulated F-actin and myosin. FP actin cytoskeleton is
extensively distributed in all three domains of FPs, resulting to an important role
of actin for the function and dysfunction of podocytes. FP effacement requires the
activation of actin filaments reorganization, a process which is regulated by multiple
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signaling events involving integrin activation, G protein-coupled receptor (GPCR)
and growth factor receptor, and calcium (Ca2+) influx pathways as upstream modu-
lators of the actin cytoskeleton (Takeda et al. 2001).

The complex architecture of podocytes, in particular on themaintenance of highly
ordered, parallel, contractile actin filament bundles in FPs, is required for the highly
specialized functions of podocytes, which include (i) a size barrier to protein; (ii)
charge barrier to protein; (iii) maintenance of the capillary loop shape; (iv) counter-
acting the intraglomerular pressure; (v) synthesis and maintenance of the GBM; (vi)
production and secretion of vascular endothelial growth factor (VEGF) required for
GEN integrity (Shankland 2006).

Podocyte is the most differentiated cell type in the glomerulus, which plays a
crucial role in the glomerular filtration barrier. Podocyte foot processes with the
interposed SD represent the last filtration barrier of GBM. The SD is a subtle signal
transduction unit characterized by a modified adherens junction that bridges the
30–50-nm-wide filtration slits (Reiser et al. 2000). Transmembrane proteins such as
nephrin and FAT constitute the rod-like units of SDwhich are connected by numerous
linear bar, forming a network with pores the same size as or smaller than albumin
(Mundel and Kriz 1995). Meanwhile, negatively charged apical domain of SDworks
as a charge barrier to prevent the albumin loss. Thus, the podocyte is the important
size and charge barrier of GBM, and podocytes’ damage leads to the disruption of
GBM integrity and proteinuria.

Podocytes stabilize glomerular architecture owing to FPs counteract distensions
of the glomerular basement membrane, which is regulated by vasoactive hormones.
In this regard, they are responsible for 40% of the hydraulic resistance of the filtration
barrier (Pavenstadt 2000). ANG II regulates the contractile state of their foot pro-
cesses by activating a Cl− conductance and increasing [Ca2+]i, cAMP in podocytes,
thereby modulating the ultrafiltration coefficient Kf. Other agonists such as AVP,
oxytocin, norepinephrine, and parathormone have also been reported to modulate
[Ca2+]i in podocytes. Vasoactive hormones may also alter charge properties of the
podocyte and thereby enhance urinary protein excretion (Pavenstadt 2000).

VEGF family consists of five secreted homodimeric glycoproteins: VEGF-A,
VEGF-B, VEGF-C, VEGF-D, and placental growth factor. In human and murine
kidneys, VEGF-A isoform is constitutively expressed in podocytes, while playing
its role mainly by contact with VEGFR-1 and VEGFR-2 predominately localized
on the glomerular endothelial cells. It was assumed that VEGF-A is critical for the
regulation of endothelial cell survival, proliferation, differentiation, and migration
as well as endothelium-dependent vasodilatation and vascular permeability (Advani
2014). The complex paracrine signaling pathway between podocytes and glomerular
endothelial cells plays a central role in maintaining the structure and integrity of the
kidney filtration barrier.
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10.1.2 The Role of Podocyte Injury in the Progresses
of Glomerulosclerosis

Podocyte injury is the common pathological process in many glomerular diseases
such as minimal change disease, membranous glomerulopathy, focal segmental
glomerulosclerosis (FSGS), diabetic nephropathy (DN), and lupus nephritis. Physi-
ological stresses or pathological stimuli like mechanical stress, oxidative stress, and
immunologic stress disrupt the homeostasis of glomerular filtration barrier. Tran-
scapillary pressure increment is induced by glomerular hypertension/hyperfiltration,
and podocyte processes’ elongation is induced by capillary expansion contribute to
cytoskeletal dysregulation and intrinsic stress (Neal et al. 2007). Pathological factors,
such as ischemia–reperfusion, chemical/toxic substances from the primary urine,
usually cause reactive oxygen species (ROS) production in podocytes (Chen et al.
2013). It was also reported that aldosterone and angiotensin II promoted receptor-
mediated ROS generation in podocytes (Liu et al.2013). Immunologic stress is
induced by cytokine/complement, such as CC chemokine receptor 2, tumor necrosis
factor, and sublytic C5b-9-mediated intracellular stress in podocytes (Nagata 2016).

Typical electron microscopy manifestations of podocyte injury include micro-
cystic, pseudocystic changes, vacuolization, the presence of cytoplasmic inclusion
bodies, and detachment from the GBM. Besides those changes, foot process efface-
ment is themost characteristic change in podocyte injury. The damage of SD proteins
contributes to cytoskeleton disorganization, leading to podocyte effacement and pro-
teinuria (Shankland 2006). SD between adjacent podocytes is constituted predomi-
nantly by SD proteins including nephrin, podocin, CD2AP, Neph1, and FAT1. Muta-
tions/abnormalities of those proteins result proteinuria and kidney disease. Stud-
ies have shown that SD proteins regulate cytoskeleton organization and podocyte
shape by interacting with proteins associated with actin cytoskeleton. FAT-1 is an
organizer of actin polymerization. CD2AP connects the nephrin complex with the
actin-modifying proteins WASP, CAPZ, cortactin, and the Arp2/3 complex.

Reduced podocyte number causes proteinuria and glomerulosclerosis. Podocyte
detachment, podocyte apoptosis, and the lack of adequate podocyte proliferation are
three main reasons leading to the decrease in podocyte number also called “podocy-
topenia.” The lack of charge- and size-selective barriers induced by podocyte loss
leads to proteinuria. Studies havedemonstrated the correlationof podocytes reduction
with the onset and progression of glomerulosclerosis. Because podocytes counter-
act the outward forces of glomerular pressures and maintain capillary loop shape,
podocyte loss results to local bulging of theGBMwhenglomerular pressures increase
in many renal diseases. The denuded GBM tends to form a synechia attachment by
contacting with the parietal epithelial cells and Bowman’s capsule, which is thought
to be the first “committed step” of focal segmental glomerular sclerosis (FSGS) (Kriz
et al. 1994, 1998a, b).

Podocytes maintain a healthy intraglomerular environment by cross talk with
glomerular endothelial cells. Endothelial cell swelling and attenuation of fenestrae
are observed in podocyte injury models by ultrastructural study (Kriz et al. 2013).
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It was illustrated that podocyte injury disrupts intracapillary homeostasis, causing
thrombotic micro-angiopathy and mesangial abnormalities by reducing VEGF sig-
naling (Eremina et al. 2008; Kobayashi et al. 2015).

Glomerulosclerosis is a terminal consequence of podocyte injury. The classic type
of glomerulosclerosis, as defined by segmental obliteration of glomerular capillar-
ies by the extracellular matrix, has been believed to progress to complete sclerosis
without regression (Nagata 2016). In early stage of FSGS, cellular lesions including
transformed podocyteswere accompanied by segmental sclerosis, supporting the fact
that podocyte damage might be an early event of glomerulosclerosis. In a recent ele-
gant review by Kim JS and his colleagues, the essential steps of glomerulosclerosis
were suggested as follows: (1) increased glomerular capillary pressure and filtration
flow through podocyte slits, (2) foot process effacement as an adaptive response, (3)
podocyte hypertrophy and glomerulomegaly, (4) mismatch between glomerular tuft
growth and podocyte hypertrophy, (5) stretching and attenuation of podocyte cell
body, (6) pseudocysts formation by hindered flow of filtrates beneath the podocyte
that is partially detached on bare areas of GBM, (7) complete podocyte detach-
ment by enlarged pseudocysts and adhesion to Bowman’s capsule, (8) glomerular
tuft’s adhesion to Bowman’s capsule, (9) spreading of filtrates to interstitium out of
nephron through adhesion structure, and (10) interstitial proliferation and nephron
degeneration (Kim et al. 2016).

10.2 The Role of Glucose Metabolism Disorder in Podocyte
Injury

Podocytes’ injury and depletion was a crucial step in the development of albumin-
uria in DN. In DN, the number of podocyte-specific markers and podocytes number
is decreased, which leads to the occurrence of albuminuria and further develops
into glomerulosclerosis. Hyperglycemia is the main pathological change of diabetes
and plays an important role in promoting the occurrence and development of DN.
Increased intracellular glucose could induce multiple cell and molecular events in
podocyte: (1) generation of reactive oxygen species (ROS) and advanced glycation
end products (AGEs), (2) increased flux of polyols and hexosamines, (3) activation
of protein kinase C (PKC), (4) increased cytokines and growth factors, (5) aberrant
Notch signaling, and (6) activate the renal RAS. These abnormal molecular patho-
logical changes mediate the functional and morphological changes of podocytes in
a direct or indirect way, including podocyte hypertrophy, epithelial mesenchymal
transition (EMT), podocyte detachment, and podocyte apoptosis.

Podocyte injury is a key factor in the development of DN. Recent studies in both
type 1 and type 2 diabetes have proposed that a reduction in the number of podocytes
may lead to the development of proteinuria. It is reported that the structure and func-
tion of podocytes are abnormal under high glucose conditions, such as podocyte
fusion, septal injury, and podocyte loss. There has been evidence that podocytes pos-
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sess a completely functional system for glucose uptake (Lewko et al. 2005). Coward
et al. have revealed that the cultured human podocytes express glucose transporter
(GLUTs) in two forms: GLUT1 and GLUT4, which participate in insulin-dependent
glucose transport to the cell (Coward et al. 2005, 2007). In addition, the podocyte
split protein, such as Nefin, is also involved in glucose transport. Schiffer et al. have
demonstrated that podocytes also express another insulin-sensitive glucose trans-
porter, GLUT8 (Schiffer et al. 2005). GLUT1 is the primary glucose transporter in
most cells as well as in podocytes (Coward et al. 2005, 2007). In diabetes, hyper-
glycemia and alteration of glucose transporter cause increased intracellular glucose
concentration in podocyte and lead to severe impairment of the glomerular filtration
barrier. Conversely, Zhang et al. found that enhancement ofGLUT1expression in dia-
betic podocyte significantly reduced the mesangial expansion and fibronectin accu-
mulation by inhibiting the expression of vascular endothelial growth factor (VEGF)
(Zhang et al. 2010). Similarly to other cells, under high glucose condition, podocyte
can undergo many pathological changes induced by aberrations in various cellular
and molecular events. High glucose induces generation of advanced glycation end
products (AGEs) and reactive oxygen species (ROS), increased flux of polyols and
hexosamines, increased activity of protein kinaseC (PKC), upregulated expression of
cytokines and growth factors including vascular endothelial growth factor (VEGF),
and transforming growth factor-beta (TGF-β), induces aberrant Notch signaling, and
activates the renal RAS (Anil Kumar et al. 2014).

Pathomechanism of podocyte injury in DN mainly includes podocyte hypertro-
phy, EMT, podocyte detachment, and podocyte apoptosis. Podocyte hypertrophy is
the initial stage of podocyte injury in early DN. Hyperglycemia upregulated the
expression of cyclin-dependent kinase p27kip1, which leads to further cell cycle
arrest and hypertrophy. It was found that p27kip1-/- mice had significantly improved
renal damage in DN (Wolf et al. 2005). Several studies suggested high glucose-
induced podocyte hypertrophy by activating mTORC1 pathway (Fantus et al. 2016).
In addition, hyperglycemia increased expression of nuclear STAT3 via the activa-
tion of the upstream signal transduction element Gp130, which eventually leads to
podocyte hypertrophy. Excessive hypertrophy could result in degenerative changes
in podocyte structure and functions, leading to its detachment from glomerular base-
ment membrane (GBM). Previous studies have shown that phenotype conversion
of podocyte was involved in the early stage of podocyte deletion in DN by induc-
ing podocyte detachment or podocyte apoptosis. Podocyte EMT is a manifestation of
podocyte phenotype conversion and one of the initiating factors leading to a variety of
glomerular diseases. When EMT occurs, the cells lose their original characteristics,
resulting in disappearance of intercellular contact, impaired cell polarity, and expres-
sion of mesenchymal markers such as alpha smooth muscle actin (alpha-SMA) and
fibroblast-specific protein 1 (FSP1). EMT is also an explanation for podocyte deple-
tion in DN (Yamaguchi et al. 2009). Emerging evidence suggested that podocytes
could undergoEMT inDN, characterized by loss of epithelial features such as nephrin
and P-cadherin, while expressing mesenchymal markers such as FSP-1, type I col-
lagen, and fibronectin (Reidy and Susztak 2009). Xing et al. (2015) demonstrated
that stimulation with high glucose for 48 h could activate the PI3 K/AKT pathway
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in podocyte, and thereby induce the protein expressions of α-SMA and desmin. Dai
et al. (2012) suggested that connective tissue growth factor (CTGF) and integrin-
linked kinase (ILK) were involved in high glucose-induced phenotypic alterations of
podocytes. Lv et al. (2013) findings elaborated that Rac1/PAK1 signaling contributed
to high glucose-induced podocyte EMT via promoting β-catenin and Snail transcrip-
tional activities, which could be a potential mechanism involved in podocytes injury
in response to stimuli under diabetic conditions. Guo et al. indicated high glucose
can also activate β-catenin and Snail expressions by upregulating GSK-3β. In addi-
tion, hyperglycemia-induced podocyte detachment by decreasing the expression of
key proteins involved in the foot process actin cytoskeleton, split diaphragm (SD)
integrity, and podocyte–GBM interactions. A3b1 integrins are the important trans-
membrane protein involved in anchoring foot processes in the GBM. High glucose
regulates the expression of integrin subunits and inhibits the synthesis of agrin.
Therefore, high glucose affects not only the structure of podocytes, but also their
ability to adhere to GBM (Chen et al. 2000; Han et al. 2006; Yard et al. 2001). It
is found that high glucose can alter podocyte adhesion by decreasing expression of
integrin α3β1v which was an important receptor that could tightly connect podocyte
with the GBM and participated in the adhesion function of podocyte. In addition,
α-Actinin, an actin filament for protein crosslink, is also an important factor required
for podocyte adhesions (Dandapani et al. 2007). High glucose and AGE treatment
resulted in α-actinin-4 expression changes and induces cytoplasmatic translocation
in podocyte (Ha 2006). There are some evidences that podocyte apoptosis played a
role in reduction in density and number of glomerular in DN. High glucose led to
podocyte apoptosis by increased production of ROS, activation of poly(ADP-ribose)
polymerase, NF-kB, and p38 MAP kinase (Susztak et al. 2006; Szabo et al. 2006).
In diabetes, the surface receptors of the AGEs are upregulated in the podocytes
(Tanji et al. 2000). Binding AGEs to receptors activates activated transcription factor
FOXO4, which also induced podocyte apoptosis via p38 protein kinase signaling
pathways (Cohen et al. 2005). In addition, high glucose increased the protein expres-
sion of Nestin, which is a VI intermediate filament protein-related cell cytoskeleton,
thereby increased podocyte apoptosis rate (Liu et al. 2012). High glucose increased
the expression of TGF-β1 in podocyte. TGF-β1 could induce podocyte apoptosis by
directly activate Smad7, p38 MAP kinase, and Notch pathway (Li et al. 2004).

In addition to its direct effects, elevated glucose may act indirectly, via the proin-
flammatory response, Ang II-dependent pathways, and lipid accumulation. Under
high glucose conditions, secretion of the MCP-1 protein by cultured podocytes was
increased rapidly (Han et al. 2004), and similar effect was observed in podocyte stim-
ulated with AGEs (Gu et al. 2006). Podocyte can also express TNF-α, a cytokine
produced by various immune cells, in response to high glucose stimulation and in
diabetic conditions (Ikezumi et al. 2008; Ruster et al. 2009). High glucose could
stimulate activity and expression of the local RAS components in podocyte, includ-
ing Ang II and its AT1 receptors (Yoo et al. 2007). Following that, it was recently
demonstrated that local RAS activation would lead to podocyte injury through a
variety of pathways. Ang II could induce podocyte apoptosis through activation of
NADPH oxidase and production of ROS, and upregulate the expression of GLUT
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transporters (Gill and Wilcox 2006; Nose et al. 2003). In addition, Ma et al. found
that lipid accumulation in podocytes was increased under the high glucose stimula-
tion, which is mediated through the disruption of low-density lipoprotein receptor
(LDLr) pathway (Zhang et al. 2015a). Interestingly, reducing lipid accumulation in
podocytes decreased the protein expression of SMA and increased the expression
of nephrin in podocyte. These studies reveal that high glucose-induced lipid accu-
mulation is involved in the podocyte injury in DN. Therefore, the above shows that
high glucose could induce various other metabolic disorders and indirectly lead to
podocyte injury.

10.3 Lipid Metabolism Disorder in Podocyte Injury

Lipid metabolism disorder is commonly observed in patients with chronic kidney
disease (CKD), accompanied by increased fasting triglyceride levels and decreased
high-density lipoprotein cholesterol (HDL-C) (Bianchi et al. 2016). It is increasingly
recognized that dysregulation of lipidmetabolism is involved in the development and
progression of CKD, such as obesity-related renal disease and DN (de Vries et al.
2014). Podocytes, as specialized cells of glomerulus, play an important role in the
pathologist of CKD when they are injured (Fiorina et al. 2014). And excessive lipid
accumulation in podocytes can lead to cellular dysfunction and death, which is called
lipotoxicity.

10.3.1 Cholesterol

Between neighboring podocytes, there is a unique interdigitating structure bridged
by SD, maintaining the proper glomerular filtration (Ruotsalainen et al. 1999).
Researches have revealed that SD is a lipid raft structure containing multiple
podocyte-specific proteins, such as podocin and nephrin (Schermer and Benzing
2009). In particular, podocin can recruit and bind to cholesterol to form SD, and this
binding can influence the composition of lipid membrane, allowing cholesterol to
contact with the ion-channel transient receptor potential canonical 6 (TRPC6) (Huber
et al. 2006). This suggests that cholesterol homeostasis is essential for glomerular
functions. However, excessive cholesterol can also negatively disrupt the mutual
binding of podocyte SD proteins, or interfere with the binding between podocyte SD
proteins and caveolin-1, a lipid raft-associated protein, binding nephrin, and Cluster
of Differentiation 2 (CD20)-associated protein (Sorensson et al. 2002)
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The content and distribution of cellular cholesterol regulated by cholesterol
synthesis and intracellular trafficking.

It is regulated by some functional proteins such as ATP-binding cassette trans-
porter A1 (ABCA1) involving cholesterol efflux, 3-hydroxy-3-methyl-glutaryl CoA
reductase (HMG-CoA reductase,HMGCR) regulating cholesterol synthesis and low-
density lipoprotein receptor (LDLR) mediating cholesterol influx. The expression of
HMGCR and LDLR is regulated by some transcription factors, such as the sterol
regulatory element-binding protein (SREBP), under negative feedback loops. When
cells are rich in cholesterol or its derivatives, the transcription of LDLR gene or other
genes necessary to lipid synthesis are suppressed. As a result, the cells are not able
to generate and uptake cholesterol, and then establish cholesterol homeostasis. In
contrast, when intracellular sterols are exhausted, the transcriptions of SREBP tar-
get genes will be activated, increasing intracellular cholesterol (Zhang et al. 2016).
This enables cellular cholesterol homeostasis despite physiological fluctuations in
cholesterol requirements and exogenous supply.

However, it is demonstrated that the cellular cholesterol imbalance of podocytes
can induce proteinuric glomerular diseases (Merscher et al. 2014). It is demonstrated
that human glomerular podocytes express ABCA1, HMGCR, and LDLR (Merscher-
Gomez et al. 2013).Ma et al. found that somepathogenic factors such as inflammation
can disrupt LDLR pathway (Zhang et al. 2015b). Thus, excessive lipid accumulates
in podocytes, resulting in effacement of the foot processes and epithelial mesenchy-
mal transition of podocytes (Zhang et al. 2015b). It is recently demonstrated that
human podocytes treated with the sera from diabetic kidney disease (DKD) patients
had increased cholesterol accumulation compared with human podocytes exposed
to the sera of patients with diabetes, but no DKD. This was associated with a reduc-
tion of ABCA1 and an impairment of cholesterol efflux (Merscher-Gomez et al.
2013). Besides, it is showed that c-x-c motif ligand 16 (CXCL16) is the main scav-
enger receptor for oxidized LDL (oxLDL) in human podocyte (Gutwein et al. 2009).
The expression of glomerular CXCL16 was increased in patients with membranous
nephropathy, accompanied with higher levels of oxLDL (Gutwein et al. 2009). And
in diabetic db/db mice, CXCL16 pathway was activated, in parallel with increased
cholesterol accumulation in kidney (Hu et al. 2018). In vitro, oxLDL can induce loss
of nephrin expression from cultured podocytes (Bussolati et al. 2005).

In summary, cholesterol metabolism disorder can destroy the structure and func-
tion of podocytes, leading to the progression of CKD.

10.3.2 Fatty Acids and Triglycerides

In addition to hypercholesterolemia, free fatty acids (FFAs) can also affect podocyte
function in kidney disease. The essential role of fatty acids is to form the phospholipid
bilayers of the cell membranes and act as phospholipid messengers, transmitting
vital intracellular signals (Lee 2011). Normal cellular fatty acid homeostasis reflects
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a balance between generation or delivery and utilization. SREBP-1c is involved
in fatty acid and TG synthesis, targeting lipogenic enzymes including acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS) (Horton et al. 2002). FFAs can be
transported into cells by the scavenger receptor platelet glycoprotein 4 (also called
as CD36) or via the assistance of vascular endothelial growth factor B (VEGF-B)
(Hagberg et al. 2010; Masuda et al. 2009). Cellular FFAs are esterified or transported
into the mitochondria for oxidation and subsequent energy production (Lee 2011).

Palmitic and stearic acids, belonging to saturated FFAs (SFAs), and oleic acid,
belonging to monounsaturated FFAs (MUFAs), account for 70–80% of plasma FFAs
(Raclot et al. 1997). SFAs can induce insulin resistance and cell death, involving the
pathogenesis of diabetes mellitus type 2 (T2DM) (Lennon et al. 2009; Sieber et al.
2010). In contrast,MUFAs can prevent SFA-induced lipotoxicity (Sieber et al. 2010).
In human podocytes, insulin resistance can be induced by palmitic acid (Lennon
et al. 2009). It is observed that insulin sensitivity in glomeruli of obese and diabetic
rats is reduced (Mima et al. 2011). Podocyte-specific insulin receptor knockout mice
develop albuminuria and glomerulosclerosis, indicating that normal insulin signaling
is critical for podocyte function and survival (Welsh et al. 2010). These findings imply
that FFAs play potential roles in insulin resistance, promoting the development and
progression of obesity-related renal disease and DN.

In the tubulointerstitial and glomerular segment of renal biopsies obtained from
patients with DN, endoplasmic reticulum (ER) stress is observed (Sieber et al. 2010).
Importantly, in a T1Dmousemodel, the progression of DN can be attenuated by ame-
liorating ER stress (Qi et al. 2011). ER dyshomeostasis can decrease the ER fold-
ing capacity, thereby leading to accumulation of unfolded and misfolded proteins.
This in turn initiates the unfolded protein response (UPR), adaptively maintaining
proper ER function (Ma and Hendershot 2001). But if ER stress persists, apoptosis
will be induced by the proapoptotic transcription factor C/EBP homologous pro-
tein (CHOP) (Rasheva and Domingos 2009). In podocytes, ER stress induced by
palmitic acid results in the upregulation of several UPR markers/effectors, such as
the ER chaperone heavy chain-binding protein (BiP), and CHOP, while monoun-
saturated palmitoleic and oleic acids only upregulated BiP but not CHOP (Sieber
et al. 2010). As BiP can attenuate palmitic acid-induced apoptosis (Laybutt et al.
2007), the beneficial effect of MUFAs may own to the upregulation of BiP. In addi-
tion to the unfolded proteins, alterations in ER membrane lipid composition can also
sensitively affect the expression of the ER stress sensor inositol requiring enzyme
1 (IRE-1) (Promlek et al. 2011). It is shown that small molecule compound 4m8C,
specific IRE-1 inhibition, can attenuate palmitic acid-induced podocyte death (Sieber
and Jehle 2014).

Enhanced FFA uptake by podocytes is induced by increased expression of CD36
and a decrease in fatty acid β-oxidation, leading to excessive intracellular lipid accu-
mulation (Soetikno et al. 2013). In animal model of type 1 diabetes (T1D), increased
expression of SREBP-1 in renal results in upregulation of enzymes responsible for
FFA synthesis and as a consequence of a high level of triglyceride (TG) in renal
(Hashizume and Mihara 2012). Accumulated lipids in podocytes limited mitochon-
drial fatty acids β-oxidation. It inducedmitochondrial damage and inhibition of AMP
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kinase (AMPK) activity, leading to endoplasmic reticulum (ER) stress, autophagy,
and apoptosis in podocytes. As a result, mitochondrial dysfunction caused decreased
podocyte density and increased in foot process width, together with inflammation
(Szeto et al. 2016). Renal accumulation of TG is associated with reduced expression
of the ultrasensitive energy sensor AMPK strongly. This suggests that the imbal-
ance between energy-generating and energy-consuming pathways might be related
to podocyte dysfunction in DKD and other disorders in CKD, due to lipid accumu-
lation (Wahl et al. 2016). And hypertriglyceridemia can also increase podocytic de
novo expression of desmin, which represents podocyte injury (Joles et al. 2000).

10.3.3 Gangliosides and Sphingolipids

Since the first description that glycosphingolipid accumulation in the renal results in
glomerular hypertrophy in streptozotocin (STZ)-induced diabetic mice, several stud-
ies have highlighted the role of sphingolipids and gangliosides in podocyte biology
(Merscher-Gomez et al. 2013).

Analysis of kidney biopsy compartments from 14 patients with Fabry disease
using unbiased quantitative stereology indicated age-dependent accumulation of
globotriaosylceramide (Gb3) in podocytes (Najafian et al. 2011). In vitro, globotriao-
sylsphingosine (known as lysoglobotriaosylceramide) acts as a profibroticmetabolite
in cultured human podocytes (Sanchez-Nino et al. 2011). Ganglioside GM3 (GM3)
is a receptor for soluble Flt1, locating in lipid raft domains in the SD of podocytes.
Binding of soluble Flt1 to GM3 plays essential roles in autocrine preservation of
the podocyte actin cytoskeleton and in prevention of proteinuria (Jin et al. 2012).
O-acetylated disialosyllactosylceramide (GD3), a sialic-acid-containing lipid, was
identified as a podocyte-specific ganglioside in rat (Reivinen et al. 1992). Treating
mice with an antibody against GD3 caused nephrin phosphorylation and dislocation
from the podocyte SD (Simons et al. 2001).

It is an emerging concept that sphingolipids act as modulators of podocyte func-
tion in FSGS and other glomerular diseases. Patients with FSGS are more likely
to have recurrence of proteinuria after kidney transplantation. And the number of
acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3b) positive podocytes is
decreased in patients with recurrent proteinuria (Fornoni et al. 2011).

To sum up, lipid metabolism disorder is involved in the pathogenesis of podocyte
injury. Cholesterol helps form SD between podocytes, maintaining the proper
glomerular filtration. LDL-cholesterol uptake is mediated via the LDLR or CXCL16
and may cause ER stress. Cholesterol metabolism is regulated by several nuclear
receptors and transcription factors, including SREBP. Excessive cholesterol accu-
mulation in podocytes may contribute to kidney disease. Free fatty acids are pri-
marily transported via CD36, causing oxidative and ER stress based on the degree
of saturation. Sphingolipids and gangliosides also play a role in podocyte biology.
Binding of soluble Flt1 to GM3 plays essential roles in autocrine preservation of the
podocyte actin cytoskeleton and in prevention of proteinuria (Fig. 10.1).
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Fig. 10.1 Lipid metabolism disorder is involved in the pathogenesis of podocyte injury

10.4 Role of Hypertension in the Damage of Podocytes

Hypertension has become the second leading cause of end-stage renal disease
(ESRD) after diabetes mellitus (Udani et al. 2011). High blood pressure can affect
renal vessels, glomeruli, and tubulointerstitium. Recently, more and more stud-
ies have indicated that podocyte damage play an important role in hypertensive
nephrosclerosis. Decreased intrarenal podocyte and increased urinary podocyte were
observed in hypertensive nephrosclerosis (Wang et al. 2009). As terminally differen-
tiated cells, podocyte loss leads to denudation of the glomerular basement membrane
(GBM) and focal adhesion of the tufts to Bowman’s capsule, which finally results in
glomerulosclerosis and reduced filtration (Cellesi et al. 2015).

Podocyte loss in hypertension includes detachment of viable cells and apoptosis
(Kriz et al. 2013). The major factor for podocyte loss in hypertension is the cap-
illary hypertension, which cause glomerular hypertrophy and hyperfiltration (Kriz
and Lemley 2015). Glomerular hypertrophy results in relatively decreased podocyte
density. Puelles et al. (2016) examined the effect of hypertension on podocyte deple-
tion using kidneys obtained from autopsy, and they did not observe a difference in
total podocyte number solely driven by hypertension, while the relative podocyte
depletion is associated with glomerular hypertrophy which resulted in the reductions
in podocyte density. Hyperfiltration gives rise to increased shear stress by elevating
driving force and augmenting GBM area. Podocytes cultured in vitro are sensi-
tive to shear stress, which induces reorganization of cytoskeleton (Friedrich et al.
2006), and this helps them to cover an expanding GBM which further leads to foot
process effacement. In desoxycorticosterone-trimethylacetate (DOCA) hypertensive
mice, chloride intracellular channel 5A, which is highly enriched in podocytes foot
process, protects against hypertension-induced podocyte injury through weakening
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the tensile strength of the actin cytoskeleton in Rac1-dependent manner (Tavasoli
et al. 2016). This has been considered to be the protective response for podocyte
to escape detachment. However, this strategy is not always successful and finally
results in podocyte detachment from GBM, as seen in progressive stage of fawn-
hooded hypertensive (FHH) (Kriz et al. 1998c) and DOCA hypertensive rat model
(Kretzler et al. 1994). Apoptosis is another cause for podocyte loss under shear stress
in hypertension, which is before or in conjunction with cell detachment (Kriz et al.
2013; Ying et al. 2000).

Besides mechanical stress, renin–angiotensin–aldosterone system (RAAS) plays
central role in the pathogenesis of hypertensive nephrosclerosis, mainly through its
actions on the subtype 1 receptor. Mechanical strain increased angiotensin II produc-
tion and upregulation of angiotensin receptor 1 (AT1) in cultured podocytes, while
the increased apoptosis induced by mechanical strain was also in an angiotensin
II-dependent manner (Durvasula et al. 2004). Increased angiotensin II results in
decreased expression of podocin and integrin β1, which are both vital in viable
podocytes adhesion to the GBM and interaction of podocytes with other GBM com-
ponents. This might elucidate that the elevated intraglomerular pressure is translated
into a maladaptive response in podocyte probably due to the activation of local tissue
angiotensin system. Furthermore, angiotensin II is also considered to be associated
with the rearrangement of the actin cytoskeleton (Macconi et al. 2000). Aldosterone,
an important mediator of the effect of angiotensin, has become a hot spot concern
in hypertensive nephropathy. Using only the inhibition of aldosterone by eplerenone
dramatically alleviated podocyte injury in Dahl salt-hypertensive rats, an animal
model inclined to hypertensive glomerulosclerosis (Nagase et al. 2006). In a double-
blind, randomized, placebo-controlled trial, additional use of low-dose eplerenone
to renin–angiotensin system inhibitors has renoprotective effects in hypertensive
patients with non-diabetic chronic kidney disease (Ando et al. 2014). These findings
suggested that aldosterone plays an important role in hypertension-induced podocyte
injury. The underlying mechanism is primarily due to aldosterone-induced mito-
chondrial dysfunction, which increased oxidative stress. In uninephrectomized rats
infused with aldosterone and fed with high-salt diet, podocyte-associated proteins
nephrin and podocin were dramatically decreased, along with reduced nicotinamide-
adenine dinucleotide phosphate oxidase activation, increased oxidative stress, and
enhanced aldosterone effector kinase Sgk1. Thus, podocyte is the prominent target
for aldosterone by inducing oxidative stress and Sgk1 (Shibata et al. 2007). Selective
mineralocorticoid receptor (MR) antagonist eplerenone also ameliorated the salt-
induced proteinuria and podocyte injury in hypertensive rat model (Nagase et al.
2007).

After detachment from GBM, podocyte moves through meshes of Bowman’s
capsule to the urine and might keep alive. Unfortunately, the detection of viable
podocytes in the urine is a complex procedure, which is still unavailable in all labo-
ratories. However, elevated mRNA levels of podocin and nephrin can be examined
in urine of hypertensive patients (Kelder et al. 2012). Recent studies suggested that
increased podocyte-derived extracellular vesicles may predict podocyte stress and
subsequent podocyte loss in hypertensive patients, which might provide a novel
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non-invasive detective method (Kwon et al. 2017). Podocytes, as the gatekeepers of
protein in glomerular filtration barrier, are major targets of high blood pressure. In
all, hypertension could cause mechanical stress and the activation of RAAS (men-
tioned below). Mechanical stress further induces capillary hypertension, promoting
glomerular hypertrophy and hyperfiltration. These changes would lead to reduced
podocyte density and the reorganization of cytoskeleton in podocytes, resulting in
detachment of viable podocyte and podocyte apoptosis, progressing to final glomeru-
losclerosis. More studies are needed to prove that podocytes can be the detective
marker for hypertensive nephrosclerosis and find the more specific method for early
diagnosis and treatment.

10.5 Activation of RAS in Podocyte Injury

Hemodynamic changes and RAS of the glomeruli are key factors of CKD patients’
persistent proteinuria and disease progression.Many investigations suggest that local
intrarenal RAS activation contributes to kidney tissue injury (Gurley et al. 2011), and
RAS activation accelerates renal injury by various mechanisms.

Angiotensinogen (AGT), the original of RAS, transforms into Ang II through
the conversion of Ang I as a result of the enzymatic cleavage process by renin and
ACE. As the most active peptide of RAS, Ang II was demonstrated to induce TGF-β
expression and provoke oxidative stress and inflammation, which are main factors
in the initiation, development, and progression of CKD (Ruggenenti et al. 2012).

Under a condition of continuous glomerular hypertension in CKD, podocytes
may undergo actin cytoskeletal reorganization, compensatory hypertrophy, weak-
ened local adhesion ability due to downregulation of adhesion molecules of base-
ment membrane cells, and apoptosis of podocytes induced by local Ang II activation.
The continuous increase of Ang II caused by mechanical stress further affects the
capillary intraglomerular pressure, resulting in a vicious circle and contributing to
the pathogenesis of glomerulosclerosis (Ruster and Wolf 2011). In addition to caus-
ing podocyte lesions by altering glomerular hemodynamics, Ang II also has a direct
effect on the structure and functions of podocytes, which is mentioned later in this
section.

Podocytes, in possession of a complete RAS (Marquez et al. 2015), can produce
functional RAS elements themselves and participate in local RAS systems as well,
playing an important role in not only its own physiological process but pathological
status (Fig. 10.2). It has been reported that mechanical stress and high glucose could
increase the production of local Ang II and AT1 receptor (AT1R) in podocytes (Dur-
vasula et al. 2004; Durvasula and Shankland 2008), with inducing the expression of
other RAS elements (Sakoda et al. 2011).

There are also important elements of the RAS system expressing in human dif-
ferentiated podocytes, including angiotensin, renin, ACE, AT1R, and AT2R subtype
mRNA, but the related proteins were not detected (Liebau et al. 2006). Therefore,
podocytes could not only be a target of the damage caused by Ang II, but a source of
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Fig. 10.2 Renin–angiotensin system (RAS) in podocytes

localizedAng II aswell. However, it has been found thatAng II secreted by podocytes
was not blocked by renin inhibitors, ACEI, and chymase inhibitors (Liebau et al.
2006), suggesting that there might be an unknown pathway for Ang II formation in
podocytes.

Velez et al. (2007) used Matrix-Assisted Laser Desorption/Ionization Time of
Flight Mass Spectrometry (MALDI-TOF-MS) to quantify the presence of RAS-
related peptide chains in rat podocytes, in order to further explore the role of
podocytes in the metabolism of RAS elements. As a result, after co-incubated with
Ang I, mesangial cells mainly produced Ang II while the main product of podocytes
was Ang (1–7) with almost no Ang II. Furthermore, it was confirmed that podocyte-
producing Ang (1–7) is mainly through the neprilysin pathway, as ACE-mediated
Ang II production did not result in an increase of Ang II concentration in podocytes,
which might be related to podocytes’ degradation of Ang II through ACE2 and
aminopeptidase A pathways.

As a new member of RAS, ACE2 might have a negatively regulatory effect on
ACE-produced Ang II of traditional RAS, mainly by accelerating the degradation of
Ang II to attenuate its effect, and through the generation of Ang (1–7), which has
the most expression in podocyte RAS. There has been no evidence that podocytes
express the receptor of Ang (1–7), i.e., Mas, yet Ang (1–7) and its receptor seem to be
involved in the renal protection for DN, such as regulating inflammation, oxidative
stress, and retaining the progression of renal fibrosis.

Therefore, podocytes probably play an essential role in maintaining the balance
of local RAS system in the kidney, similar to that between systemic Ang II and
intrarenal RAS system, by degrading the systemic Ang II filtered from the glomeruli,
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and/or promoting the conversion of glomerular-filtratedAng I andAGT toAng (1–7),
thereby regulating the damage caused by the whole systemic Ang II to the kidney.

The pathways of Ang II signaling mediating podocyte injury can be generally
divided into the following aspect:

(1) To damage the function of the pore membrane and structure of the cytoskeleton

TheSD is an essential structure of the glomerular filtration barrier,which is connected
to the foot processes adjacent to podocytes. Nephrin and zonula occludens (ZO)-1
are main proteins of SD, preventing macromolecules from entering the urine. It has
been found that SD is susceptible to damage, leading to decreased expression of
nephrin and ZO-1, and cytoskeletal reorganization of podocytes.

It has been found that the expression of nephrin in renal biopsy specimens from
patients with T2DM-induced DKDwas significantly reduced compared with healthy
volunteers, and the patient’s urinary concentration of nephrin was significantly pos-
itively correlated with their urinary protein level (Jim et al. 2012). Ren et al. (2012)
have found in vitro that Ang II could directly cause the downregulation and dephos-
phorylation of nephrin, which mediates podocyte injury. Besides, application of
ACEI and ARB has been reported to inhibit the rearrangement of cytoplasmic ZO-1
and reduced the degree of proteinuria (Macconi et al. 2000).

(2) To induce podocyte apoptosis

One of the main causes of podocyte loss in CKD patients is podocyte apoptosis, and
the occurrence of urinary podocyte plays an important role in glomerular sclerosis.

Ang II reportedly could induce the apoptosis of rat podocytes cultured in vitro in
a dose- and time-dependent manner, and this process required cells to be exposed
to TGF-β and TGF-β antibody could inhibit apoptosis of podocytes (Ding et al.
2002). After activation of TGF-β in diabetic glomeruli, the nuclear factor κB might
be inhibited via the gene Smad7, resulting in podocyte apoptosis.

The advanced glycation end products (AGEs) were also found to activate the RAS
system of podocytes, upregulate Ang II levels, and induce podocyte apoptosis via
a AGEs receptor-PIK3/protein kinase B (Akt)-dependent signaling pathway; ARB
could attenuate Ang II-induced podocyte apoptosis.

(3) To cause cell phenotypic transformation and hypertrophy

p27Kip1 encodes a protein which belongs to cyclin-dependent kinase (Cdk) inhibitor
proteins, which could control the cell cycle progression at G1 phrase, thereby inhibit-
ing cell proliferation. It was found that Ang II could directly increase the levels of
p27Kip1 mRNA and protein in podocytes cultured in vitro and in vivo in DN, which
was inhibited byARB.Ang II-induced upregulation of p27Kip1 expressionmight lead
to podocyte hypertrophy (Xu et al. 2005). It was also observed that Ang II can upreg-
ulate the expression of p27Kip1 protein, causing pathological podocyte hypertrophy
similar to that in a DN text (Romero et al. 2010).

As an essential factor promoting the progression to renal fibrosis, EMT in
podocytes will result in loss of epithelial markers with de novo expression of EMT
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markers; inmore severe cases, it may lead to podocyte detachment from the glomeru-
lar basement membrane, thereby aggravating proteinuria and glomerulosclerosis (Li
et al. 2015; Loeffler and Wolf 2015). A recent study reported that a high concentra-
tion of glucose and Ang II promoted EMT in podocytes, which could be reversed by
silencing TCF8 (Bai et al. 2017).

(4) To induce podocyte membrane depolarization and damage the charge barrier

Studies by using patch clamp recording technique in isolated glomeruli in vitro have
demonstrated that Ang II could cause sustained and irreversible depolarization of
podocyte membranes. Stimulation of Ang II resulted in an immediate calcium influx
of cultured podocytes (Greka andMundel 2011). Studies have confirmed that TRPC6
colocalized with podocyte nephrin and podocin, and its functional mutation could
disrupt the integrity of the pore membrane, leading to proteinuria and FSGS (Reiser
et al. 2005; Winn et al. 2005). Numerous studies have found that abnormal calcium
signaling may be the main cause of related podocyte diseases. For example, calcium
increases evoked by Ang II are primarily mediated via TRPC6 channels and this
pathway could be pharmacologically targeted to abate the development of DKD
(Nijenhuis et al. 2011; Sonneveld et al. 2014).

(5) To induce podocyte autophagy

As terminally differentiated cells, podocytes mainly reduce intracellular accumula-
tion of damagedDNAandmacromolecular substances through autophagy rather than
cell division (Pan et al. 2008). In vitro experiments, animal experiments, and human
kidney biopsy indicate that podocytes have a high-level basis of autophagy, which
plays an important role in maintaining the stability of podocytes. Recent research
using a CKD animal model has demonstrated that autophagy is an essential intra-
cellular process to encourage the survival of renal cells (Huber et al. 2012), while
excessive and dysfunctional autophagy might result in podocyte injury (De Rechter
et al. 2016). It has been found that Ang II could enhance the ROS production and
increase oxidative stress in the renal system by enhancing the activity of systematic
NADPH, leading to detrimental podocyte autophagy (De Rechter et al. 2016; Yadav
et al. 2010), the underlying pathways ofwhich is dependent or independent onmTOR
(Mao et al. 2016). A recent study has found that autophagy could enhance the cell
viability of Ang II-treated podocytes, suggesting improving autophagy may become
a new targeted therapy to relieve Ang II-induced podocyte injury (Gao et al. 2017).

Traditionally concerned solely as an inactive precursor of renin, prorenin actually
participates in the functional regulation of body through the hydrolysis of AGT to
produce ANG I and can also bind to prorenin/renin receptor (PRR) (non-proteolytic
pathway) to activate, like mitogen-activated protein kinases (MAPKs), initiating
intracellular signal transductions. The plasma prorenin/renin ratio in diabetic patients
was significantly higher, and the prorenin levels began to increase before the appear-
ance of micro-albuminuria without changes in renin levels (Sakoda et al. 2011),
suggesting that prorenin itself exerts somewhat important effects on DN.

Immunofluorescence double-labeling studies have showed that prorenin activated
by non-proteolytic pathway coexistedwith the podocytemarker nephrin, and electron
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microscopy also displayed that PRR was distributed on podocyte foot processes
(Ichihara et al. 2006). Handle region peptide (HRP) is a polypeptide blocker of
prorenin receptor. Ichihara et al. (2006) have found that gene deletion of AT1R or
using ACEI inhibitor could to some extent delay the occurrence of proteinuria and
glomerular sclerosis in streptomycin-induced DN rats, while continuous instillation
of HRP could almost completely block the progression of DN. It is noteworthy
that the MAPK signaling pathway was activated in AT1R-deficient mice, and HRP
could significantly inhibit MAPK, indicative of an equally important role of prorenin
coupling with PRR-induced angiotensin-independent pathway in diabetic kidney
injuries. Besides, Sakoda et al. (2010) have confirmed that adding prorenin to human
podocytes cultured in vitro could increase the intracellular level ofAng II and activate
the MAPK intracellular signal transduction pathway, resulting in podocyte damage.

10.6 Roles of Micro-inflammation in Podocyte Injury

10.6.1 Definition of Micro-inflammation State

Inmammalians, the acute-phase reaction is beneficial for eliminating acute insults for
protection against microorganisms, limiting tissue damage, and maintaining home-
ostasis. This reaction would become disadvantageous under a chronic condition
called micro-inflammation.

Micro-inflammation is a state with low-intensity, chronic persistent and dominant
inflammation caused by the infection of non-pathogenic microorganisms, which is
characterized by mild persistent elevation of inflammatory cytokines in the systemic
circulation (Kaysen 2001; Schomig et al. 2000). Micro-inflammation is a continuous
and relatively secretive action, the essence of which is immune inflammation.

10.6.2 Diagnosis and Detection of Micro-inflammation State

Micro-inflammation state has no obvious clinical symptoms, there is no specific diag-
nostic criteria, and the diagnosis of micro-inflammation relies mainly on the exami-
nation of circulating inflammatory biomarkers such as C-reactive protein (CRP) and
serum amyloid A (SAA), tumor necrosis factor alpha (TNF-α), and interleukin-6
(IL-6). The acute-phase reactants including the above proteins are mainly synthe-
sized by hepatocytes, such as complement components, coagulation proteins, and
metal-binding proteins. It is important to note that when we are in the diagnosis
of micro-inflammatory state, other causes and diseases of increased inflammatory
markersmust first be ruled out, such as connective tissue disease and recentmicrobial
infection.
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During acute-phase reaction, the concentration of CRP may increase over 1000-
fold compared with normal levels (Kaysen 2001). In addition, CRP follows the
course of a disease with little delay due to its short half-life. CRP is supposed to
bind multiple other binding specificities such as opsonin of bacteria, immune com-
plexes, and chromatin. CRP reflects not only the activity of inflammation, is also a
sign of cytokine activation, its levels was positively associated with the degree of
infection. The diagnosis of state of micro-inflammation based on CRP is the level
of CRP > 8 mg/L but not more than 10–15 mg/L. SAA is a sensitive acute-phase
reactant in micro-inflammatory state. The level of SAA obviously rises before other
acute-phase reaction proteins.

10.6.3 The Mediators of Micro-inflammation State

A variety of inflammatory cytokines have emerged as being closely involved in the
micro-inflammation state. Immune cells and intrinsic renal cells such as podocytes
secrete proinflammatory cytokines including interleukin-1 (IL-1), IL-6, TNF-α, and
monocyte chemoattractant protein-1 (MCP-1), which may contribute to the inflam-
matory process and aggravate diseases progression. For DN as an example, a strong
induction of MCP-1 and keratinocyte chemoattractant (KC) by fetuin-A (FetA)
or lipopolysaccharide (LPS) is associated with exacerbated palmitic acid-induced
podocyte death. Moreover, the prevention of MCP-1 and KC secretion and inhibi-
tion of IL-1 attenuates the inflammatory and ultimate cell death response elicited by
FetA alone or combined with palmitic acid. The study offers evidence that inflamma-
tion aggravates palmitic acid-induced podocyte death and the IL-1β signaling might
be novel potential therapeutic targets for prevention and treatment of DN (Orellana
et al. 2017).

Infiltrating macrophages/monocytes are associated with chronic, low-grade
inflammation. The macrophages can interact with resident renal cells to generate a
proinflammatory micro-environment that amplifies tissue injury and promotes scar-
ring.

Macrophage-derived TNF-α had a direct role in the progression of DN. Condi-
tional deletion of TNF-α from macrophages markedly reduced albuminuria, lessen-
ing the increase of plasma creatinine and histopathologic lesions (Awad et al. 2015).
Likewise, tonicity-responsive enhancer-binding protein (TonEBP) in macrophages
promotes hyperglycemia-mediated proinflammatory activation and chronic renal
inflammation leading to DN and CKD (Choi et al. 2018).

10.6.4 Lipid-Related Inflammatory Signals

Lipids such as triglycerides and cholesterol may accumulate ectopically in the kid-
ney, which contributes to a lipotoxicity process. Palmitic acid-treated podocytes
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had intracellular lipid accumulation and abnormal lipid metabolism, accompanied
by the process of inflammation, insulin resistance, and rearrangements of the SD
and actin cytoskeleton of podocyte. Thus, lipotoxicity accelerated podocyte damage
through lipid accumulation related inflammation (Martinez-Garcia et al. 2015).

Lipoproteins includingLDL,VLDL, and IDLmight act as proinflammatorymedi-
ators, which promote the production of inflammatory cytokines, such as TGF-β,
platelet-derived growth factor (PDGF), and IL-6 secreted from human mesangial
cells. Lipoprotein-mediated cytokine production may cause recruitment of mono-
cytes, lipid-mediated cell proliferation and apoptosis, and extracellular matrix pro-
duction, thus contributing to podocyte injuries and glomerulosclerosis.

10.6.5 Micro-inflammation Promotes Podocyte Injuries

10.6.5.1 Micro-inflammation and Insulin Resistance of Podocytes

Chronic inflammation can reduce podocyte insulin sensitivity. Nucleotide-binding
oligomerization domain-containing 2 (NOD2) is a subtype of intracellular pattern
recognition receptor (PRR), playing functions in innate immunity. Of particular
interest, increased levels of NOD2 were observed in DN patients and high fat diet
(HFD)/STZ-induced mice models. Furthermore, HFD/STZ-induced diabetes mice
models with NOD2 knock-out showed reduced podocyte injury and proteinuria com-
pared with wild-type diabetic mice (Du et al. 2013). In vitro, NOD2 which was
activated by bacterial component muramyl dipeptide in podocytes reduced insulin-
induced glucose uptake and inhibited serine phosphorylation of IRS-1.Another study
has explored the role of other PRR toll-like receptors (TLRs) in the db/dbmicemodel
of DN. Administration of a selective TLR2/4/6 inhibitor GIT27 improved insulin
sensitivity, reduced albuminuria and urinary nephrin levels, indicative of reduced
podocyte damage. TLR4 expression in podocytes was found to be highest expressed
(Cha et al. 2013). Given the links between some specific PRRs activation and insulin
stimulation in podocytes, how podocyte insulin responses are altered following PRRs
activation and inhibition may need specifically investigated.

IKB/NF-κB is another important pathway of insulin resistance in podocyte, and
NF-κB expression was increased in kidney tissues of patients with type 2 diabetes.
NF-κB can increase the level of IRS serine phosphorylation and the expression of
inflammatory MCP-1, IL-6, and TNF-α. Moreover, the increased expressed inflam-
matory factors can further activate the NF-κB. The inflammatory cytokines and the
activation of NF-κB pathway form positive feedback to induce insulin resistance.
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10.6.5.2 Micro-inflammation and Dyslipidemia Act Synergistically
in Podocyte Injury

Xu et al. reported that chronic systemic inflammation exacerbates lipid accumu-
lation in the kidney of ApoE knockout mice by diverting lipid from the plasma
to the kidney via the SCAP-SREBP2-LDLr pathway and causing renal injury (Xu
et al. 2011). Consisted with this, IL-1β stimulation in vitro increased the lipid accu-
mulation in the podocytes by increasing the expression of lipid metabolism related
proteins, for instance, LDLr, sterol regulatory element-binding protein-2 (SREBP-2)
and SREBP cleavage-activating protein (SCAP), and through promoting transloca-
tion of the SCAP/SREBP-2 complex from the endoplasmic reticulum to the Golgi in
the podocytes (Zhang et al. 2015b). Compared with db/db mice, podocyte injury was
more severe in db/db mice with subcutaneous casein injections, which are supposed
to induce inflammatory stress in vivo. Altogether, inflammation may be associated
with high risk for chronic renal fibrosis.

10.6.5.3 Intrinsic Proinflammatory Signaling in Podocytes

Activation of intrinsic proinflammatory signaling in podocytes such as NF-κB sig-
nal pathway aggravates podocyte injury and proteinuria. In STZ-induced diabetic
micemodels with Ccr2 knock-out, transgenic CCR2 overexpression in the podocytes
resulted in significantly increased albuminuria and podocyte loss, without concur-
rent increase in kidneymacrophage infiltration or inflammatory cytokine production.
These findings support that activation of CCR2 signaling cascade in podocytes medi-
ates diabetic renal injury, which is independent ofmacrophage recruitment (You et al.
2017).

IL-20, a proinflammatory cytokinewhich is upregulated by high glucose andTGF-
β1, can increase MCP-1 and TGF-β1 expression in podocytes and induce apoptosis
in podocytes through activating caspase-8. In STZ-induced early DN mice models,
anti-IL-20 monoclonal antibody (7E) treatment or IL-20R1-deficiency led to lower
blood glucose and improved renal functions, and IL-20 is proved to be expressed in
podocytes. Collectively, intrinsic proinflammatory signaling in podocytes contributes
to podocyte damage (Fig. 10.3).

10.7 Immune Disorder in Podocyte Injury

Immune injuries are common causes of podocyte damage. Processes interfering
with podocyte’s structural or functional integrity lead to disruption of the glomerular
filtration barrier.
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Fig. 10.3 Scheme pattern of micro-inflammation-mediated podocyte injury

10.7.1 Immunoactive Molecules Expressed at Podocytes

10.7.1.1 Complement and Complement Regulatory Protein

Primary-cultured human podocytes synthesize and secrete complement C3 physio-
logically, and the stimulation of inflammatory factor INF-γ could increase the produc-
tion of C3. Under physiological conditions, C3 produced by glomerular podocytes
can resist the invasion of foreign pathogens and protect local tissues.C3 activation can
lead to decreased immune complex formation and increased disintegration. On the
other hand, C3 activation leads to increased production of vasoactive molecules and
chemokines,which in turn recruitsmore inflammatorymediators into the glomerulus.
The activation of complement would produce proinflammatory components of com-
plement, i.e., C5a. In immune complex diseases and ischemia-reperfusion injury,
C5a is an important mediator that triggers an inflammatory cascade (Heller et al.
1999).

The kidney is one of the organs that are most susceptible to abnormally activated
complement, which can be seen in various glomerulonephritis. The main pathogene-
sis of idiopathic membranous nephropathy (IMN) is caused by the binding of IgG to
the intrinsic antigen on the basement membrane side of glomerular podocytes, which
combine to form an antigen–antibody complex, thereby activating the complement-
forming membrane attack complex (Takano et al. 2013). In IMN, the concentrations
of complement cleavage products such as C3a, C5a and C5b-9 are significantly
increased. C5b-9 is the final product of complement activation in three pathways of
complement activation, causing podocyte injury not through conventional lysis, but
probably via the mechanism related to the activation of corresponding intracellular
signaling pathways in a subdissolved form. Ronco and Debiec have confirmed that
the podocyte surface antigen megalin binded to the corresponding antibody under-
went an immune complex reaction, activated the complement system, and promoted
the formation of the membrane attack complex C5b-9 (Ronco and Debiec 2007).
As a stimulant of podocytes, c5b-9 could destroy podocyte cytoskeletal proteins,
inserting in the membrane to increase cell permeability, and activating a series of
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transduction pathways, resulting in the diffuse thickening of GBM and defects in
glomerular filtration barrier, clinically leading to significant proteinuria.

In addition, podocytes begin to express complement receptor 1 (CR1, or C3bR, or
CD35) during the capillary synthesis stage of renal development and are evenly dis-
tributed on the cell membrane and the membrane of foot processes. CR1 is expressed
as a cofactor of the complement factor I and expressed in most circulating cells. CR1
is the only physiological blocker of complement synthesis in podocytes and inac-
tivates the lysate of complement to promote the clearance of immune complexes,
protecting podocytes from complement-mediated damage (Alexander et al. 2007).
It has been reported that the production of CR1 was reduced in several glomerular
diseases, making podocytes vulnerable to complement attacks.

Complement regulatory proteins include Crry, CD59, and decay acceleration fac-
tors (DAF or CD55), which are vital to limiting the activation of podocyte comple-
ment (Cheng et al. 2018). Podocyte expression of Crry and CD59 could inhibit C3
invertase and the synthesis of C5b-9, thus to protect podocytes from injuries induced
by antibody-complement activation. In addition, podocytes both in vitro and in vivo
could be detected of DAF. In a mouse model of nephritis, deficiency of DAF resulted
in serious podocyte foot fusion, indicating that DAF might protect podocytes from
complement-mediated injury (Bao et al. 2009).

10.7.1.2 Cytokines and Chemokines

In both physiological and pathological texts, podocytes of humans, rats, and mice
all express the receptors of cytokines interleukin 4 (IL-4), IL-10, and IL-13. After
stimulating podocytes cultured in vitro with IL-4 and IL-13, the skeletal structure and
intercellular-link protein of podocytes were damaged and the permeability increased
(Ha et al. 2017; Kim et al. 2017), suggesting that IL-4 and IL-13 could damage
podocytes by binding to its receptors.

In early minimal change disease (MCD), FSGS, and MN, podocytes increasingly
express inflammatory mediators IL-1 α/β along with IL-1 type 1 receptor (IL-1 RI),
and IL-1RI is decreasingly expressed at late stage of the diseasewhen glomerular cell
hyperplasia and sclerosis appear (Brahler et al. 2012), indicating that thesemolecules
participate in podocyte damage and repair, glomerular local inflammation.

In addition, both podocytes cultured in vitro and renal tissue express receptors of
functional CC chemokine receptor (CCR) and CXC chemokine receptors (CXCR),
which could couple with corresponding chemokines to promote the production of
cytoplasm Ca2+ and ROS and be involved in podocyte injuries (Huber et al. 2002).
Moreover, it has been found that podocytes themselves could produce IL-8 (ligand
of CXCR1/CXCR2), thus podocytes could be activated via autocrine.

CXCL16 might play an important role in the inflammatory response of kidney
diseases. Podocytes overexpress CXCL16 under the stimulation of proinflammatory
factors. Soluble CXCL16 plays a chemotactic role in inflammation and immune
response, while transmembrane CXCL16 removes oxLDL (Gutwein et al. 2009),
which is harmful to the kidney. Therefore, abnormal expression of CXCL16 in
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podocytes might cause renal damage due to excessive immune-inflammatory reac-
tion or an accumulation of oxLDL. It has been found that the expression of CXCL16
and oxLDL in the glomeruli of MN patients increased not only significantly but con-
sistently aswell (Gutwein et al. 2009). The inflammatory factor IFN-γ is the strongest
stimulator of CXCL16, which upregulates several forms and overall cell expression
levels of CXCL16, consequently promoting podocyte damage (Wang et al. 2014).

10.7.1.3 Toll-like Receptors (TLRs)

Under physiological conditions, podocytes of humans andmice could express TLR4.
Stimulating cultured murine podocytes in vitro with the ligand of TLR4-like LPS,
lipid A, and fibrins (endogenous ligand), resulted in an increasing expression of
CCL and CXCL. In the mouse model of cryoglobulinemia membrane proliferative
glomerulonephritis, podocytes expressed more TLR4, promoting the synthesis and
secretion of chemokines and further leukocyte recruitment and glomerular injury
(Banas et al. 2008). It has been shown that under the stimulation of endogenous TLR4
ligand, podocytes upregulate TLR4, promote the production of proinflammatory
chemokines, and actively participate in the recruitment of inflammatory cells, all
leading to glomerular injuries (Banas et al. 2008).

Apart from TLR4, other members of the TLR family have also been proved to
participate in podocyte injury. A recent study has pointed out that the overexpression
of TLR-8 correlates with the progression of podocyte injury in glomerulonephritis,
suggesting that altered levels of urinary Tlr8 mRNA might reflect the degree of
podocyte injury in murine autoimmune GN (Kimura et al. 2014).

TLR-7 and TLR-9 expressed by B cells and dendritic cells have been considered
as important molecules involved in the pathogenesis of systemic lupus. Recent study
demonstrated that active LNonset in childhood expressedmore TLR-9, accompanied
byweakened expression of podocyte SDprotein nephrin, podocin, and synaptopodin;
in the meantime, patients showed proteinuria and high ds-DNA antibody and low
complement (Machida et al. 2010). Therefore, under pathological conditions, TLRs
link the innate immune system with podocyte and glomerular injuries.

10.7.1.4 Costimulatory Factors

B7-1(CD80) belongs to the immunoglobulin superfamily, mainly expressed in
antigen-presenting cells, and provides a costimulatory signal by coupling with cor-
responding molecular receptors expressed on T cells, i.e., CD28 and CTLA 4, reg-
ulating the immune responses induced by activated T cells. It has been found that
B7-1 was expressed on podocytes of lupus nephritis (LN) (Reiser et al. 2004), and
the expression of podocyte B7-1 in LN patients and LN mouse models is positively
correlated with the degree of proteinuria. However, new evidence has stricken up
a discordant tune (Baye et al. 2016), leading to further mandatory studies of the
application of B7-1 blockers in treating proteinuric patients (Novelli et al. 2016a).
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Studies have shown that under the induction of hypoxia, high glucose, or bacteri-
ocin lipopolysaccharide (LPS), the expression ofB7-1would be induced in podocytes
which does not occur under physiological conditions, and participate in podocyte
cytoskeletal reorganization and the pathogenesis of proteinuria (Chang et al. 2013;
Fiorina et al. 2014; Shimada et al. 2012).

In the glomerulus of nephritis, podocyte-expressedB7-1may also recruit T cells to
where GBM is damaged and promote further inflammation. Podocytes from necrotic
crescentic nephritis rat model and cultured rat podocytes in vitro could express both
MHC I/II molecules and intercellular adhesion molecule 1 (ICAM-1) after stimu-
lation of IFN-γ, suggesting that cytokines could present the antigen to infiltrating
T cells (Goldwich et al. 2013). Recently, it has been pointed that compared to nor-
mal people, MCD patients but not FSGS patients excreted more urinary B7-1, while
podocytes of relapsed MCD patients and FSGS patients did not express B7-1, thus
B7-1 might be used to identify MCD and FSGS (Novelli et al. 2016b).

10.7.2 Immune Disorder and Podocyte Injuries

The glomerulus is a well-recognized target of miscellaneous immune-mediated
injuries, and the pathogenesis of immune-mediated glomerular disease is multifac-
torial (Fig. 10.4).

Fig. 10.4 Sequences of immune-mediated podocyte injury
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10.7.2.1 Anti-podocyte Antibody

InMN, the surface molecules of glomerular podocyte act as antigens and trigger sys-
tematic immune responses, resulting in the formation of in situ immune complexes.
The classic animal model of MN, Heymann nephritis, reproduces typical mesangial
lesions by eliciting auto-antibodies against the podocyte membrane protein megalin
in rats (Ronco and Debiec 2005).

It has been reported in vivo that the occurrence of human newbornsMNwas due to
the production of auto-antibodies against glomerular podocyte membrane proteins.
Neutral endopeptidase (NEP) is a membrane protein expressed on the surface of
human podocytes. Studies have shown that neonatal MN occurs due to the presence
of anti-NEP auto-antibodies in children (Herrmann et al. 2012). Its origin is due to the
mother’s carrying the relevant mutation gene and lacking NEP. If the mother bred a
normal healthy fetus, the mother will produce an anti-NEP antibody against the fetus
during pregnancy and the antibody enters the fetus through the placenta. Anti-NEP
antibodies react with NEP antigens on fetal podocytes, forming an immune complex
on the epithelial side, leading to neonatal MN. Although the incidence of this type
of patients is very low, its pathogenesis confirms the role of anti-podocyte antigen
antibodies in the development of human MN (Pozdzik et al. 2015).

10.7.2.2 T Cell Dysfunction

T cell dysfunction and the release of cytokines (circulatory factors) causing podocyte
injury are associatedwith the formation of proteinuria inMCDpatients. It is currently
believed that the cytokines produced by Th1 and Th2 cells in T cells are involved
in the occurrence of MCD, but the cytokines produced by Th2 cells (IL-4, IL-8,
IL-13) might be more important (Mack 2009). Animal experiments have found that
the injection of IL-8 to rats can reduce the content of heparin sulfate on the surface of
podocytes, weaken the membrane filtration barrier of charge, and trigger proteinuria.
There are also receptors for IL-4 and IL-13 on the podocyte, and the increase of
circulating or local IL-4 and IL-13 can directly damage the podocyte through the
receptors on the podocyte and increasing the permeability of the filtrationmembrane.

Shimada et al. (2011) have proposed that MCD is the result of a “two-hit” attack
from podocyte immune dysfunction: The first hit is the effects of bacterial products,
viruses, and various cytokines on podocytes, resulting in an abnormal expression
of CD80 in podocytes, and further cytoskeleton reorganization and morphological
changes of podocytes, increasing the permeability of GBMwhich might bring about
proteinuria. However, due to the self-regulation of the body, podocytes can downreg-
ulate the expression of CD80. If the auto-regulatory function of podocytes and the
body is defective, the sustained expression of CD80 would lead to proteinuria and
even MCD. Moreover, Ishimoto et al. (2011) also observed increasing expression of
CD80 in the urine ofMCD patients; in view of the fact that the expression of CD80 in
podocytes can be induced by IL-13 and bacterial products through the TLR pathway
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and regulated by CTLA4, suggesting that defective immune functions of podocytes
is an essential cause of MCD.

10.7.2.3 Antigen–Antibody Immune Complex

Certain exogenous antigens (small molecular weight, positively charged) are
implanted on the epithelial side and can also lead to the formation of in situ immune
complexes. Hepatitis B virus (HBV)-associated nephropathy is often manifested as
mesangial lesions (especially in children), and HBeAg plays an important role in its
occurrence. The HBeAg molecule is of small mass and negatively charged and can
be implanted across the glomerular basement membrane (GBM) on the epithelial
side, triggering the formation of in situ immune complexes (Gupta and Quigg 2015).

Under inflammatory conditions, podocytes would inhibit the expression of MHC
class II molecules, promoting the remove of immune complexes from the GBM. In
some cases, podocytes might act as antigen-presenting cells themselves, taking up
and processing antigens to initiate specific T cell responses. There has been evidence
that transgenic mice with a loss of MHC class II exclusively in podocytes developed
only a very moderate degree of nephrosclerosis and glomerular crescent formation
compared to the control animals, indicative of their defective capacity to activate
CD8+ T cells (Goldwich et al. 2013).

10.8 The Role of Other Factors in Podocyte Injury

Viral infection, such as human immunodeficiency virus (HIV)-1, parvovirus B19,
cytomegalovirus (CMV), hepatitis B virus (HBV), and hepatitis C virus (HCV),
is associated with podocyte injury. HIV-associated nephropathy (HIVAN) mostly
manifests collapsing glomerulopathy or classic FSGS (Chandra and Kopp 2013).
Podocyte infection is associated with podocyte injury and dedifferentiation and rapid
loss of renal function. Studies have reported that HIV virus can be internalized by
podocytes in vitro, which might be associated with receptors, such as viral coat pro-
tein gp120, and subsequent endocytosis, phagocytosis, or pinocytosis (Bruggeman
2017). Although the transmission of virus in vitro has been well documented, fur-
ther studies are needed to demonstrate the definite mechanism by which the virus
enters podocyte in vivo. Structural viral proteins, gag and pol, and non-structural pro-
teins, vpr, nef, and tat, have been considered to be associated with HIVAN (Conaldi
et al. 2002; Reid et al. 2001; Zuo et al. 2006). HBV is a major cause for membranous
nephropathy andFSGSscarcely,which canbe diagnosed by evidence ofHBVantigen
or antibodies on kidney biopsy. The possible mechanisms of HBV-induced podocyte
injury might be as follows: detective infection of the cells by HBV, deposition of
circulating immune complex in renal cells, effects of HBV-induced immunological
mediators (Bhimma and Coovadia 2004; Sakai et al. 2011).
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Podocytes are also targets of some toxicity drugs, which may further progress to
glomerulosclerosis. For example, gold, bucillamine, and d-penicillamine, which are
used for the treatment of rheumatoid arthritis, are confirmed to cause MN. The pos-
sible mechanism might be closely related to stress, energy metabolism, and inflam-
mation (Fujiwara et al. 2011; Seguin et al. 2005). Other drugs, like non-steroid
anti-inflammatory drugs and interferon, also can be inductor of podocyte injury.
Organic solvents, like gasoline, dimethylbenzene, and formaldehyde, can induce
podocyte injury including foot process fusion and decreased expression of nephrin
and podocin (Qin et al. 2012).

Hypoxia can be induced by various pathogenic conditions including hypertension
and diabetes. Chronic hypoxia can trigger endoplasmic reticulum (ER) stress, which
result in increased ROS. Nephrin and alpha-actin-4, the structural components of SD,
are subject tomutations,which cause defective protein folding in theERof podocytes.
The underlingmechanismmight include transient receptor protein 6 and complement
complex and increased expression of MCP-1 (Chen et al. 2011; Cybulsky 2013;
Maekawa and Inagi 2017). Targeting hypoxia and ER stress and the possible signal
networks might be the novel target for intervention of podocyte injury in CKD.

10.9 Summary

Living in an environment of a variety of pathological stresses and stimuli, podocytes
adapt to maintain the integrity and stability of the glomerular basement membrane,
depending on their highly differentiated characteristics which also reflect the vulner-
ability of this barrier.

The different responses of podocytes to injury are associated with the pathol-
ogy and prognosis of glomerular diseases. As a vital type of renal intrinsic cells,
podocyte damage is an important cause of nephrotic proteinuria and glomerular
sclerosis. However, as a highly differentiated terminal cell, podocyte has no prolif-
erative potential, and loss of podocyte is associated with poor renal outcomes such
as increased proteinuria, glomerulosclerosis, and renal disease progression.

Podocytes have different responses to injuries, including endoplasmic reticulum
stress and autophagy reactions caused by abnormal energy metabolism. This chapter
lists several aspects of podocyte injuries along with potential underlying mecha-
nisms, including glucose and lipid metabolism disorder, hypertension, RAS activa-
tion, micro-inflammation, immune disorder, and other factors. These aspects are not
technically separated items, but intertwined with each other in the pathogenesis of
podocyte injuries.

Injured podocytes would undergo a series of morphological changes: FP disap-
pearance, cellular shrink, pseudocysts form, cell hypertrophy, cytoplasmic lysoso-
mal enrichment, etc. These changes eventually cause podocytes to detach from the
GBM. Moreover, due to the lack of proliferative capacity, the number of glomeru-
lar podocytes would become less and less, until reduced by more than 20% when
glomerulosclerosis occurs.
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Glomerulosclerosis is not a specific disease but a state representing podocyte
injury which is mediated by diverse causes. Podocytes interact with GBM and cap-
illary loops tightly, dysfunction of which is an early event leading to glomeruloscle-
rosis. Glomerulosclerosis seems like a station to stay in just before arriving to desti-
nation. Unanswered questions in the pathogenesis of podocyte injury and glomeru-
losclerosis are still ill-defined, and the causing list will continue to grow. Uncovering
the selective targeting to pathogenesis and underlying mechanism of podocyte injury
and glomerulosclerosis is bound to provide clues to answer for treatment and pre-
vention of the disease in the future.
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