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Metabolic effect of drought stress 
on the leaves of young oil palm 
(Elaeis guineensis) plants using 
UHPLC–MS and multivariate 
analysis
Jorge Candido Rodrigues Neto1,3, Letícia Rios Vieira2,3, José Antônio de Aquino Ribeiro3, 
Carlos Antônio Ferreira de Sousa4, Manoel Teixeira Souza Júnior2,3 & 
Patrícia Verardi Abdelnur1,3*

The expansion of the oil palm in marginal areas can face challenges, such as water deficit, leading to 
an impact on palm oil production. A better understanding of the biological consequences of abiotic 
stresses on this crop can result from joint metabolic profiling and multivariate analysis. Metabolic 
profiling of leaves was performed from control and stressed plants (7 and 14 days of stress). Samples 
were extracted and analyzed on a UHPLC-ESI-Q-TOF-HRMS system. Acquired data were processed 
using XCMS Online and MetaboAnalyst for multivariate and pathway activity analysis. Metabolism 
was affected by drought stress through clear segregation between control and stressed groups. 
More importantly, metabolism changed through time, gradually from 7 to 14 days. The pathways 
most affected by drought stress were: starch and sucrose metabolism, glyoxylate and dicarboxylate 
metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, and 
glycine, serine and threonine metabolism. The analysis of the metabolic profile were efficient to 
correlate and differentiate groups of oil palm plants submitted to different levels of drought stress. 
Putative compounds and their affected pathways can be used in future multiomics analysis.

Palm oil, derived from the African Oil Palm (Elaeis guineensis Jacq.), is the most consumed edible oil in the 
World, with a global production of 83.96 million metric tons—palm oil and palm kernel oil—in 2020/20211. 
This crop is highly dependent on water availability; therefore, drought stress could represent a high risk on the 
production yield. In the next few decades, the population growth and subsequently vegetable oil demands could 
lead to the unforeseen expansion of palm tree crops. However, limiting factors such as abiotic stresses are present 
in most potential farmable areas12.

Water withhold directly affects the plant metabolism, given that defense mechanisms are promptly activated 
to reduce the implications of the stress. Usually, abiotic stress responses are related to crop growth, cell develop-
ment, CO2 fixation, photosynthesis capability, etc.2. Drought stress also induces the production and activation 
of compounds that modulate certain metabolites and pathways, e.g., cell homeostasis3.

Metabolomics is a powerful tool to study applied stresses in plants due to the high capacity of compounds 
detection, identification, and pathway correlation through different methods4–6. This technique is described as 
a “snapshot” of the studied organism, illustrating which compounds are present and their concentrations. The 
challenges faced on metabolomics analysis relies mainly on the complex biological matrices, which require 
different extraction and analytical techniques in order to detect, identify and/or quantify the highest possible 
number of metabolites5.

The plant response to an environmental interaction such as drought stress is an enormous array of chemi-
cally altered metabolites. Metabolomics fits the abiotic stress study demand because metabolites are the most 
direct representation of the plant phenotype, since they are signatures of the biological and chemical activity3. 
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Therefore, in order to lead stress tolerance studies in plants, there is a surging interest to observe the metabolite 
level changes after the abiotic stress4,6.

Although many analytical techniques can be successfully employed in a metabolomics study, chemical separa-
tion and detection mainly resolves around nuclear magnetic resonance and mass spectrometry. Liquid chroma-
tography is, in most cases, the choice adequate for polar phytochemical compound separation, even from complex 
matrices. Mass spectrometry offers a coupled technique (LC–MS) to detect and identify metabolites using high 
resolution and selectivity7. This tandem method is applied successfully to analyze a vast array of metabolites in 
plants, from different chemical classes—flavonoids, alkaloids, glucosinolates, organic acids, and others4,5,8–10.

Discovering data patterns are a difficult task when done manually; therefore, a statistical treatment is neces-
sary. The capability to organize and visualize high amounts of data comes from supervised classification methods, 
such as partial least square discriminant analysis (PLS-DA), which provides group separation based on their 
mass profile. Supervised methods bring the ability to reduce spatial components with no information loss, 
therefore metabolites detected and inserted in this model can be grouped through regression, which amplifies 
the discrimination between samples and visually defines groups with different treatments. Metabolic pathways 
can be further related to the grouped samples with the use of algorithms such as mummichog11 to improve the 
biological meaning of the experiment.

Young oil palm leaves were submitted to metabolic fingerprinting analysis using ultra-high-performance 
liquid chromatography–electrospray ionization–mass spectrometry (UHPLC–ESI–MS) for detection of polar 
compounds. Data analysis from MS spectra was performed through statistical visualization using PLS-DA, 
heatmap, and pathway activity analysis.

Therefore, the aim of this study is to present a high-throughput untargeted method to identify drought-
related metabolic pathways to improve the knowledge about oil palm response, which will be useful in further 
multiomics studies.

Results and discussion
Biochemical, morphophysiological responses and differential expression analysis: contextu-
alization and data correlation.  The current study derives from previous research activities on the char-
acterization of the morphophysiological responses and analysis of differentially expressed genes of oil palm to 
drought stress12. Some results of these activities will be used in the future to corroborate and compare with the 
biochemistry of oil palm drought stress. Important parameters showed that non-irrigated plants were physi-
ologically stressed and such stress could be responsible for metabolic changes. We have collected information 
regarding evapotranspiration and soil water potential, leaf gas exchange [net CO2 assimilation rate (A), transpi-
ration rate (E), stomatal conductance to water vapor (gs), and intercellular CO2 concentration (Ci)], chlorophyll 
fluorescence [Fm, Fo, Y(II), Fv/Fm, Y(NPQ), and Y(NO)], pigment content, leaf relative water content and leaf 
temperature (including thermographic images). This data is not shown at this moment as it has been integrated 
to mRNA and miRNA transcriptome data for future studies.

The drought-stressed plants suffered a gradual reduction in water content from the substrate, resulting in a 
fall of the soil water potential, evapotranspiration rate, and fresh biomass. The net CO2 assimilation, stomatal 
conductance, and transpiration rates suffered a statistical reduction. The fall in net CO2 assimilation and stomatal 
conductance rates, which led to a reduction or inhibition of the enzymatic activity, is the cause of this decrease in 
photosynthetic activity13,14. Therefore, the unbalance caused by the low water availability can directly affect the 
cellular metabolism given the excess or lack of essential metabolites needed for the plants’ biochemical reactions.

In a state of water deprivation, plants usually suffer function rates and photosynthetic efficiency alteration15,16. 
E. guineensis samples presented a linear decrease in chlorophyll concentration and factors related to chlorophyll 
fluorescence only after the 11th day of drought stress.

These data led us to infer that some analyses are better for stress detection, depending on the level of sensi-
bility. After irrigation interruption, many cellular metabolism alterations can be detected by high throughput 
phenotyping methods, depending on intensity, time of exposure, developmental stage, and species analyzed17,18. 
In this study, the metabolomics approach fits due to the drought sensitivity presented just a few days after the 
start of the water deprivation.

Metabolic fingerprinting analysis.  Metabolic fingerprinting is widely known as a powerful untargeted 
approach that correlates chromatogram profiles and the compound information within the MS peaks. The 
drought stress was studied by comparison of the metabolic profile in plants of three groups: control (irrigated) 
and stressed samples (7 and 14 days of water deprivation).

In Fig. 1, a representative chromatogram of each group is shown. The data were acquired using UHPLC analy-
sis and then treated with a “dissect” algorithm, where a list of compounds is created with averaged compound 
mass spectra making it possible to separate overlapping peaks. Based on the UHPLC gradient elution method, it is 
inferred that polar compounds are observed at 0–2 min, medium-polarity compounds at 2–6 min, and non-polar 
compounds at 6–10 min, all in the positive (UHPLC–ESI(+)–MS) and negative (UHPLC–ESI(−)–MS) ionization 
modes. A large number of chromatographic peaks after the dissect treatment was detected in both ionization 
modes, with an average peak count of 98 for UHPLC–ESI(−)–MS of drought samples, 96 for UHPLC–ESI(−)–MS 
control samples, 84 for UHPLC–ESI(+)–MS of drought samples, and 86 for UHPLC–ESI(+)–MS of control 
samples.

Data analysis.  In this study, a total of 32 chromatograms was acquired using UHPLC–MS, and then a 
manual comparison of spectra could easily lead to error. A series of chemometric methods were used to identify 
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the metabolic differences among control and stressed plants. After data pre-processing, the statistic module of 
MetaboAnalyst was employed as the software for the analysis.

MetaboAnalyst 4.0 is a web-based tool suite for comprehensive metabolomics data analysis, interpretation, 
and multi-omics data integration19,20. MetaboAnalyst supports a wide array of functions for statistical, functional, 
as well as data visualization tasks. Some of the most widely used approaches include supervised classification 
techniques—PLS-DA—and unsupervised models—clustering analysis and heatmaps; besides the correlation 
between metabolites and metabolic pathways, all presented in this study.

Partial Least Square Discriminant Analysis (PLS‑DA).  To identify patterns and differentially expressed metab-
olites between the groups, the PLS-DA was applied as the multivariate separation method. This supervised 
method provides a robust regression technique based on labeled samples to optimize group separation by a 
component rotation21. PLS discriminant analysis was applied when comparing control, drought stress of 7 days, 
and drought stress of 14 days (Fig. 2).

Both ESI(+)–MS and ESI(−)–MS datasets presented clear segregation between groups, showing that the 
metabolism is affected by water deprivation. The 7-day group was closer to the control group when compared to 
the 14 days group, indicating that metabolism changed gradually through time. Cross-validation is essential to 
ensure the model’s robustness due either to the classificatory nature and inherent overfitting of the PLS analysis21. 
We used the leave-one-out cross-validation (LOOCV), and the Q2 was evaluated on three components, resulting 
in the following values: Q2 = 0.6866 and accuracy = 0.933 for ESI(+)–MS and Q2 = 0.7830 and accuracy = 1.00 for 
ESI(−)–MS data, which represents a robust and reliable model. In a supervised classification model, R2 and Q2 
are the accuracy parameters, where they range from 0 to 1 (higher means better accuracy) and R2 represents the 
raw predictive accuracy. The Q2 value is obtained when the PLS model is built on a training set against a test set, 
and usually a Q2 value higher than 0.65 is considered substantial for the model predictability. The PLS-DA is a 
fitting-method for identifying metabolites differentially expressed through the variable importance in projection 
(VIP) value. A variable with a VIP value higher than one is potentially important in the model construction. In 
ESI(−)–MS, we found 1126 variables with VIP > 1. In ESI(+)–MS we observed 1069 variables with VIP > 1, and 
from those, 182 variables with VIP > 2.

Hierarchical clustering heatmap.  Figure 3 shows a heatmap generated using the top 50 variables showing the 
higher VIP values in each ionization mode analysis. The heat indicates the behavior of those variables through-
out the samples.

It is possible to confirm the metabolic trends observed on PLS-DA using heatmaps as multivariate cluster 
analysis. A gradient is observed in metabolic intensity, increasing in most cases from the control group (the 
blue area in the left) up to the 14 days of drought stress (the red in the middle). For example, m/z 565.2385 has 
a low intensity on the control group, a medium intensity at 7 days of stress, and a high at 14 days of stress. This 
trend indicates a mass production of defense metabolites as a plant mechanism to survive and keep its metabolic 
functions in the presence of abiotic stress.

A few cases show an opposite trend, where metabolites went from a high intensity on control groups to a low 
one on the 14 days of the stressed group. For example, the detected ESI(−)–MS ions m/z 327.9555, 172.9578, 
432.2970, 232.9784, and 278.9803 have high intensity on the control group, a medium intensity at 7 days of 
stress and a low intensity at 14 days of stress. This trend indicates that the drought stress can also cease metabolic 
production in those cases.
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Figure 1.   Total ion chromatogram (TIC) of representative samples after use of “dissect” algorithm. (A) Drought 
stress sample using UHPLC–ESI(−)–MS. (B) Control sample using UHPLC–ESI(−)–MS. (C) Drought stress 
sample using UHPLC–ESI(+)–MS. (D) Control sample using UHPLC−ESI(+)−MS.
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This heatmap cluster analysis shows that not only metabolite intensities can shift between groups with differ-
ent treatments, those metabolites can be regulated according to the plants response to the stress applied.

Metabolic pathway correlation.  This metabolomics study ends on the pathways most affected by drought stress. 
A clear and objective understanding of the affected-pathways is a way to get the information required to develop 
multiple biotechnological applications, where the development of stress-tolerant genotypes is the final goal to 
increase productivity. This type of study could also be part of a combined multiomics integration approach, 
together with genomics, transcriptomics and proteomics studies.

In recent metabolomics studies, many techniques have been applied in pathway correlation, from manual to 
automated methods4,22–25. Here, we used the mummichog algorithm11,26, based on over-representation analysis 
(ORA), to analyze UHPLC–MS data and predict enriched pathway activity, comparing the significant peaks of 
annotated metabolites.

All samples from UHPLC–ESI(+)–MS and UHPLC–ESI(−)–MS were submitted to the “MS peaks to path-
ways” module of MetaboAnalyst. The pathway activity profile obtained is presented in Fig. 4, indicating the five 
most affected pathways in both ionization methods. In total, 176 and 85 metabolites from 42 pathways were 
significant upon applying the mummichog algorithm on UHPLC–ESI(+)–MS and UHPLC–ESI(−)–MS data, 
respectively. The “Supplementary material” (Tables S1 and S2) presents a list with all affected pathways.

In the UHPLC–ESI(+)–MS analysis, the most affected pathways were: starch and sucrose metabolism; gly-
oxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; and arginine and proline 
metabolism. And the most affected pathways in the UHPLC–ESI(−)–MS were: starch and sucrose metabo-
lism; glutathione metabolism; alanine, aspartate, and glutamate metabolism; and glycine, serine, and threonine 
metabolism. Table 1 indicates the annotated metabolites that ensured the importance of the affected pathways.

Figure 2.   PLS-DA score plots comparing drought/control groups and “leave-one-out” cross validation 
(LOOCV). (A) Positive mode PLS-DA scores plot. (B) Negative mode PLS-DA scores plot. (C) LOOCV in 
positive mode. (D) LOOCV in negative mode.
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The starch and sucrose metabolism was the most affected pathway in either analyses, ESI(+)–MS and 
ESI(−)–MS. This metabolic pathway has a role in photosynthesis, when sucrose and starch are converted from 
triose-phosphates during the CO2 plant fixation, with strict governance between both processes. Synthesis of 
sucrose and starch occurs, respectively, at the cytosol and chloroplast, and the Pi-triose phosphate antiport system 
mediates the coordination27. Triosephosphate synthesis is affected by a slow sucrose production that results in 
low Pi available to the chloroplast, while a rapid sucrose production results in the removal of triose phosphate 

Figure 3.   Heatmap analysis. Blue color indicates low intensity and red color indicates high intensity after the 
applied drought stress. The upper row represent sample groups, red: control group; green: 14 days of stress 
group; blue: 7 days of stress group. Top 50 VIP variables are shown on the right side. (A) UHPLC–ESI(+)–MS. 
(B) UHPLC–(−)–MS.

Figure 4.   Metabolic pathway activity using the mummichog algorithm from (A) UHPLC–ESI(+)–MS and (B) 
UHPLC–ESI–(−)–MS data.
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in excess. Morphologically, plants with deficient sucrose synthesis present reduced growth and tolerance to 
anaerobic-stress conditions28.

Glyoxylate and dicarboxylate metabolism is an important abiotic stress-related pathway, providing a balance 
in metabolic disorders to improve tolerance29. The glutamic acid, indicated in Table 1 and present in both glyoxy-
late and glutathione metabolism, is vastly transported in phloem sap and plays a major role in many biosynthesis 
of other amino acids, chlorophylls, and tricarboxylic acid. The glutamate synthase (GS) isoforms GS1 and GS2 
are described as pivotal enzymes used in genetically enhanced species to improve photorespiration capabilities30 
and response to energy supply31.

The alanine, aspartate, and glutamate metabolism is considered a short catabolic pathway, where an alanine is 
converted into pyruvate, which was highly affected in our study. There are essential metabolic branches influenced 
by this pathway in mitochondrial multi-enzyme system, such as isoleucine, cysteine, methionine, and threonine 
synthesis, which clearly states its importance from a nutritional perspective32.

The arginine and proline pathway is related to nitrogen metabolism in plants, essential for production of 
nucleic acids and proteins. Arginine is a precursor of polyamines and has a role in proline biosynthesis when 
glutamate is not available. The influence of drought stress is highly expected in this pathway, given that proline 
has the capability of protein protection and membrane structure in dehydration cases33, acting on redox status 
or as a scavenger of reactive oxygen species that could increase cellular solute concentration.

Many studies on metabolites from glycine, serine, and threonine metabolism, looking for a better under-
standing of the chemical defenses against salt, cold, and drought stresses in plants, are available. For instance, 
some of them show that threonine metabolites are involved in plant growth and development, cell division, and 
phytohormones regulation34,35.

Materials and methods
Chemicals.  Methanol UHPLC grade, acetonitrile LC–MS grade, methyl-tert-butyl-ether, formic acid LC–
MS grade, and sodium hydroxide ACS grade were purchased from Sigma-Aldrich (Merck, USA). Water was 
obtained using a Milli-Q system (Millipore, USA).

Plant material and growth conditions.  The oil palm plants used were clones regenerated out of embry-
ogenic calluses obtained from leaves of an adult plant belonging to the E. guineensis genotype AM3312. The 
AM33 genotype is a plant from a commercial field in the State of Pará, in Brazil. This field was established with 
seeds from a cultivar developed by Embrapa. Oil palm seeds produced and commercialized by Embrapa in Bra-
zil are “Deli x La Mé”, and the parentals came from progenies obtained from Dura and Tenera plants self-crossed. 

Table 1.   The most affected metabolic pathways in drought stress and metabolites associated.

Pathway m/z Retention time (min) Adduct Error (ppm) KEGG compound Compound name Molecular formula

Starch and sucrose metabo-
lism

343.1232 1.6 M + H 0.000240566 C00185 Cellobiose C12H22O11

219.0263 1.0 M + K 0.000148933 C00095 or C00031 d-Fructose or d-glucose C6H12O6

505.1755 1.6 M + H 0.000743043 C00721 Dextrin (C12H20O10)n

210.0337 7.7 M − 2H[2−] 0.000264633 C16688 Sucrose 6-phosphate C12H23O14P

503.1619 1.6 M − H 0.000140291 C00721 Dextrin (C12H20O10)n

Glyoxylate and dicarboxylate 
metabolism

175.0232 2.6 M + H 0.000531391 C00417 cis-Aconitic acid C6H6O6

135.0284 1.4 M + H 0.000341869 C00149 Malic acid C4H6O5

148.0606 0.9 M + H 0.000150252 C00025 l-Glutamic acid C5H9NO4

129.0179 2.6 M − H2O + H 0.000333869 C00026 Oxoglutaric acid C5H6O5

119.0333 1.0 M + H 0.000546247 C00042 Succinic acid C4H6O4

Alanine, aspartate and gluta-
mate metabolism

129.0179 2.6 M − NH3 + H 0.000418284 C00940 2-Oxoglutaramic acid C5H7NO4

117.0177 0.7 M + H 0.000538683 C00122 Fumaric acid C4H4O4

146.0809 1.0 M − HCOOK + H 0.000166122 C03090 5-Phosphoribosylamine C5H12NO7P

325.0928 7.5 M + Cl[−] 0.001288772 C03406 l-Arginosuccinic acid C10H18N4O6

128.0352 0.9 M + ACN − H 8.38E-05 C00022 Pyruvate C3H4O3

Arginine and proline 
metabolism

146.1648 0.6 M + H 0.00030209 C00315 Spermidine C7H19N3

148.0606 0.9 M + H 0.000150252 C05938 l-4-Hydroxyglutamate 
semialdehyde C5H9NO4

102.0544 0.9 M − CO + H 0.000409762 C04281 l-1-Pyrroline-3-hydroxy-
5-carboxylate C5H7NO3

146.0809 1.0 M + H 0.00022109 C02946 4-Acetamidobutanoate C6H11NO3

119.0333 1.0 M − CO2 + H 0.000575491 C05946 d-4-Hydroxy-2-oxoglutarate C5H6O6

Glutathione metabolism
657.1498 8.3 M + HCOO 0.000240802 C00127 Glutathione disulfide C20H32N6O12S2

128.0352 0.9 M − H2O − H 5.26E − 05 C00025 l-Glutamic acid C5H9NO4

Glycine, serine and threonine 
metabolism

146.0461 0.9 M + ACN-H 0.000182687 C00258 Glyceric acid C3H6O4

233.9926 0.9 M + Cl 0.000842469 C01102 O-Phospho-l-homoserine C4H10NO6P
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Plants were kept in black plastic pots (5 L), containing 1700g of a mix of vermiculite, soil, and a commercial 
substrate (Bioplant, Brazil) in a 1:1:1 ratio—on a dry basis—and fertilized using 2.5 g/L of the formula 20–20–20.

Before starting the experiments, we screened the plants to standardize the developmental stage, size, and the 
number of leaves. The experiment was performed in a greenhouse at Embrapa Agroenergy (www.​embra​pa.​br/​
en/​agroe​nergia), in Brasília, DF, Brazil (S-15.732°, W-47.900°). The plant material collection and methodology 
used in this study complied with relevant institutional, national and international guidelines and legislation. 
The main environmental variables (temperature, humidity, and radiation) fluctuated according to the weather 
conditions and were monitored throughout the experimental period from the data collected at a nearby weather 
station (S-15.789°, W-47.925°).

Experimental design and drought stress.  The experiment consisted of two treatments—control and 
drought-stressed plants—with four plants kept in a substrate in the field capacity (control), and six plants submit-
ted to drought stress. The young oil palm plants were subjected to treatments when they were in the growth stage 
known as “bifid” saplings. Drought stress consisted of total suppression of irrigation for 14 consecutive days. At 
the end of this period, the substrate water potential, as measured by the water potential meter Decagon mod. 
WP4C (Decagon Devices, Pullman, WA, USA), was 0.19 ± 0.03 MPa (control) and − 13.61 ± 1.79 MPa (drought 
stress), while the relative water content of leaves was 90.50 ± 0.95% (control) and 49.18 ± 9.76% (stressed plants). 
Before the onset of drought stress, oil palm leaves had the highest gas exchange rates, as measured by infrared gas 
analyzer Li-Cor model 6400XT (Li-Cor, Lincoln, NE, USA). Under drought, leaf gas exchange rates in drought-
stressed plants dropped to negligible values (data not shown).

Leaf samples were collected at 7 and 14 days after the onset of the stress from four control plants and four 
stressed plants. Leaf samples with approximately 50 mg were collected for the metabolomics analysis; four 
replicates per plant. After harvesting, samples were immediately frozen in liquid nitrogen and stored at − 80 °C 
until metabolites extraction and analysis.

Metabolites extraction.  Each sample was ground in a ball mill (Biospec Products, USA) before solvent 
extraction. Metabolites were extracted using an adapted protocol from The Max Planck Institute36, called "All-
in-One", which provides a polar fraction for secondary metabolite analysis, a nonpolar fraction for lipidomics 
and a protein pellet for proteomics; all obtained from the same plant sample. Each ground sample was added 
to a microtube and mixed with 1 mL of a methanol and methyl-tert-butyl-ether (1:3) solution at − 20 °C. After 
homogenization, they were incubated at 4 °C for 10 min. Each microtube was ultrasonicated in an ice bath for 
another 10 min. Then, 500 μL of a methanol and water (1:3) solution was added to the microtube before cen-
trifugation (12,000 rpm at 4 °C for 5 min). Three phases were separate: an upper non-polar (green), a lower polar 
(brown), and a remaining protein pellet. Samples were transferred to fresh microtubes and vacuum-dried in a 
speed vac (Centrivap, Labconco, Kansas City, MO, USA) overnight at room temperature (~ 22 °C).

UHPLC–MS.  A total of 0.4 μL of the extract was then resuspended in 850 μL of methanol and water (1:3) 
solvent mixture and then analyzed by UHPLC–MS. The Nexera X2 UHPLC system (Shimadzu Corporation, 
Japan) was equipped with a reversed-phase Acquity UPLC BEH C8 column (1.7 μm, 2.1 × 150 mm) (Waters 
Technologies, USA). Chromatographic run parameters were: isocratic from 0 to 0.5 min (4% B), linear gradient 
from 0.5 to 10 min (34% B) and 10–15 min (100% B) and isocratic from 15 to 18 min (100% B). Solvent A was 
0.1% formic acid in water (v/v), and solvent B was 0.1% formic acid in acetonitrile (v/v). The flow rate was set 
at 400 μL/min.

High-resolution mass spectrometry (HRMS) was performed in a MaXis 4G Q-TOF MS system (Bruker 
Daltonics, Germany) using an electrospray source in the positive and negative ion modes (ESI(+)–MS and 
ESI(−)–MS). The MS instrument settings used were: endplate offset, 500 V; capillary voltage, 3800 V; nebulizer 
pressure, 4 bar; dry gas flow, 9 L/min, dry temperature, 200 °C; and column temperature, 40 °C. The acquisition 
spectra rate was 3.00 Hz, monitoring a mass range from 70 to 1200 m/z. Sodium formate solution (10 mM NaOH 
solution in 50/50 v/v isopropanol/water containing 0.2% formic acid) was directly injected through a 6-port 
valve at the beginning of each chromatographic run to external calibration. UHPLC–MS data was acquired by 
the HyStar Application version 3.2 (Bruker Daltonics, Germany), and data processing was done using Data 
Analysis 4.2 (Bruker Daltonics, Germany). This extraction method and UHPLC–MS analysis system has been 
optimized and used in recent studies from our group4 and resulted in reliable results, therefore is replicated in 
the present work.

Data analysis.  The raw data from UHPLC–MS was exported as mzMXL files using DataAnalysis 4.2 soft-
ware (Bruker Daltonics, Germany) and pre-processed using XCMS Online37,38 for feature detection, retention 
time correction, and alignment of metabolites detected on UHPLC–MS analysis. Two datasets, one for the sam-
ples harvested at 7 days of drought and another for the samples harvested at 14 days, were created.

Pre-processing done using optimized parameters based on Albóniga et al.39, which tunes feature detection to 
obtain a smaller data matrix but with a higher number of variables with an SD < 20%, which creates a more robust 
data processing. Peak detection was performed using centWave peak detection (Δ m/z = 25 ppm; mzdiff = 0.002; 
minimum peak width = 12 s; maximum peak width = 40 s) and mzwid = 0.02, minfrac = 0.16, bw = 1 were used 
for retention time alignment. Statistics analysis used an unpaired parametric t-test (Welch t-test).

The processed data (csv file) was then submitted for analysis in the MetaboAnalyst 4.019,20. Before multivariate 
analysis [partial least square discriminant analysis (PLS-DA), heatmap, and hierarchical cluster analysis (HCA)], 
all data variables were normalized by internal standard (sodium formate adduct, rT = 0.1 min; m/z 226.9522 in 
positive mode, m/z 316.9478 in negative) and scaled by the auto-scaling method. A PLS model was built with 

http://www.embrapa.br/en/agroenergia
http://www.embrapa.br/en/agroenergia


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18271  | https://doi.org/10.1038/s41598-021-97835-x

www.nature.com/scientificreports/

three groups to attempt the segregation between control (irrigated) and stressed samples (7 days and 14 days 
of drought). Internal validation—leave-one-out cross-validation (LOOCV)—was performed to ensure model 
robustness. The results described here were obtained at the MetaboAnalyst web tool in 4/14/2020.

A heatmap was built using all samples and the following criteria: distance measure, Euclidean; clustering 
algorithm, Ward; standardization, autoscale; and top 25 features using t-test/ANOVA to retain the most con-
trasting patterns.

The last step of the data processing was the use of the mummichog algorithm approach11 in the MS peaks to 
pathways module of MetaboAnalyst. The criteria used on this analysis were: molecular weight tolerance, 5 ppm; 
primary ions enforced; p-value cutoff, 0.01; pathway library, Oryza sativa japonica (Japanese rice) from Kyoto 
Encyclopedia of Genes and Genomes (KEGG)40–42.

Conclusion
Through an untargeted metabolomics method, different peak intensities between control and stressed groups 
were used as the main parameter to evaluate tolerance levels to water deficit and to screen drought tolerance in 
E. guineensis leaves.

A high amount of metabolites and pathways were significantly affected by drought stress. We detected metabo-
lites from a wide range of chemical classes using UHPLC–MS as a high-throughput untargeted method and 
putatively annotated 24 differentially expressed metabolites from the most affected pathways on ESI(+)–MS 
and ESI(−)–MS. These pathways were: starch and sucrose metabolism; glyoxylate and dicarboxylate metabo-
lism; alanine, aspartate, and glutamate metabolism; arginine and proline metabolism; and glycine, serine, and 
threonine metabolism.

Metabolic pathways and their respective compounds, presented in this study, corroborated with the clear 
metabolic response of E. guineensis, given that most of those pathways are known by their importance in response 
to abiotic stress, such as drought stress. These results implicate a more accurate and responsive multi-omics future 
study targeting enhanced crops with a higher tolerance to water deficit, resulting in an improved crop yield.
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