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Abstract: In recent years, several foodborne viruses’ outbreaks have been recorded worldwide.
Most of the foodborne viruses have a low infection dose, are stable and can persist and survive
in foods for a long time without loss of infectivity. The most important foodborne viruses are:
human norovirus (HuNoV), human rotavirus (HRV), hepatitis A virus (HAV), hepatitis E virus (HEV),
human astrovirus (HAstV), Aichi virus (AiV), sapovirus (SaV), human adenovirus (HAdV) and
enterovirus (EV). In recent years, innovative non-thermal food-processing technologies including
high-pressure processing (HPP), cold plasma (CP), ultraviolet light (UV), irradiation and pulsed
electric field (PEF) for improving the quality and safety of foods, including foods of animal origin,
have been under research. This review presents the recent data on foodborne viruses and reviews the
innovative non-thermal technologies for the control of the foodborne viruses in foods.

Keywords: foodborne viruses; high-pressure processing (HPP); cold plasma (CP); ultraviolet light
(UV); irradiation; pulsed electric field (PEF)

1. Introduction

Among foodborne outbreaks reported worldwide, foodborne viruses’ outbreaks have increased in
recent years [1]. In contrast to many microorganisms, foodborne viruses cannot grow in foods, they can
survive during processing and storage of foods, and virus-contaminated foods can infect consumers.

Enteric viruses such as human noroviruses (HuNo) and hepatitis A virus (HAV) have been
associated with several recorded illnesses and outbreaks, whereas a low number of human
enteric viruses have caused occasional outbreaks worldwide, including human astrovirus (HAstV),
human rotavirus (HRV), sapovirus (SaV), enterovirus (EV) and Aichi virus (AiV). Human enteric
viruses have been reported for 13.1% and 45% of the foodborne outbreaks in the EU and the United
States, respectively [2]. In addition, hepatitis E virus (HEV) is admitted as an emerging foodborne virus.
In 2014, viruses were the first etiological agent (20.4%) in the foodborne outbreaks in the European
Union (EU) [3]. Transmission of viruses to human is made via consumption of contaminated food,
person-to-person contact or environmental reasons, e.g., water [4].

Viruses can contaminate foods at various steps of their production from pre- to post-harvest.
Humans can be infected by the consumption of viral contaminated foods. However, the transmissions
of viruses via contaminated foods are complicated and usually unknown [5]. A viral transmission to
humans from the consumption of contaminated foods depends on various parameters such as virus
stability, processing methods, the infection dose, and the susceptibility of the host [6]. Additionally,
food components may protect the virus during the food processing methods and human ingestion.
The dose of infection of foodborne viruses is generally low, and almost a small amount of virus can cause
contamination. Foodborne viruses can survive for a long time in foods without loss of infectivity [1].
In addition, many control strategies that rely on the intrinsic and extrinsic properties of foods.
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e.g., pH, water activity (aw) for control of bacterial population in food, is ineffective against foodborne
viruses [1]. Thermal processing provides an effective means for foodborne viruses inactivation, but it
can change the organoleptic properties (e.g., color and texture) and reduce nutritional characteristics
(e.g., protein and vitamin) of the food [7]. Nowadays, consumers’ show an increasing demand for
high-quality natural food products. Since a high number of foodborne viruses’ outbreaks are related to
minimally processed and ready-to-eat foods, alternative preservation methods are needed to inactivate
viruses. The inactivation of viruses and the maintenance of the quality characteristics of high-risk
foods are challenging for food processors [6]. Innovative, non-thermal food-processing technologies,
including high-pressure processing (HPP), cold plasma (CP), ultraviolet light (UV), irradiation and
pulsed electric field (PEF) have been examined for foodborne viruses inactivation, parallel to the
maintenance of sensory and nutritional characteristic of treated food products [6,8]. It is also important
to note that food processors should consider if innovative non-thermal food-processing technologies
for inactivation of viruses can also inactivate bacterial pathogens, e.g., Listeria monocytogenes, that could
potentially grow in the foods during cold storage.

This article presents the foodborne viruses, reviews the innovative technologies HPP, CP, UV,
irradiation and PEF and focuses on their performance in inactivating viruses in foods.

2. Foodborne Viruses

Foodborne viruses and their characteristics are listed in Table 1. These viruses can either be RNA
or DNA and single- or double-stranded. They also have different pathology.

2.1. Human Norovirus (HuNoV)

HuNoV, previously known as Norwalk virus, is a non-segmented positive-sense RNA,
non-enveloped virus, belonging in the family Caliciviridae. Noroviruses are divided into seven
genogroups (GI to GVII) with 30 genotypes found worldwide, while GI, GII and GIV are usually
infecting humans. HuNoV is a human enteric pathogen and is recognized as the major etiological agent
of acute gastroenteritis outbreaks worldwide; the majority of non-bacterial gastroenteritis outbreaks
(90%) in the United States are associated to HuNoV [9]. In the European Union, HuNoV has been
frequently identified in foodborne and waterborne outbreaks and has been the fourth etiological agent
found in foodborne outbreaks [10].

HuNoV has a low infectious dose (<102 copies/mL) and is characterized as highly contagious.
Shellfish, fruits and vegetables pose a significant risk for human infection because they are consumed
raw and may be contaminated with norovirus from the water environment [11].

2.2. Human Rotavirus (HRV)

Rotaviruses are double-stranded non-enveloped RNA viruses, belonging in the family
Reoviridae [12]. They are divided into seven groups (A–G); humans are infected by groups A–C,
while animals are infected by the rest of the groups. Human rotavirus (HRV) causes severe childhood
gastroenteritis and diarrhea in infants and children of less than 5 years old [13]. Animal and human
rotavirus discarded into sewage and the environment can contaminate surface waters, seafood, fruits
and vegetables. Also, food handlers infected with rotavirus may contaminate foods. The infection
dose for human is estimated at 10–100 viral particles found in food or water [9]
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Table 1. Viruses transmitted via food.

Viruses Particle/
Genome Genus/Family Disease Transmission

/Infection Dose Associated Foods

Human Norovirus
(HuNoV) Non-enveloped/ssRNA Norovirus/Caliciviridae Acute gastroenteritis Fecal–oral route/100

copies/mL
Shellfish oysters, fish, buffet

meals, vegetables

Human Rotavirus
(HRV)

Non-enveloped/segmented
dsRNA Rotavirus/Reoviridae Viral gastroenteritis in children,

adult diarrhea

Fecal–oral route, possible
aerosol/10–100 infectious

viral particles

Clams and oysters, fruits,
vegetables

Hepatitis A
(HAV) Non-enveloped/ssRNA Hepatovirus/Picornaviridae Hepatitis A Fecal–oral route/10–100

viral particles
Sandwiches, fruits,

vegetables, milk, shellfish

Hepatitis E
(HEV) Non-enveloped/ssRNA Orthohepevirus/Hepeviridae Hepatitis E Fecal–oral

route/Unknown

Raw/undercooked boar, deer
and pork meat, livers and

liver sausages

Human astrovirus
(HAtVs) Non-enveloped/ssRNA Mamastrovirus/Astroviridae Gastroenteritis

Fecal–oral
route/Unknown; relatively

low

Bivalve mollusks, fruits and
vegetables

Aichi virus
(AiV) Non-enveloped/ssRNA Kobuvirus/Picornaviridae Gastroenteritis Fecal–oral

route/Unknown Raw shellfish

Sapovirus
(SaV) Non-enveloped/ssRNA Sapovirus/Caliciviridae Gastroenteritis

Fecal–oral
route/Unknown; likely a

low infectious dose
similar to that of HuNoV

Shellfish (oysters and clams)

Human adenovirus
(HAdV) Non-enveloped/dsDNA Mastadenovirus/Adenoviridae

Gastroenteritis, fever, respiratory
disease, conjunctivitis,
hemorrhagic cystitis,
meningoencephalitis

Fecal–oral route;
inhalation and direct

contact with small
droplets and
contaminated

surfaces/Unknown

Seafoods (shellfish)

Enterovirus
(EV) Non-enveloped/ssRNA Enterovirus/Picornaviridae

Heart disorders
hand-foot-and-mouth disease

(HFMD), natal sepsis,
meningitis/encephalitis

Fecal–oral predominantly
Respiratory route;

inhaling contaminated
airborne droplets/Low;

1–10 infectious viral
particles

Shellfish (mainly oysters)

ssRNA: single-stranded RNA, ssDNA: single-stranded DNA.
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2.3. Hepatitis A Virus (HAV)

HAV is a 27 nm, non-enveloped, positive-stranded RNA virus, a member of the Picornaviridae
family [9]. Human strains are grouped into three genotypes (I–III) and seven subgenotypes (IA–IIIB)
based on their genomic characterization. The infectious dose of HAV is low, with 10–100 viral particles.
During the incubation time (range 15–50 days, approximately 28 days), the virus is discarded from
the body. HAV can infect humans through the fecal–oral route, direct person-to-person contact or
ingestion of contaminated water or food, such as shellfish, fruits or uncooked vegetables [14].

Waterborne and foodborne HAV is estimated to infect 2–7% of the human gastroenteritis patients,
and foodborne infection can often result in a larger and prolonged outbreak [9]. In the EU, HAV ranked
second, after Salmonella, for the number of hospitalizations with 6.8% of all outbreak-related
hospitalizations reported in 2018 [11]. It is important to know that HAV is the most heat-resistant viral
pathogen [15].

2.4. Hepatitis E Virus (HEV)

HEV is a single-stranded, non-enveloped, icosahedral RNA virus in the family Hepeviridae,
a diverse family of viruses infecting animals and human [16]. Strains of HEV belong to the
Orthohepevirus genus, which is divided into four genotypes (A–D). HEV human disease is caused by
genotypes A and B [17].

HEV is transmitted to humans via the fecal–oral route or the consumption of contaminated food
and water. The infectious dose of HEV has not been accurately determined. HEV infection in humans
can usually cause acute hepatitis. Typically, the disease is self-limiting; the mortality rates are usually
high, particularly in pregnant women and in patients with preexisting liver disease, or may even evolve
to chronic hepatis in immunosuppressed individuals. HEV patients may also show extra-hepatic
manifestations [14].

HEV is characterized as the most common etiological agent of the acute viral hepatitis worldwide
with increasing numbers of autochthonous cases observed worldwide [9]. The consumption of
undercooked or raw contaminated meat from deer and boar can cause HEV in human consumers [12].
HEV is present in the meat, liver and other internal organs of infected pigs [18,19]. In addition,
since large amounts of HEV are excreted in feces, animal manure used as fertilizer or runoffs can
contaminate water sources with concomitant contamination of vegetables or shellfish [20].

2.5. Human Astrovirus (HAstV)

HAstV are small non-enveloped single-stranded positive RNA viruses belonging to the Astroviridae
family, genus Mamastrovirus. Classic HAstV is grouped in 8 serotypes and is responsible for 2%
to 9% of all acute nonbacterial gastroenteritis infections in the pediatric population worldwide.
However, infections in immunocompromised individuals and elderly people are also reported [21].
The infection is transmitted essentially through the fecal–oral route, either directly or by ingestion of
food. HAstV infection can be caused by a relatively low dose. In recent years, large foodborne HAstV
outbreaks have been observed worldwide. Consumption of contaminated bivalve mollusks were
usually associated in several outbreaks, due to their contamination with HAstVs in polluted water [13].

2.6. Aichi Virus (AiV)

AiV is a spherical (ca 30 nm in diameter) non-enveloped, single-stranded positive sense RNA
genome virus classified in the genus Kobuvirus, family Picornaviridae. It was initially found in the
Aichi region of Japan, in 1989, from patients suffering from gastro-enteritis infection associated with
the consumption of contaminated raw oysters [22].

AiV excreted with human feces contaminates waters and it is frequently found in surface waters,
in wastewater, in sewage or river water. Humans could be infected with these viruses from contaminated
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drinking water (after insufficient hygienic treatment) or recreational purposes contaminated water and
after consumption of raw shellfish cultivated in contaminated waters [23].

2.7. Sapovirus (SaV)

SaV is a small (30–38 nm in diameter), positive single-stranded RNA genome virus belonging
to the genus Sapovirus, and a member of the Caliciviridae family. To date, five genogroups of SaV
are recognized, GI to GV. The saVsGI, GII, GIV and GV genogroups infect humans, while the GIII
genogroup infects pigs [24].

Originally SaV was found to cause gastroenteritis in children, but it was also observed in
gastroenteritis cases in elderly people. SaV is usually transmitted through the fecal–oral route.
However, SaV can be also transmitted via contaminated drinking water and food or person-to-person
contact. The infectious dose is estimated at 1015 to 2800 genomic copies [25]. SaV outbreaks have
been increased recently, especially in Japan. SaV have been found in sewage (treated and untreated),
river water and shellfish (oysters and clams) [24].

2.8. Human Adenovirus (HAdV)

HAdVs are non-enveloped, double-stranded DNA viruses that can infect humans. They belong
to the genus Mastadenovirus, family Adenoviridae. HAdV causes several different clinical syndromes
such as gastroenteritis, respiratory disease, hemorrhagic cystitis, hepatitis, etc. However, it is rarely
associated with serious illness or death. It can affect infants and immunocompromised individuals,
or patients with cardiac and pulmonary diseases [26]. HAdV is currently divided into 9 subgroups
(A to I); 90 genotypes have been also recognized [27]. The serotypes causing gastroenteritis are 40–41,
which belong to species F and are the most common etiological agents (5–20%) of acute gastroenteritis
in young children [28].

The most common HAdV infection to humans is via the fecal–oral route. Food, particularly
contaminated seafoods (shellfish), and water are also vectors of transmission and were also associated
with several foodborne outbreaks [27].

2.9. Enterovirus (EV)

Enteroviruses (EVs) are non-enveloped, single-stranded RNA viruses, members of the
Picornaviridae family. Four groups of EVs were recognized, namely, Coxsackie A, Coxsackie B,
polioviruses and echoviruses, based on the clinical symptoms. Due to sequence diversity, EVs have
been also classified into 15 species: rhinovirus A to C and enterovirus A to L. Three rhinovirus species
(A to C) and four enterovirus species (A to D) infect millions of individuals worldwide every year [29].
They usually cause gastroenteritis infections in humans as well as meningitis and encephalitis [30].

EVs are transmitted predominantly via the fecal–oral route, but some species can be spread through
respiratory secretions. The infection dose is low, 1–10 infectious viral particles. Foodborne EV outbreaks
are linked to the consumption of raw shellfish, mainly oysters from a harvest area contaminated by
human sewage [2].

3. Innovative Non-Thermal Food-Processing Technologies for the Inactivation of Foodborne Viruses

The main characteristics and the effectiveness of innovative non-thermal food-processing
technologies (HPP, CP, UV, Irradiation and PEF) on the foodborne viruses’ inactivation are summarized
in Table 2.
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Table 2. Characteristics of food-processing technologies and effectiveness on foodborne viruses’ inactivation.

Technology Principle Advantages Limitations and Drawbacks Effectiveness on Foodborne
Viruses’ Inactivation

Key Mechanism of
Viruses’ Inactivation References

High-pressure
processing (HPP)

An intense pressure
of ≤600 MPa at
chilled or mild
process temperatures
(<45 ◦C) is
held on either liquid or
high-moisture-content
solid foods for a given
exposure period (few
s to over 20 min).

Inactivation of microorganisms and
enzymes.
Minimal effects on nutritive and
organoleptic quality.
Independent of food shape or size.
Uniformity of treatment throughout
food.
Reduced treatment times.
Post-packaging treatments;
prevention of the post-pasteurization
contamination.
Easy to use.
Commercial systems available.
Energy-efficient process; relatively
environmentally friendly process.
Positive consumer appeal.
Approved by regulatory.

Foods should have >40% free
water for antimicrobial effect.
Efficacy depends on type of
microorganism, and the food
composition.
Spores not inactivated.
Mixed effects on enzymes.
Limited packaging options.
Batch processing.
High cost of equipment.

Promising for viral
inactivation in foods.
Virus- and strain-dependent;
enveloped viruses less stable
than non-enveloped.
Depends on processing
parameters (pressure,
temperature, and holding
time) and non-processing
parameters (food matrix, pH
and water activity of foods).

Denaturation of the
viral capsid proteins
incapacitates the
infection virions from
attachment and
penetration to the
host cells.
Enveloped viruses:
distortion of the
virion morphology
and disruption of the
viral envelope.

[8,31–34]

Cold plasma (CP)

Food are exposed to
CP, which is
generated by the
application of an
electric or
electromagnetic field
to a gas; various types
of apparatus are used.
CP consist of various
active agents, radicals,
reactive species, or
charged particles.

High efficiency against various
spoilage microorganisms and food
pathogens, even sporulated.
Short treatment times.
No heat treatment.
Relatively low cost.
No shadow effects.
In-package treatment.

Efficacy depends on the type
of microorganism,
inactivation medium,
number, and physiological
state of the cells.
Efficacy also affected by
physical and chemical
properties of foods, operating
gas mixture and flow.
Negative effects in some of
the quality attributes of the
food products.
Technology in an early
development stage.
Consideration of safe
application.

Becomes a promising
solution for viral inactivation
in foods.
Enteric viruses and their
surrogates have been
successfully treated in
aqueous solutions, and other
liquid media and also on the
surfaces of food.

The main mode of
inactivation depends
on virus target.
Chemical interaction
of reactive agents,
particularly ROS and
RNS and charged
particles.
Modification and/or
degradation of
proteins, nucleic
acids, and lipids of
viral envelopes.

[31,34–43]
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Table 2. Cont.

Technology Principle Advantages Limitations and Drawbacks Effectiveness on Foodborne
Viruses’ Inactivation

Key Mechanism of
Viruses’ Inactivation References

Ultraviolet light
(UV)

An electromagnetic
radiation with
wavelengths (100 to
400 nm) that can
induce damage in a
variety of organisms.
Foods are exposed to
UV-C (200–280 nm):
germicidal range,
inactivates bacteria
and viruses.

Improvement of food safety with
minor effects on the nutritional and
sensory properties of foods at low
doses.
Inactivation of bacterial spores.
Equipment of moderate-to-low
cost-and easy to use.
Stimulates the synthesis of
health-promoting
compounds.
Suitable for food contact surfaces.

Low degree of penetration
(surface treatment).
Pretreatment can be
necessary.
Occurrence of shadow effects.
Process
parameters difficult to
standardize.
The efficacy depends on
several processed factors,
target microorganisms,
microbial concentration and
material or food composition.

Many factors affect the
efficiency, such as the type of
nucleic acid of the virus, viral
proteins, type of host cell,
viral strain, virus aggregation,
and experimental conditions.
Single-stranded (ss) viruses,
independent of the nucleic
acid, at least 10 times more
susceptible than
double-stranded (ds) viruses.
The food composition has
great impact on efficiency.

Predominately attack
of the viral nucleic
acid, but at high
enough doses (>1000
mW s/cm2) it can also
affect the capsid
proteins.

[8,31,34,44]

Irradiation

Packaged foods are
exposed to a certain
amount of ionizing
radiation which
mainly includes
gamma rays, X-rays
and electron beams.

A cold process.
Highly effective.
Suitable for sterilization.
Insect disinfestation and parasites
inactivation.
Delay ripening and senescence.
Excellent penetration into foods.
Post-packaging treatments.
Suitable for large-scale processing.

Low consumers’ preference.
Expensive equipment.
Possibility of affecting quality
parameters.
Efficacy depends on food
composition and type of
microorganisms.
Strict safety standards.

Enteric viruses are more
resistant compared to
bacteria, parasites, and fungi.
Many factors including the
size of the virus, suspending
medium/type of food
product, dose and
temperature affect the
efficiency.

The destruction of
nucleic acids.
Radiolytic cleavage or
crosslinking of
genetic material.
Formation of free
radicals and other
reactive
species contribute to
damage of nucleic
acid, protein, and
viral envelopes.

[8,34,45–47]

Pulsed electric
field (PEF)

An electrical
treatment of short
time (from several ns
to several ms) with
pulse electric field
strength from 100 to
300 V/cm to 20–80
kV/cm.

Minimally processing of foods;
retention of sensorial, nutritional,
and health-promoting attributes of
some food products.
Noticeably short treatment times.
Improvement of energy usage
economically and efficiently.

Low efficacy at destroying
spores and enzymes.
Other preservation
techniques will be required to
preserve the quality and
stability of the food during
distribution and storage.
The industrial equipment is
under development.
Efficiency depends on
process factors, microbial
entity factors and media
factors.

Doubts about the
effectiveness.

Electrical breakdown
of cell membranes,
known as
electroporation.
The ineffectiveness in
viruses may be
explained by the
presence of a protein
capsid on enteric
viruses compared to
the lipid membranes
of bacterial cells.

[8,48–51]
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3.1. High-Pressure Processing (HPP)

HPP as a food preservation method can prolong the shelf life of foods by inactivating
microorganisms and enzymes with minimal influence on the sensory, physical, and nutritional
properties of the foods [52]. The technology applies hydrostatic pressure uniformly and instantaneously
through the food product. The high pressure inactivates the microorganisms found either in the
food matrix or on the surface of food [31]. Currently, the food industry in many countries has used
HPP in a variety of foods products, including fresh bivalve shellfish, vegetable products, juices,
beverages, jams, ready-to-eat meat products and drinkable yogurt [53]. In several countries worldwide,
regulatory criteria for the safety evaluation and labeling of HPP treated foods have been set [54].

In HPP, a high pressure of ≤600 MPa at refrigerated or mild temperatures (4–45 ◦C) is typically
applied to high moisture or liquid foods. Prior to HPP application, the foods are packaged in flexible
pouches and placed in a pressure vessel filled with a liquid medium (usually water), which is used
for the pressure transmission to food. The pressure is held on the product for a given exposure
period that can last a few s to over 20 min, depending on the treatment method [54]. The fact
that the food products are held in their final package during HPP prevents the post-pasteurization
contamination. The pressure transmitting medium is also used in a next step of HPP process. As HPP
is an energy-efficient process because no additional energy is needed once the desired pressure is
reached, it also is considered as a relatively environmentally friendly processing technology [32,53].

HPP studies have been used for eliminating foodborne non-sporeforming bacteria, protozoa and
fungi. However, other studies showed that HPP was also capable of effectively eliminating many
animal and human viruses in foods [53,55]. HPP has been successfully used to inactivate viruses in
high-risk foods, such as shellfish (e.g., clams and oysters) [31]. It is generally recognized that HPP
denatures the capsid proteins of the virus and thus the infection virions are not able to attach and enter
to the cells of the host [33]. In the case of enveloped viruses, the denature of the virion as well as the
viral envelope by HPP have been also demonstrated [56].

Several studies have been highlighted on the heterogeneous nature of foodborne virus responses
to HPP. Poliovirus is highly resistant to HPP, since a HPP application at 600 MPa for 1 h resulted in
a 1 log virus reduction [57]. In contrast, HAV is not resistant to HPP in low pH foods, since a HPP
treatment at 350 MPa for 2 min caused a 5 log virus reduction [55]. A HPP application of ≤600 MPa
resulted in a high viral inactivation (≥5 log reduction) of a variety of non-enveloped viruses such
as HAV, HRV, Feline calicivirus (FCV) and Murine norovirus 1 (MNV-1) used as HuNoV surrogates,
and coxsackievirus A9 (CAV9), a surrogate for enteric virus [53]. Moreover, studies have revealed that
the efficacy of HPP inactivation, even for the same foodborne virus, is strain-dependent [31,58–60].

The effectiveness of HPP for the inactivation of foodborne viruses depends on factors, such as
HPP parameters (pressure, temperature, or holding time) and food characteristics (food composition,
pH and water activity of foods). Chen et al. [61] examined the effect of various combinations of HPP
processing parameters on FCV inactivation and found that a HPP treatment with a higher set pressure
caused a higher viral inactivation compared to this of a higher increase in holding time. For instance,
MNV-1 was gradually inactivated at HPP application of 350 to 450 MPa at 20 ◦C for 5 min, while a
450 MPa treatment resulted in a 6.9 log decrease of MNV-1 [62]. The titer of FCV was reduced by
2.8 logs after a 20 min application of 200 MPa HPP at ambient temperature, whereas the extension of
the holding time to 72 min resulted in only a 0.9 log additional virus reduction [61]. HPP pressure
can act either antagonistically or synergistically with temperature against viruses, while the optimal
temperature for viral inactivation depends also on a specific target virus. Many viruses (e.g., HuNoV,
RV, MNV, Tulane virus (TV; surrogate for HuNoV)) can easily be inactivated by HPP at refrigerated
temperature (4 ◦C) than at room temperature [31,59,62,63]. However, certain viruses such as HAV
were easily inactivated at ambient or higher temperature [62,64–66]. A higher inactivation of FCV has
been found when pressure was applied at 4 ◦C in contrast to temperatures higher than 30 ◦C [61,62].

Among non-processing parameters, pH is a significant factor that should be taken into account
when applying HPP to food products, in correlation to the virus of interest. For example, low pH
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significantly increased pressure inactivation of HAV in foods [65,66]. In contrast, MNV-1, FCV, TV,
HuNoV and HRV were easily more inactivated by HPP in neutral than in low pH [31,55,56,63,66].

The composition of a food is important for the viral inactivation by HPP. Thus, the presence of
lipids, carbohydrates, salts, proteins limits the effectiveness of HPP against viruses, and the same virus
could demonstrate different pressure-resistance on different food products [33,57,65]. For example,
Bovine enterovirus (BEN) and FCV, surrogates of HAV and HuNoV, respectively, were more resistant
to pressure when treated in “naturally” contaminated shellfish, compared to laboratory growth media
or seawater [67].

3.2. Cold Plasma (CP)

Cold plasma (CP) is gaining increasing scientific interest, since it is used in medicine, agriculture,
environmental protection, or foods. CP is able to inactivate biological factors as viruses, bacteria,
spores, yeast or fungi [68].

The term plasma is referred to designate the state of an ionized gas in chemistry and physics [69].
The CP is generated by the application of an electromagnetic or electric field to a gas. Various apparatus
have been used for CP treatment of foods such as corona glow discharges, dielectric barrier discharges,
radio frequencies, gliding arc discharges, atmospheric glow discharges, microwave-induced plasmas
or inductively coupled plasmas [70]. The most important active species generated by plasma discharge
are neutral or excited molecules and atoms, UV photons, negative and positive ions, free radicals and
electrons. The presence of these active agents depends also on the plasma source, but the majority
of reactive species are: vibrationally and electronically excited oxygen and nitrogen, reactive oxygen
species (ROS) such as atomic oxygen O, singlet oxygen 1O2, superoxide oxygen O2

− and ozone O3,
reactive nitrogen species (RNS) such as atomic nitrogen N, nitric oxide (•NO), nitrogen dioxide (•NO2)
or peroxynitrite (ONOO–). Also, if humidity is high, electrically charged components such as H2O+,
OH• radical, OH– anion, or H2O2 are present. All these active compounds proved to have antimicrobial
activity against various microorganisms including viruses [69].

Many research works have verified the significance of the CP in disinfection of materials in contact
with food, as well as decontamination and preservation of food [68]. CP inactivation of bacteria
and viruses has been applied to foods of animal origin such as meat and meat products [71] and
eggshells [72]. CP can be used in foods at ambient temperature for a short treatment time, while the
cost of the process is relatively low [73]. However, this method has certain disadvantages, i.e., a small
working surface and poor permeability. Also, CP can result in increased lipid oxidation, loss of
vitamins and organoleptic attributes, during treatment or storage [35]. The control of the quality
attributes of foods and the safe application of this novel technology is essential for the commercial
applications [36]. The regulatory status of CP as a food processing technology becomes increasingly
important. The European Commission reported that there are no regulatory restrictions in the use of
plasma as an electronic preservative method for organic foods [74].

Foodborne viruses’ inactivation by CP treatment is under intensive research. Extensive research
on foodborne viruses and their surrogates have been made in aqueous and liquid media [37,75–77] and
also on the surfaces of food [38–40]. The majority of the studies have been focused on the susceptibility
of HuNoV [78] and its surrogates such as bacteriophage MS2 [79], FCV [80], TV and MNV [38].
Aboubakr et al. [80] reported a 6 log decrease of FCV with the application of plasma generated with 1%
oxygen for 90 s, that is considerably higher as compared to other inactivation methods of FCV.

It is not clear yet how the use of CP in foods inactivates the viruses present. The studies carried
out so far indicated that CP can inactivate viruses by altering their proteins, genetic components,
and envelope lipids [41]. The chemical interaction of active agents, particularly reactive oxygen and
nitrogen species (RONS), are crucial factors for the virucidal activity. The importance of reactive
agents is dependent on various conditions such as the experimental status, the gas used for the CP
application, the food matrix, the virus type and developed RONS types. These reactive species can
damage the viral nucleic acid, reduce gene expression and eliminate the viral nucleic acid, or both [81].
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Results from recent studies on foodborne viruses and their surrogates’ inactivation by CP revealed
that the main mode of inactivation depends on virus type [42,43,74]. Thus, it is important to examine
the virus components that are affected by the CP application. Additional studies are needed for the
mechanisms of CP inactivation of viruses [73].

3.3. Ultraviolet Light (UV)

Ultraviolet light (UV) is a form of electromagnetic radiation with wavelengths from 10 nm
(frequency ca 30 PHz) to 400 nm (750 THz), shorter than visible light that can damage various organisms.
According to their wavelength, UV is subdivided into UV-A (315–400 nm), UV-B (280–315 nm),
UV-C (200–280 nm) and vacuum UV (100–200 nm). UV-A can affect human skin color by tanning
and UV-B can result in skin burning or even skin cancer. UV-C has germicidal properties and can
inactivate bacteria and viruses, whereas vacuum UV (100–200 nm) is transmitted only in a vacuum and
is absorbed by several substances. When UV-C photons collide with oxygen atoms, ozone is formed,
which is known for its bacterial and virus inactivation activities. UV-C is rarely observed in nature due
to its quick absorption [82].

UV light has been extensively studied for food safety. Compared to thermal processing,
UV technology application to foods results in minimally processed products, fresh-like products with
less effects on the quality characteristics of the products and microbiologically safe. UV light is also an
advantageous food-processing technology, since it is a low-cost method, with no toxic or irritating
by-products, and is easily applied to foods [83]. Since UV light is characterized by low penetration,
the treatment was initially used in liquid foods such as milk, whey or juices, as an alternative processing
method of the traditional pasteurization process. It can also be used for the disinfection of eggshells,
ready-to-eat packaged meals, meat, vegetables, and food packaging surfaces [8].

The legislation of UV-treated foods for the consumers’ safety varies between countries. For example,
Canada, the EU, New Zealand and Australia have almost similar approaches, and UV-treated foods are
considered as novel foods. In the USA, UV light is considered by the FDA as radiation and is defined
as a food additive. Since UV technology is promising in food safety, legislation should be harmonized
worldwide by the globalization of UV food regulations [84].

UV radiation inactivates microorganisms by the formation of lesions and impeding DNA
replication. The UV radiation can also form various DNA photoproducts such as cyclobutane
pyrimidine dimers and 8-oxo-7,8-dihydro-2′-deoxyguanosine photoproducts. Thus, UV inhibits
transcription and replication of nucleic acids, a situation called clonogenic death [85]. In certain cases,
the metabolism can repair the DNA changes depending on the microorganism [44].

The UV efficacy depends on various factors such as UV sources, operating conditions,
target microorganisms and food [44]. Different energy doses are required for causing death of
various microorganisms [82]. The food composition is also crucial for the efficacy of UV light. The UV
efficacy against viruses is also affected by food components such as proteins, fat, or carbohydrates [85].

Several studies have examined the resistance of various foodborne viruses to UV light. UV light
predominately neutralizes the nucleic acids of the virus. However, UV applied at high doses
(>1000 mW s/cm2) attacks the capsid proteins, resulting in the genome destabilization from the RNases
present in the food [8]. The genomic RNA of enteric viruses, exposed to UV light, may also be
modified. Since the repair enzymes found bacteria are not present in the viruses, the mechanism
of “multiplicity of reactivation” is observed in repairing some types of affected genomes of several
viruses [86]. Most of the studies on the UV dose for foodborne virus inactivation were conducted on
viruses diluted in water or buffer. The UV efficiency for the inactivation of viruses depends on several
factors, such as the nucleic acid of the virus strains, capsid proteins, host cell types, virus morphology
and aggregation, as well as experimental conditions [8]; for example, single-stranded (ss) foodborne
viruses, with different types of nucleic acid, found to be at least 10 times more susceptible to UV light
than double-stranded (ds) viruses [8].
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3.4. Irradiation

Food irradiation is a method that inactivates microorganisms in foods by using ionizing radiation
from gamma rays (from the radionuclides 60Co or 137Cs), electron beams (up to 10 MeV), or X-rays
(up to 5 MeV) [45]. Several international authorities reported that the irradiation technology is a safe
and effective treatment for foods that can improve food safety and reduce economic losses from food
spoilage [87].

However, ionizing radiation for foods applications has not been extensively used due to the
reluctance of the consumers to accept irradiated food [88]. Although irradiation of food products
technology is approved in approximately 60 countries, the commercial use is limited to quite few
countries in Asia and North America [89]. National regulations on food irradiation vary from country
to country [87]. In the USA, the FDA is authorized for permitting the use of irradiation in food [46].
Also, a regulatory framework regulates irradiated foods and food ingredients in the EU [90]. Consumers
require more information about irradiated food. According to several law requirements in many
countries, the use of the logo (commonly the international icon for irradiated food called the “Radura”
symbol) and a statement of benefit are required in irradiated foods [91].

The irradiation is applied to foods by passing the packaged foods through a radiation chamber.
Processing of the food product in the package is one of the benefits of irradiation since the possibility
of post-process contamination is eliminated [45]. The irradiation of foods is advantageous since there
is no loss of the quality characteristics, as indicated by several studies in many foods. However,
irradiation deteriorates the sensory properties of certain foods due to the development of off-flavors and
off-odors. Apart from the type of food, several factors including temperature, the package atmosphere,
radiation dose, packaging material, storage time, and the food quality status before irradiation could
affect the sensory alterations in irradiated foods [92].

The sources of gamma rays for foods are mainly 60Co, a radioactive isotope produced from 59Co,
and 137Cs, a spent fuel from nuclear reactors.60Co is the most commonly used radionuclide in food
since is characterized by a deep penetration, uniformity of dose, decay to nonradioactive nickel when
spent, with a low risk to the environment, and available for use almost 95% of the emitted irradiation.
However, the short half-life of 5.3 y and a slower rate of irradiation of the food compared to other
irradiation sources are the main disadvantages [93].

Beta rays are a high-speed stream of electrons or positron, emitted by a radioactive atomic nucleus;
due to their low energy levels, they must be accelerated to achieve the required energy for inactivating
viruses in food preservation. Electron accelerators seem to present a number of advantages compared
to gamma rays; the irradiation level can be changed at any time; it provides non-nuclear energy, the risk
of occupational injuries is low, and can irradiate foods at a high or low dose [94].

Gamma-rays is an ionizing radiation method constituted by electronically charged atoms or
molecules. The amount of gamma rays energy absorbed by the food is measured in Gray or kilo Gray
(kGy). The desired dose is related to the exposure time. The quantity of energy absorbed by the food
product also depends on its size, density, and thickness. The determination of the necessary doses
for food processing is based on the food type and the aim of the irradiation [8]. There are specific
international regulations and standards for the dosimetry used for the gamma rays irradiation of
foods [95]. A 10 kGy maximum dose of gamma rays irradiation of foods was found adequate for
several food types [46].

Nowadays, innovative irradiations methods such as low-energy electron beam (LEEB) and
low-energy X-lay (LEEX) technologies have been developed for microbial and viral inactivation in
foods [96,97]. Unlike radiation with γ-rays and X-rays, EB does not use radioisotopes, which is usually
not acceptable by consumers [96].

Ionizing radiation to microorganisms can cause either direct or indirect inactivation. The most
important direct effect of ionizing radiation on a microorganism is the lethal destroy to the genetic
material, whether it is RNA or DNA, due to the nonspecific collision of photons of radiation with
the atoms in the nucleic acids of the microorganisms. The indirect effects may be due to the free
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radicals formed during water radiolysis, resulting in the damage of enzymes, protein and nucleic acid.
The effectiveness of irradiation is affected by radiation dose and several factors associated with the
food type and composition (e.g., oxygen, water activity, and pH) and the type of microorganism [98].

Microorganisms show various resistance levels towards specific doses of irradiation [99].
Few studies have been conducted on the effects of irradiation on viruses as compared to those
of bacteria. The disruption of the structure of the nucleic acid is an important factor in viral inactivation
by irradiation. Due to their small size and genome, foodborne viruses are not easily inactivated by
ionizing irradiation compared to fungi or bacteria [5]. Viruses survived a radiation of 12D process
reduction for Clostridium botulinum in meat products except in previous damages by other methods [100].
The effectiveness of gamma irradiation on virus depends on many factors, including the virus size
or type, food types, dose and application temperature. Early research has indicated the effect of
irradiation on poliovirus in fish fillets [101], coxsackie virus in beef [98], and HRV and HAV in oysters
and clams [102,103]. Sullivan et al. [102] reported that the type of food significantly affected coxsackie
virus inactivation by irradiation.

3.5. Pulsed Electric Field (PEF)

Pulsed electric field (PEF) is a food preservation technology because it is advantageous of better
retention of food quality attributes of several food products [48]. PEF-processed foods of animal
origin include milk, yogurt drinks, or liquid egg products. PEF technology is advantageous due to
microbiological safety and low energy requirements [49].

PEF technology provides an electrical treatment of short time (1–300 ns) with pulse electric field
strength varied between 20 and 80 kV/cm to 100 to 300 V/cm [48]. PEF was not used in the food
industry for several years due to inappropriate industrial equipment for food applications. To date,
recent developments in pulse power generators and the improved understanding on the mechanisms
involved have allowed the design of appropriate PEF equipment for commercial food applications.
Thus, PEF technology equipment for the food industry has been available in the market, recently [50].

PEFs can inactivate vegetative cells of bacteria, yeast, and mold but cannot easily destroy spores.
The microbial inactivation with PEF depends on several process factors (electrical field intensity,
pulse wave width, temperature and time), microbiological factors (number, type and growth stage
of microorganism) and food factors (acidity, antimicrobials, ions present and ionic conductivity
strength). Microorganism inactivation enhances with increasing electric field intensity, process time
and temperature. The temperature should be kept below 30–40 ◦C by providing a cooling system [104].

Studies conducted on the effect of PEF on virus inactivation in foods are rather low. It is still
not known whether viruses can be inactivated in foods in contrast to laboratory media. Khadre and
Yousef [49] reported that rotavirus of various concentrations was not inactivated to a PEF treatment of
20 to 29 kV/cm for 145.6 µs. This ineffectiveness of PEF against viruses in foods was attributed to the
presence of the capsid proteins of the viruses as compared to the lipid membranes of bacterial cells [8].

4. Conclusions

Due to increased foodborne viruses’ outbreaks recorded worldwide, the development of novel
processing methods for the viral inactivation in foods is important. Among several innovative
non-thermal food-processing technologies for the inactivation of viruses that have been examined,
HPP and CP are promising methods, while PEF or irradiation are considered less-effective methods.
Further studies on the effects of innovative non-thermal food-processing technologies on viruses
parallel to their effectiveness on control of other foodborne pathogens microorganisms and quality
characteristics in various food are required.
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