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Deep data analysis via physically 
constrained linear unmixing: universal 
framework, domain examples, and a 
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Abstract 

Many spectral responses in materials science, physics, and chemistry experiments can be characterized as resulting 
from the superposition of a number of more basic individual spectra. In this context, unmixing is defined as the prob-
lem of determining the individual spectra, given measurements of multiple spectra that are spatially resolved across 
samples, as well as the determination of the corresponding abundance maps indicating the local weighting of each 
individual spectrum. Matrix factorization is a popular linear unmixing technique that considers that the mixture model 
between the individual spectra and the spatial maps is linear. Here, we present a tutorial paper targeted at domain 
scientists to introduce linear unmixing techniques, to facilitate greater understanding of spectroscopic imaging data. 
We detail a matrix factorization framework that can incorporate different domain information through various param-
eters of the matrix factorization method. We demonstrate many domain-specific examples to explain the expressivity 
of the matrix factorization framework and show how the appropriate use of domain-specific constraints such as non-
negativity and sum-to-one abundance result in physically meaningful spectral decompositions that are more readily 
interpretable. Our aim is not only to explain the off-the-shelf available tools, but to add additional constraints when 
ready-made algorithms are unavailable for the task. All examples use the scalable open source implementation from 
https://github.com/ramkikannan/nmflibrary that can run from small laptops to supercomputers, creating a user-wide 
platform for rapid dissemination and adoption across scientific disciplines.
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Introduction
The development of physical and spectroscopic imag-
ing methods in the last two decades has given rise to 
large multidimensional datasets, with examples includ-
ing electron energy loss spectroscopy imaging in (scan-
ning) transmission electron microscopy [1–4], bias and 
time spectroscopies in scanning probe microscopy [5–8], 
hyperspectral Raman and optical imaging [9–12], and spa-
tially resolved mass spectrometry measurements [13–15].

In many of these techniques, the measured signal can 
be (with good approximation) presented as a linear com-
bination of spectra, i.e.,

where x is the spatial variable, x = (x,y), R is the vector 
parameter variable, wi(R) is the individual spectra (some-
times called ‘endmembers,’ ‘factors,’ or ‘components’), and 
ai(x) are corresponding spatial maps (also called abun-
dance maps) and N defines the noise (not considered 
here). For example, wi(R) can be optical spectra in Raman 
and hyperspectral imaging, mass spectra, energy loss 

(1)S(x,R) =

k
∑

i=1

ai(x)wi(R)+ N ,
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spectra in electron microscopy, force–distance curves in 
atomic force microscopy, etc. The loading maps ai(x) cor-
respond then to local weightings of each spectrum, with 
examples such as concentration of relevant chemical spe-
cies, phases, etc.

A special case of linear mixing is the linear imaging 
technique, for which the measured image I(x), is given 
by the convolution of an ideal image (representing mate-
rial properties) I0(x − y) with the resolution function 
dependent on probe geometry, F(y):

where N (x) is the noise function. While in general the 
linearity of particular imaging mode needs to be proven, 
it is considered to be a reasonable approximation in the 
case of many optical [16], mass spectrometry [17], scan-
ning probe [18–21], and electron microscopy techniques 
[22]. The important aspect of Eq. (2) is that finite spatial 
resolution does not affect the linearity of the mixture, 
making analysis via Eq. (1) universal.

In certain cases, the elementary contributions wi(R) in 
Eq.  (1) are known, for example from tabulated data for 
the specific system. In this case, the problem is reduced 
to the determination of the unknown weight coefficients 
ai(x) via minimal least square regression. Since least 
squares is a convex optimization, there exists a unique 
ai(x) given wi(R) [23]. At other times, it is necessary to 
solve a constrained least squares [23, 24] problem, such 
as non-negativity [25], box [26, 27], etc. But in all cases 
the separation of spectrum into a linear combination of 
known components with unknown coefficients presents 
a relatively straightforward problem.

However, in many cases the functional form of the end-
members is unknown, leading to a paradoxical problem 
where we need to determine both loading maps ai(x) and 
endmember spectra wi(R) from multiple realizations of 
the experimental observations S(x,R). This constitutes 
the classical linear unmixing problem [28, 29].

The classical tool to address it is principal component 
analysis (PCA), known since work by Pearson [30] in the 
early twentieth century. PCA has started to become popu-
lar with the increase of the data size, e.g., from internet 
applications [31], as a first step of exploratory data analy-
sis for visualizing high dimensional data. Multiple applica-
tions of PCA for hyperspectral optical imaging [32], EELS 
[33–36], mass spectrometry [37, 38], and scanning probe 
microscopy [39–42] have been further reported. However, 
while it is an extremely powerful exploratory data analy-
sis tool, and is well defined from the information theory 
perspective, PCA-derived components lack physical 
constraints. For example, PCA components of the (posi-
tively defined) EELS signal will have negative regions, 

(2)I(x) =

∫

I0(x − y)F(y)dy + N (x),

automatically precluding physical interpretation. This 
consideration highlights the (to-date) limited applicability 
of linear unmixing techniques in physical imaging.

However, developments in matrix factorization have 
enabled a considerably broader spectrum of linear 
unmixing techniques that allow superimposing a large 
number of constraints on either loading maps or end-
members. It can be argued that in cases when the sta-
tistically imposed constraints match the anticipated 
physics of the system, the unmixing will directly provide 
the insight to the latter.

In this manuscript, we present a review of matrix fac-
torization (MF) approaches, as well as a tutorial for 
domain experts on how these new approaches can be 
applied to a variety of imaging modalities. We discuss 
the different physical constraints that can be placed on 
the endmembers and the spatial maps, that can result in 
more physical meaningful results, and show test cases 
with examples ranging from spatially resolved mass spec-
trometry, to electron microscopy, scanning tunneling, 
and X-ray microscopy. An overview of matrix factoriza-
tion is provided in “Notations” section. Constraints are 
discussed in “Matrix factorization” section, and examples 
of hyperspectral imaging and MF-based images analysis 
are presented in “Matrix factorization framework (MFF)” 
and “Domain specific applications” sections.

Notations
We begin with introducing the conventions used in the 
equations. We use capital case letter such as A to denote 
matrices and lower case a for vectors. The one indexed 
lower case such as ai is a scalar value and represents the 
vector element at ‘i.’ Similarly, the two-indexed upper/
lower cases such as Aij or aij represents the scalar value—
also called element of the matrix at the location (i,j). We 
often require a scalar value for the entire matrix or vec-
tor, and one example that can be computed is the so-
called matrix or vector norm. More formally a norm is 
represented as ||A| |q : A ∈ R

m×n → R. The typical val-
ues for q are 1, 2, and F called as ℓ1-norm, ℓ2-norm, and 
Frobenius norm, respectively. Table  1 defines each of 
these norms, and also offers a quick reference for many 
of the terms used in this paper. Also, if there is a com-
parison relation defined between a matrix/vector and a 
scalar, the relations are defined against every element in 
the matrix or a vector to the vector. For e.g., A > 0 means 
every element in the matrix is non-negative and similarly 
for a vector it is represented as a > 0.

Matrix factorization
In this section, we will introduce the matrix factoriza-
tion problem and its connection with the linear unmix-
ing explained above. Subsequently, we explain our matrix 
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factorization framework (MFF) that offers a pragmatic 
framework of incorporating many real-world physical 
constraints. We introduce the popular linear unmix-
ing techniques principal component analysis (PCA) 
and non-negative matrix factorization (NMF) under 
this framework and finally, discuss the examples of the 
two real-world constraints, sparsity and spatial smooth-
ness, as preferential soft constraints with non-negativity 
on endmembers. The aim of this section, is to provide 
domain scientists sufficient information to extend the 
existing off-the-shelf algorithms with additional domain 
constraints they will encounter during their experiments, 
hopefully facilitating better understanding and use of 
multidimensional spectral data.

Matrix factorization is the problem of decomposing 
the input matrix into two or more matrices—called fac-
tors, such that the product of these factors is close to the 
input matrix. Typically, the rank of these factors will be 
much less than the rank of the input matrix and is termed 
as a “low rank approximation” in numerical computing. 
The rank is similar to number of principal components 
in PCA. However, in the Big Data literature [24, 43], as 
opposed to low-rank approximation, the community 
liberally calls this problem a “matrix factorization” as it 
determines the factors for the input matrix, leading to 
an overlap between low-rank approximations and matrix 
factorization techniques. Overall, it is a popular tool for 
many real-world problems in both scientific [44, 45] and 
enterprise domain such as clustering [46, 47], imputation 
[43, 48], background separation [49, 50], etc.

Here, we provide an overview of the framework for 
understanding matrix factorization (“low-rank approxi-
mation”) and tuning the various parameters on this 
framework for day-to-day needs of handling different 
domain observations. For the latter, we use the concept 
of physical constraints such as sparsity, spatial smooth-
ness, robustness to noise, symmetry, etc. that match the 

physics of the specific problem. We further provide some 
examples of physical imaging where these constraints are 
used to match the physics of imaging process and mate-
rial properties.

As a starting point, consider an input matrix X of size 
m × n, where ‘m’ is the number of features and ‘n’ is the 
number of samples, and a very small number ‘k’ called 
‘low-rank.’ Typically, k ≪ min(m,n) may be in the order of 
50’s for matrix in size of millions, while k less than 10 is 
typical for matrices of size in a few thousands. It is com-
mon in the machine-learning literature to use features, 
attributes, dimensions, and metrics interchangeably; 
here, we will consistently use the term ‘features.’ In Fig. 1 
there is a pictorial representation of the matrix factoriza-
tion process with two low-rank factors.

In the case of scientific data, the input matrix can be 
the hyperspectral data acquired by a wide range of spec-
troscopic techniques, where signal in each of the n spa-
tial points represents a spectrum of length m, containing 
information about local properties. The features in 

Table 1  Notations

Notation Remarks

A ∈ R
m×n Capital case letter generally denotes a matrix of size m × n

a ∈ R
m Lower case letter denotes a column vector of length m

Aij or ai A scalar/element from the matrix at location (i,j) or a vector element at i

||A||F
√

∑m
i=1

∑n
j=1 A

2
ij—square root of the sum of the squares of all the elements of the matrix

||A||1
∑m

i=1

∑n
j=1

∣

∣Aij
∣

∣—sum of absolute values of all the elements. Here absolute value means the non-negative value without its sign

||a||2
√

∑m
i=1 a

2
i —square root of the sum of the squares of all the elements of the vector

μ Mean of a vector

KL(P||Q) Defines the similarity between two matrices P and Q as
 
∑m

i=1

∑n
j=1

(

Pij log
Pij
Qij

)
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Fig. 1  Matrix factorization. The matrix X is factored into two smaller 
matrices U and V, such that X ≈ UV
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this case correspond to the spatial grid on which meas-
urements are performed (i.e., (x,y) or (x,y,z)), whereas 
samples correspond to wavelength, energy, voltage, 
mass-to-charge ratio, etc. In the case of linear unmixing, 
the matrix U will be interpreted as consisting of k end-
members wi(R) and V as the loading maps ai(x).

There are many interpretations for matrix factori-
zation. One consistent view among researchers is the 
equivalence of matrix factorization to soft clustering [51] 
with k representatives and distribution of every sam-
ple over these representatives. Given a matrix X of size 
m × n with n samples of data, where each sample has m 
dimensions, matrix factorization generates k representa-
tives as left low-rank factor U of size m × k and the right 
low-rank factor V of size k × n provides the distribution 
of every sample among these k representatives. That is, 
consider a sample j, if the weight of the 2nd entry is more 
than 5th entry of the V matrix, the sample j is associ-
ated more with the 2nd cluster over the 5th cluster. This 
definition is also consistent with the soft clustering of 
determining ‘k’ clusters [51]. Matrix factorization is also 
a dimensionality reduction technique as it reduces the 
sample dimension from m to k in the space of U. That 
is, given the input matrix X of size m × n, we produce a 
matrix V of size k × n where k ≪ m and hence the name 
“dimensionality reduction.” For the rest of the paper, we 
will address matrix factorization mainly as a “dimension-
ality reduction” [52, 53] technique.

One challenging problem in unmixing is determination 
of the number of endmembers k. Ideally, a choice of good 
k is that every point x in the loading map ai(x) is exactly 
representable as a combination of the k endmembers 
wi(R). The trivial solution that satisfies this condition is 
k = rank(X), where rank is the number of non-zero eigen-
values of the matrix X. We are looking for a non-trivial 
k ≪ min(m,n), that best fits the matrix X. Typically, in 
practice, we increment k, until we find the results mean-
ingful. Incrementally updating the number of endmem-
bers and the obtaining loading maps for lower number 
of endmembers is not computationally expensive. In the 
scientific domain, we are expecting the number of end-
members typically to be small, i.e., < ~ 10. To statistically 
evaluate the quality of the unmixing, we may utilize the 
dispersion coefficient method explained by Kim and Park 
[54] in the matrix factorization context. There are also 
other approaches [55] based on information criterion 
such as Akaike information criterion (AIC) or Bayesian 
information criterion (BIC) and the elbow method based 
on law of diminishing advantages [56]. For domain scien-
tists, this problem is akin to one of fitting a model (e.g., a 
polynomial of order n) to data—in those cases, informa-
tion criterion approaches allow one to apply a penalty on 
the polynomials of higher order (due to larger available 

degrees of freedom) that must be overcome for models 
with higher n to be preferred over those with lower n.

Matrix factorization framework (MFF)
The key questions that arise from the previous sections are 
(a) How does one define the approximation X ≈ UV? (b) 
How to incorporate the properties of the input data X, for 
e.g., positive numbers? (c) How can specific domain knowl-
edge—such as, e.g., the representative spectra should be 
spatially correlated, it’s a matrix of signals, etc. be incorpo-
rated? Most of these questions are addressed in matrix fac-
torization process as one of the following: (refer to Table 1 
for details of notations or definitions in this section).

1.	 Similarity function X ≈ UV. Even though UV cor-
responds to the linear unmixing 

∑k
i=1 ai(x)wi(R), 

defining the similarity of UV to X is important. For 
example, it can be an entry-wise closeness of UV 
to X or alternatively the closeness at the individual 
spectra. That is, every row of UV to individual vector 
parameter variable R.

2.	 Properties of the input data can be a hard constraint 
on U and V. For example, the product of two non-
negative matrices will always be positive.

3.	 Characteristics of the data will either be a hard con-
straint or a soft constraint imposed as a regulariza-
tion. In practice, hard constraints are computation-
ally expensive, and regularization provides good 
interpretability. Sometimes, for very large matrices 
enforcing hard constraint might take days to weeks 
and would require running on distributed supercom-
puting clusters [24]. The importance of the regulari-
zation is always defined through positive regulariza-
tion constants—the higher the value, the higher the 
importance. The preference among the conflicting 
soft constraints is expressed through the values of 
the corresponding regularization constant. There are 
scientific libraries such as mlrmbo [57] and hyperopt 
[58] that help domain scientists determine the val-
ues of these regularization constants based on a grid 
search, line search, random search, or Bayesian opti-
mization techniques.

4.	 The product of factors can be transformed using a 
transformation function f. For example, a sigmoid 
function for a Boolean input matrix, or a rounding 
function in the case of integer input matrix.

5.	 Preprocessing on the input matrix to generate X. For 
example, a standard practice in microscopy images 
is to apply a Fast  Fourier Transform (FFT). Mean 
centering is another popular preprocessing step for 
PCA. Similarly, normalization to generate the matrix 
X in the range of [− 1,1] or [0,1] is another common 
preprocessing technique.
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6.	 Finally, a less common but an observed practice is 
providing different weights to the samples. For exam-
ple, as part of the preprocessing step we assume 
some engineered features that are augmented to pro-
vide better information. Such augmented features 
will have a different weight towards the observed or 
measured features.

Figure 2 presents these different control knobs, which 
are parameters of the matrix factorization process.

The above framework [59] offers a unified way of under-
standing many dimensionality reduction techniques such 
as singular value decomposition (SVD), principal compo-
nent analysis (PCA), non-negative matrix factorization 
(NMF), and others needed for multivariate analysis of 
various multidimensional data. Also, it provides the abil-
ity to incorporate the physical constraints that govern the 
underlying process using the above defined parameters. As 
an example, we will explain the standard PCA and NMF, 
that is used in the interpretation of microscopy data.

Below in Table 2 we provide some common realizations 
of the different parameters encountered in Fig. 2.

Principal component analysis (PCA)
Principal component analysis (PCA) [60] is a simple, 
non-parametric method for visualizing high dimensional 
data. Classical PCA is a linear transform that maps the 
data into a lower dimensional space by preserving as 
much data variance as possible. With minimal effort PCA 
reduces a complex dataset to a lower dimension to reveal 
the sometimes hidden, simplified structures that often 
underlie it.

The principal components are the top-k eigenvectors of 
mean subtracted data matrix. That is, consider the matrix 
A of size m × n, an input matrix X is constructed by sub-
tracting the mean of all the m features from each of the n 
samples. We then perform the singular value decomposi-
tion (SVD) of the matrix X. The eigenvalues of the top-k 
eigenvectors are considered as the principal components 

of matrix A. The above process can be explained in the 
matrix factorization framework as below.

From the above formulation (3), for PCA we can map 
the parameters of the MFF, the optimization problem has 
Frobenius norm as the similarity measure with orthogonal-
ity constraints on the factors, where I is an identity matrix 
of size. PCA performs mean subtraction as preprocessing 
and considers uniform weights for all the data points.

In PCA, the orthogonality of the factors is rigid and can 
result in having negative values on the factors restricting 
its interpretability. For example, V cannot be interpreted 
as probability distribution, because of negative values. In 
such scenarios, we consider using non-negative matrix 
factorization (NMF).

Non‑negative matrix factorization (NMF)
NMF [61] is the problem of decomposing the input 
matrix X into two non-negative factors U and V such 
that X ≈ UV. NMF is popular among scientist for spatially 
resolved spectral analysis, defined as finding k ≪ m basic 
spectra (basis functions that change gradually with com-
position, in terms of structure and intensity), such that all 
the m measurements can be explained as a mixture of the 
k basic spectra.

Formally NMF can be defined as,

In the case of NMF, the common similarity measure 
is Frobenius norm as in the above formulation (4) and 
KL-divergence. We are enforcing hard non-negative con-
straint which means every element in the factors U and 
V will be zero or above, and all the samples are uniformly 
weighted.

(3)subject to

min
U ,�,V

∥

∥(A− µ)−U�VT
∥

∥

2

F

UTU = I

V TV = I
� is a diagonal matrix

(4)subject to
min
U ,V

�X −UV �2F

U ≥ 0,V ≥ 0

Fig. 2  Matrix factorization framework

Table 2  Some common realizations of matrix factorization 
framework parameters

Parameters Some common realizations

Similarity functions Frobenius norm, KL-divergence

Transformation function Logistic function, rounding function

Regularization Sparsity, spatial

Hard constraints Non-negativity, orthogonality, sum to one

Weights Uniform weights

Preprocessing Mean centering, normalization, log trans-
formation, FFT
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Sparsity
We often know that the number of endmembers that par-
ticipate in a particular point on the abundance is sparse, 
i.e., limited. Consider the distribution for a particular 
pixel, say 3, on the abundance map from matrix V among 
4 endmembers could have been [0.48 0.49 0.015 0.015]. 
The NMF model allocated an insignificant value 0.015 
for endmembers 3 and 4 so that it can reduce the over-
all objective error of the optimization function. But for 
the domain scientist it can be difficult to delineate these 
insignificant values. We can overcome this difficulty by 
enforcing the maximum number of participating end-
members for every pixel in the abundance map. However, 
it is computationally very expensive to enforce this hard 
constraint, and instead we use an ℓ1—regularizer [25]—a 
soft constraint for the model to ignore insignificant value 
on the V matrix as follows.

Spatial smoothing
It is generally observed that the mixture of endmembers 
around a particular point will be similar. That is, in a 
128 × 128 target, the mixture among the neighboring pix-
els such as (x − 1,y), (x + 1,y), etc. around a given (x,y) is 
likely to be similar. To enforce this spatial smoothness, we 
utilize the spatial regularization [62] in MFF. The NMF 
with spatial regularization can be formally defined as

In the above formulation (6), L is a similarity matrix 
constructed out of the input matrix among 16,384 pix-
els. That is, we consider the pair-wise similarity among 
16,384 × 1535 matrix that results in a 16,384 × 16,384 
symmetric matrix with diagonal elements being zero. By 
providing this additional information, we are incorpo-
rating the neighborhood information implicitly into the 
matrix factorization process through the regularization 
constants λ1 and λ2.

Further, if all the data are normalized and in a similar 
range and if λ2 > λ1, we are informing the MFF that spatial 
properties are more important than sparsity. On the one 
hand, choosing a very low λ, may not have any impact on 
the model at all. On the other hand, a high λ, can result in 
numerical errors and result in infinity, undefined values, 
or yielding same values across all matrix elements in fac-
tors. It is always better in practice to start with relative 
low regularization values such as 0.001 and increasing in 
different steps till we obtain a desired value. For example, 
in this model (6) with spatial smoothness and sparsity, 

(5)subject to
min
U ,V

�X − UV �2F + ��V �1

U ≥ 0,V ≥ 0

(6)
subject to

min
U ,V

�X −UV �2F + �1�V �1 + �2

∥

∥VLVT
∥

∥

2

F

U ≥ 0,V ≥ 0

sparsity is relatively an easier constraint over spatial 
smoothness. Thus, it is preferable to start with a non-zero 
λ1, proceed with identifying a good parametric value, and 
only then tune λ2. It is important to observe that λ’s are 
always non-negative. Additionally, there are scientific 
libraries such as mlrmbo [57] and hyperopt [58] that can 
aid this determination, with automated approaches to 
determine the values of these regularization constants.

MFF can incorporate different physical constraints dur-
ing matrix factorization such as sparsity, spatial smooth-
ness, non-negativity, etc. In this paper, we are using the 
open source implementation from https://github.com/
ramkikannan/nmflibrary. Kannan et  al. [50] provide 
the details about the implementation in their paper. We 
would like to conclude modeling different popular matrix 
factorization techniques under MFF in Table 3.

Domain‑specific applications
In this section, we begin with the illustrative workflow in 
Fig. 3 of the unmixing process followed by scientists.

The process begins when a scientist generates some 
multidimensional imaging data, typically (but not always) 
in a spatially resolved fashion. Each point or pixel con-
sists of a spectra, and the aim is to unmix this multidi-
mensional dataset into a smaller number of constituent 
spectra, to aid in interpretation and to speed up visualiza-
tion with minimal information loss. After preprocessing 
of the data (which can be either simple or elaborate), the 
unmixing algorithm is applied, and produces endmem-
bers and abundance maps which are then interpreted by 
the domain expert. When the abundance maps and the 
components lack physical meaning, scientists may retry 
the unmixing by imposing physical constraints as neces-
sary. For e.g., if the spectra from PCA have negative val-
ues, they will introduce non-negative constraints through 
NMF. This process is iterated till the obtained endmem-
bers and the spatial maps are physically justifiable.

Listed in Table 4 below are some examples of the scien-
tific applications and the potential constraints of matrix 
factorization approaches. The approach lends itself 
directly towards applications where measured spectra 
necessarily arise from mixing of multiple components in 
an additive fashion. Given variations in the strengths of 
these mixings, e.g., across spatial or temporal domains, 
the captured spectra will constitute the matrix to be fac-
tored using MFF approaches. The goal in these tasks is 
usually to determine the constituent (‘purest’) spectra, 
corresponding to, e.g., ideal crystal phases (X-ray crystal-
lography), particular chemical species (chemical imaging 
such as time-of-flight secondary ion mass spectrometry, 
ToF-SIMS), specific electronic structures (scanning tun-
neling microscopy and current imaging tunneling spec-
troscopy, STM and CITS), etc.

https://github.com/ramkikannan/nmflibrary
https://github.com/ramkikannan/nmflibrary
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Specific constraints are applied based on known physi-
cal facts, for instance, chemical mass spectra in ToF-SIMS 
are always positive (negative concentration of a species is 
not defined). Similarly, analysis of electron energy loss 
spectra (EELS) also implies positivity on all factors and 
abundances. The sum-to-one constraint on the abun-
dances also arises from basic scientific considerations. 
Assuming that the measured spectra are linear super-
positions of constituent spectra, then each abundance is 

effectively a percentage spectral weight, with the coeffi-
cients summing to one. This is true for chemical spectra, 
X-ray diffraction, etc.

Note that for the qualitative analysis of features com-
monly seen in CITS curves (such as presence/absence 
of kinks, interpeak separation, and ratio of peak heights) 
the sum-to-one requirement may be omitted, as long as 
a non-negativity constraint is imposed. An additional 
complication arises in determining the optimum num-
ber of components. In many cases this value is unknown 
apriori, but can be easily estimated based on similarity of 
resulting components when the unmixing is computed 
for increasingly more components: beyond some thresh-
old k components, additional components will begin to 
appear similar to other components.

In addition, sparsity and smoothness constraints can be 
used for analysis of spatial distribution of defects and, in 
some specific cases, shapes of spectral curves. The main 
idea behind applying sparsity constraints to abundance 
maps is a relatively low probability of several phases 
being observed simultaneously in one pixel. For example, 
it is very unlikely that more than one type of structure or 
chemical phase can be present within a pixel whose size 
is around several angstroms. By the same token, there are 
certain scenarios, for example in the chemical and STM 
spectroscopies, in which the chemical or electronic state 

Table 3  Modeling of different dimensionality reduction techniques on MFF

Matrix factorization Transformation Constraints Regularization Weights Similarity

SVD [63] None Orthogonal
UTU = I
VTV = I

None Uniform Frobenius

PCA [64] None Orthogonal
UTU = I
VTV = I

None Uniform Frobenius

NMF [65] None Non-negativity
U ≥ 0, V ≥ 0

None Uniform Frobenius

pLSI None Sum to 1 None Uniform KL-divergence

Sparse NMF [25, 66] None Non-negativity
U ≥ 0, V ≥ 0

ℓ1 on V
||V||1

Uniform Frobenius

Bounded [26, 27] None Bounded entries in the low-rank approximation
α < UV < β

None Uniform Frobenius

Fig. 3  Unmixing workflow for domain scientists

Table 4  Some scientific applications and potential constraints to matrix factorization approaches

Note that sparseness and spatial smoothness constraints discussed in the text are generally applicable to each of the listed methods

Scientific applications Data dimension Input vector Constraints

ToF-SIMS 3D 2D (spatial × mass spectrum) Non-negativity

STEM (phase analysis by sliding FFT) 4D 2D (spatial × FFT spectrum) Non-negativity

STM 3D 2D (spatial × tunneling spectrum) Non-negativity, sum to 1

X-ray microscopy 3D or 4D 2D (spatial × Q spectrum) Non-negativity, sum to 1, orthogonality

Raman spectra (AFM) None 2D (spatial × Raman spectrum) Non-negativity
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associated with one endmember (e.g., defect-induced 
localized state) may not appear at the same value of 
energy in other endmembers (e.g., in a gapped supercon-
ducting phase). The smoothness constraints, meanwhile, 
imply that the mixture of endmembers around a particu-
lar pixel in the abundance maps do not vary strongly.

For a microscopic experiment, smoothness is generally 
expected to be obeyed when the achievable lateral reso-
lution in the imaging data is larger than the pixel size in 
the same dataset. That is, it is generally not possible that 
individual pixels can be surrounded by pixels of a differ-
ent factor, given finite probe size and associated convolu-
tion of the signal across multiple pixels. At the same time, 
the imposition of the sparsity constraint requires domain 
knowledge. In some cases, multiple mechanisms (spec-
tra) can co-exist, but in many cases, they cannot. As one 
example, unmixing distinct electronic phases from I–V 
data with sparsity constraint implies that at any one pixel, 
there cannot be contribution from multiple compet-
ing transport phenomena (such as Ohmic and Schottky 
emission). Moreover, from a fundamental physics per-
spective smoothness is enforced because interfaces sepa-
rating distinct phases tend to be smooth to lower energy, 
and sparsity comes from the fact that, e.g., multiple struc-
tural phases cannot co-exist in the same location.

In the section below, we deal with the various scientific 
applications of the MF approach.

Time‑of‑flight secondary ion mass spectrometry 
(ToF‑SIMS) data
Time-of-flight secondary ion mass spectrometry (ToF-
SIMS) is a chemical imaging technique, widely used for 
chemical characterization of organic and inorganic sys-
tems. In ToF-SIMS, focused ion beams are used to release 
material species from the studied sample. Those ions are 
further accelerated in electric field and analyzed using 
mass detector [15, 67]. Using multiple ion guns, ToF-
SIMS allows investigations in the bulk of the sample; in 
this case the results represent a 4-dimensional data cube 
with three spatial (X, Y, and Z) and one spectral (mass-
to-charge) dimension. Non-negative matrix factorization 
(NMF) can be used as a basis for automated interpretation 
of this data. In this case, each mass spectrum is consid-
ered as a mathematical vector Xi, in spatial point I, which 
is deconvoluted as linear combination of limited number 
of non-negative endmembers wj and noise term Ni.

where Aij—abundance coefficients.
Non-negative matrix factorization can be used for auto-

mated analysis and interpretation of the hyperspectral 

(7)
Xi =

∑

i

Aijwj + Ni

wj > 0,Aij > 0,

data acquired by wide range of spectroscopic techniques, 
where signal in each point represents a spectrum, con-
taining information about local properties. In this case, 
multidimensionality and size of the resulted data render 
more traditional methods of data analysis substantially 
difficult.

ToF‑SIMS 2D imaging
In this section, we compare the output of application of 
NMF and PCA algorithms on ToF-SIMS experimental data. 
The details about the experiment and the procedure of the 
ToF-SIMS data preparation for factorization can be found in 
ref [68]. Briefly, ToF-SIMS chemical imaging was performed 
on an Arabidopsis root sample placed on an SiO2 substrate. 
After necessary relevant preprocessing, we obtained a mass 
spectrum of length 1535 over 128 × 128 pixel target. We 
constructed this a matrix of size 1535 × 16,384 as a spec-
trum of every pixel of the target image. The maps of the spa-
tial distribution of various elements, along with the averaged 
mass spectrum, are shown in Fig. 4.

We first performed PCA analysis of this data, with the 
results shown in Fig.  5. This analysis shows there exists 
significant deviations in the chemistry within the root. 
To understand these results, we note that the mass spec-
trum in each point represents a linear combination of 
eigenvectors (Fig.  5b, c) with loading coefficients coded 
by color on the loading abundance (Fig.  5a). For exam-
ple, component #1 shows averaged mass spectrum of the 
root, without the characteristic Si peaks. On the other 
hand, component #2 shows only peaks characteristic for 
Si (Si+, Si2+, Si2

+, etc.), which can be found outside the 
root (see (Fig.  5a, map #2)). Component #6 most likely 
is responsible for some kind of contamination, which 
is sparsely distributed over the root and substrate and 
contains higher concentrations of Na. However, analy-
sis of other components is hampered by the view of 
their eigenvectors, which show both positive and nega-
tive values. This is one the fundamental shortcomings of 
the PCA, where eigenvectors are built to be orthogonal. 
However, this is physically meaningless, since the count 
signal in mass spectrum is non-negative.

The results of the NMF over ToF-SIMS data are pre-
sented in Fig.  6. The best output was found for the 
unmixing on 4 components. Unlike PCA, endmembers 
in NMF are presented in the form of classical mass spec-
tra (Fig.  6a) with abundance maps (Fig.  6b–e) showing 
their concentration at each point. To check accuracy 
of the data unmixing we compare real data with data 
restored from four NMF components. Component #1 
clearly shows mass spectrum of the SiO2 substrate, and 
all peaks can be easily identified. This agrees with its spa-
tial distribution outside the root (Fig.  4d). On the con-
trary, other components were mostly localized inside the 
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root, and show variations in its chemistry. Component 
#2 shows regions with significant amounts of the base 
inorganic elements (Mg+, Ca+, K+, etc.). Much higher 
intensities of small molecules (mass range 150 ÷ 350 u) 
as well as Cs2O+, Cs2OH+, CNCs2

+ were found in the 
component #3, which is most likely related to regions of 
concentration of organic compounds and growth hor-
mones. Finally, component #4 demonstrates regions with 

the higher Na concentrations within the root, which is 
in a good agreement with its map of spatial distribution 
(Fig. 4e).

After exploring the differences between NMF and 
PCA, we further explore the possibility of incorporating 
two common physical constraints—(a) sparsity and (b) 
spatial smoothing in the MFF, for this dataset.

Fig. 4  a Averaged mass spectrum of Arabidopsis root. b–f Maps of the spatial distribution of elements

Fig. 5  Principal component analysis performed on ToF-SIMS data. a Abundance maps and b, c eigenvectors plot vs b point index and c mass-to-
charge ratio
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In Fig. 7, we present the NMF result with and without 
spatial smoothness for the ToF-SIMS data of a particular 
component. We can observe from Fig. 7b that the num-
ber of different non-zeros around a particular pixel is 
smaller than that of Fig. 7a. That is, in Fig. 7b, the prob-
ability of having the same neighboring pixels around a 
given pixel (x,y) is higher.

In the following sections, we will study enforcing non-
negativity constraints in detail for different types of spec-
troscopic experiments.

ToF‑SIMS 3D
Linearity and non-negativity of endmembers in the case 
of ToF-SIMS, as well as any mass spectrometry technique 
has perfect physical sense, as measured mass spectra 
represent a linear combination of responses of various 
chemical species belonging to the studied sample.

Here we demonstrate NMF for investigations of the 
chemical composition of an 80-nm-thick BiFeO3 (BFO) 
ferroelectric thin film, grown on 10  nm LaSr0.5Co0.5O3 
(LSCO) buffer layer on a LaAlO3 (LAO) substrate. ToF-
SIMS investigations of the film were performed using 
TOF. SIMS 5 (ION-TOF, Germany) instrument with Bi-
ion primary gun and Cs-sputtering gun. Measurements 
were performed in positive ion detection mode, which 
allowed the detection of metal ions, in addition to that 

cluster formed with cesium, were used for the identi-
fication of some negative species (e.g., Cs2O+ for O−, 
Cs2OH+ for OH−, and Cs2Cl− for Cl−).

Investigations have been performed in the bulk of the 
sample, which allowed to study local distribution of the 
chemical composition through the thickness of the BFO 
film, LSCO layer, and part of the substrate. Details about 
the film properties and corresponding ToF-SIMS investi-
gations can be found in refs [69, 70].

Figure 8 shows the mass spectrum averaged over whole 
dataset and also shows presence of all base elements of 
BFO, LSCO, and LAO (Al+, Fe+, Sr+, La+, Bi+), as well 
as species from adsorption layer (Na+, K+, and Cs2Cl+). 
We performed NMF for interpretation of the 3D spatial 
distribution of all detected chemical species. Procedure 
of the ToF-SIMS data preparation for factorization can be 
found in ref [68].

Our analysis showed superior results for factorization 
with 4 endmembers, with the corresponding endmembers 
and cross section of 3D abundance maps plotted in Fig. 9. 
These data can be used for results interpretation. Specifi-
cally, the mass spectrum of component #1 demonstrates 
pronounced peaks of Al+, La+, and LaO+ and localized 
at the bottom of the scan (Fig. 9e), thus is responsible for 
LAO substrate. Component #3 represents LSCO buffer 
layer—it shows peaks of La+, Sr+, and LaO+ and exists in 

Fig. 6  Results of non-negative matrix factorization (4 components). a Detected spectral endmembers and b–e corresponding abundance maps
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narrow stripe in between BFO and LAO (Fig. 9c). Bi+ and 
Fe+ thin film can be found in both components #2 and #4, 
however their mass spectra are significantly different.

Component #2 is responsible for bulk BFO signal 
(Fig. 9d) and shows weaker signals of pure Fe+ and Bi+, 
than component #4 related with BFO surface. This is 
related with measurement technique, where Cs is used 
for the sputtering and it forms clusters with many of the 
released species. Consequently, in bulk scans some Fe+ 
and Bi+ ions form CsFe+ and CsBi+ clusters and decrease 
signal of the pure ions in the mass spectra. In addition, 
component #4 demonstrates the presence of elements 
from the adsorption layer (Na+, K+, Cs2Cl+), which are 
localized on the sample surface (Fig. 9b); this is in a good 
agreement with previous studies [68].

To summarize, enforcing non-negativity constraint in 
the MFF, provides powerful capabilities for automated 
analysis of the mass spectrometry data acquired from 
multicomponent system. In this case data analysis is 
simplified to the interpretation of the limited number of 
endmembers with known mass spectra and maps of the 
spatial distribution.

Scanning transmission electron microscopy (STEM)
The modern-day scanning transmission electron micros-
copy (STEM) allows atomically resolved imaging of mul-
tiple structural and/or chemical phases within a single 
image, as well as observing transitions between different 
phases in a series of images [71, 72]. Such experimental 
capabilities demand development of analytical method 

a Without spatial smoothness b With Spatial smoothness 

Fig. 7  NMF results showing abundance maps a without and b with spatial smoothness constraints added

Fig. 8  ToF-SIMS investigations of BFO thin film on LSCO buffer layer and LAO substrate. Averaged mass spectrum and 3D spatial distribution of Fe+, 
Sr+, Al+, and Cs2Cl+ ions (inset) [70]
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for rapid extraction and identification of different phases, 
and mapping their spatial distribution. Here we describe 
how the NMF technique can be combined with sliding 
window fast Fourier transform (FFT) to allow accurate 
identification and mapping of different structural and 
chemical phases.

An application of sliding FFT to atomically resolved 
microscopic images has been discussed in our earlier 
publications [73, 74]. Briefly, a stack of 2D FFT maps is 
generated by shifting a window of a selected size across 
an experimental STEM image such that the entire image 
is scanned. At each step an FFT map is computed from 
a region bounded by the sliding window. If we assume 
that the image structure factor is a linear superposition of 
the individual constitutive elements, then an application 
of NMF to the sliding FFT data allows identifying local 
structure factors (endmembers) and loading maps [73].

As a model published elsewhere we consider an 
atomically resolved image of an oxide catalyst, shown 
in Fig. 10a [75]. The results of the NMF analysis for the 
sliding FFT data obtained from this image are shown in 
Fig.  10b–g. The two chemical phases are clearly identi-
fied in the first and second components (Fig. 10b, e and 
c, f ), whereas the third component can be interpreted 
as due to a presence of interface regions. Therefore, 
the use of NMF allows to match the physics of diffrac-
tion (in the absence of dynamical effects), i.e., that spec-
tra can be deconvoluted linearly, and the fractions must 
sum to 1. Moreover it shows that image segmentation 
is possible, although in future this should be done with 

symmetry-based constraints on the unmixing process (to 
determine the space group for each phase). This ability to 
accurately map different chemical phases within a single 
STEM frame (image) could become especially valuable 
during analysis of phase transitions observed via STEM 
in a frame-by-frame manner (STEM ‘movies’). We also 
foresee that in future a combination of sliding FFT and 
NMF tools can be applied to scanning tunneling micros-
copy of quasiparticle interference patterns in strongly 
correlated electronic materials in which different coex-
isting phases (and/or different scattering centers) may 
produce several interference patterns with distinct sym-
metries within an experimental field of view.

Current tunneling imaging spectroscopy (CITS)
We next illustrate an application of NMF methods to 
extracting physics from current imaging tunneling 
spectroscopy (CITS) of a  strongly correlated electronic 
system. CITS is a mode of operation of a scanning tun-
neling microscope that allows extracting 3-dimensional 
(3D) maps of differential tunneling conductance G = dI/
dU with sub-nanometer resolution. The value of G(x, y, 
U) in each recorded point (pixel) reflects an electronic 
density of states on the surface at energy E = eU [76]. We 
specifically focus our attention on CITS dataset obtained 
from a surface of BaFe2As2 compound with hole dop-
ing by Mo substitution (x ≈ 0.026) on the Fe sites. This 
compound could play an important role in discussing 
mechanisms behind unconventional superconductivity in 
FeAs-based systems since a superconducting behavior in 

Fig. 9  Results of NMF performed on 4-dimensional ToF-SIMS data. a Calculated endmembers, b–e X–Z cross sections of corresponding abundance 
maps
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these materials is observed only at electron doping of the 
Fe sites by 3d and 4d transition metal atoms but not at 
hole doping [77, 78].

Figure  11a shows a representative STM topographic 
image of in  situ cleaved Mo-doped BaFe2As2 surface 
obtained at T = 4  K. The topographic data immediately 
reveal several characteristic surface features such as a 
presence of regions with and without a stripe-like surface 
reconstruction, as well as point-like (lateral size ~ 1 nm) 
bright blobs and depressions dispersed across the entire 
field of view. Similar to an earlier analysis of STEM data, 
our assumption here is that CITS signal can be rep-
resented as a linear superposition of currents flowing 
through each of the available “channels” during the exper-
iment. We next apply NMF to the CITS dataset of the 
dimensions x × y × U = 80 × 100 × 220 recorded over 
an area shown in Fig. 11a. The results of the NMF-based 
decomposition (endmembers and loading maps) into 3 
components are Fig. 11c–h. We note in passing that the 
NMF decomposition into a larger number of components 
adds only components associated with a noise. Analy-
sis of the loading map in Fig. 11c suggests that the first 
component is primarily connected to regions without 
surface reconstruction. The corresponding spectral curve 
(endmember 1) in Fig.  11f has a characteristic bump at 
about ≈ − 100  meV and a vanishing density of states at 
around the Fermi level likely associated with a forma-
tion of spin density wave gap below T = 119 K [77]. The 
second component clearly originates from a presence of 
point-like protrusions on the surface (Fig. 11d, g). These 
point impurities produce a well-defined peak in the 

density of states at ≈ + 100 meV seen in the endmember 
2 (Fig. 11g). Noteworthy, such a well-defined feature pre-
sent in the experimental electronic density of states and 
an information obtained about its distribution on the sur-
face allows to significantly narrow down a range of defect 
structures to be considered in either theoretical modeling 
of the sample’s surface or in spatially averaged spectro-
scopic experiments. Finally, the third component can be 
linked to certain depressions on sample’s surface (albeit 
not all of them) (Fig.  11e, h). There are no pronounced 
localized states associated with these depressions in the 
energy range of interest, although they do modify the 
character of electronic structure around the Fermi level 
as seen in endmember 3 (Fig.  11h). Overall, such an 
unprecedented insight into the details of spatial locali-
zation of various electronic features acquired through 
application of NMF method can be crucial for better 
understanding mechanisms behind emergence/sup-
pression of superconductivity in FeAs system in future 
studies. It further shows the utility of the method in seg-
mentation into distinct electronic phases (for example, 
for determining metal–insulator transitions [79]), which 
is only possible because positivity is enforced.

Structural X‑ray imaging
The accurate determination of structural phases and 
evolution of epitaxial strain in crystalline thin film het-
erostructures is one of the most active research areas in 
structural imaging. The most commonly employed struc-
tural probe, namely X-ray diffraction (XRD), provides 
crucial information on the crystalline state of thin films, 

Fig. 10  a Experimental STEM image of a Mo−V−Te−Nb oxide catalyst. The image size is 2048 px × 2048 px, the width of the window in a sliding 
FFT is set to 500 px (shown schematically in the figure), and the window step size is 100 px. The top left corner inset shows schematically a stack of 
2D FFT images formed during the sliding FFT procedure. The scale bar is 5 nm. b–g Results of NMF-based decomposition of sliding FFT data over 
the area in a into 3 components. Loading maps (b–d) associated with endmembers (e–g). The original image used in a is reproduced (adapted) 
with permission from He et al. [67]. Copyright (2015) American Chemical Society
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ranging from atomic unit cell configuration in each thin-
film layer to the crystalline quality or mosaic spread of a 
thin film. The structural information from XRD is, how-
ever, spatially averaged over macroscopic distances of the 
sample [80]. As such, the structural state as determined 
by XRD is more suitably described as an ensemble aver-
age. Various extensions of XRD into a spatially resolved 
probe has been pursued in the past, ranging from single 
crystal X-ray diffraction topography [81] to micro-dif-
fraction [82], the ultimate goal being the determination of 
the individual structural microstates present in a system. 
With the advent of third generation synchrotron sources 
and considerable advances in optics that operate in the 

hard X-ray regime [83] (from angstrom to subangstrom 
wavelengths), numerous X-ray diffraction imaging tech-
niques have sprung out [84–86], whose spatially resolv-
ing capabilities are most suitable to probing the crystal 
structure of epitaxial thin films. Despite the photon flux 
limitations of these techniques, a general consequence of 
the weak hard X-ray scattering cross sections from mat-
ter, the exquisite sensitivity of X-ray diffraction imaging 
to the atomic structure, all but guarantees datasets with 
unprecedented complexity and richness in information. 
Extracting the salient structural microstates of materials 
from these datasets, invariably requires advanced data 
mining techniques such as matrix factorization.

Fig. 11  a STM topography of Mo-doped BaFe2As2 surface obtained at T = 4 K. The scale bar is 5 nm. b Schematics of CITS experiment in which a 
3D stack of conductance maps G (r, eU) is acquired over STM field of view. c–h Results of NMF-based decomposition o of CITS data over the area in 
a into 3 components. Loading maps (c–e) corresponding to spectral endmembers (f–h). See text for more details
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Here, we demonstrate the potential of matrix factori-
zation, in particular non-negative matrix factorization, 
in determining epitaxial strain inheritance in an oxide 
hetero-structure from full-field hard X-ray diffraction 
microscopy (XDM).

XDM is a dark field imaging technique which employs 
a combination of hard X-ray optics to form a real space 
image of the sample with diffraction contrast. By operat-
ing in a Bragg reflection geometry, XDM is sensitive to 
the full three-dimensional atomic structure of a mate-
rial with a lateral spatial resolution of ~ 70 nm [87], with 
structural imaging contrast that is diffraction limited 
(sub-Å) [86]. One of the simplest operation modes of 
XDM is by scanning one of the crystal truncation rods of 
the substrate, to spatially resolve the spatial distribution 
of the induced epitaxial strain on the different crystal-
line layers in a hetero-structure (Fig. 12). The XDM data-
set originating from the rod scan consists of real space 
images (Fig.  12b) taken at different Qz positions along 
the truncation rod (Fig. 12a), where Qz is the momentum 
transfer along the surface normal z (see Fig. 12 caption). 
The resultant XDM dataset, X(x,y,Qz), therefore depends 
on image pixel position (x,y) and Qz, with the image pix-
els (x,y) corresponding to lateral sample positions with an 
effective pixel size of 15 nm (Fig. 12c). As such, X(x,y,Qz) 
can be simply interpreted as a spatially resolved XRD, 
with an XRD intensity I(Qz) associated with each sample 
position (x,y).

The studied oxide hetero-structure is composed of 
(80  nm) Pb(Zr0.2Ti0.8)O3/(50  nm) SrRuO3/SrTiO3 (001), 
with Bragg diffraction peaks (103 reflection) indicated in 
Fig. 12a. Due to the large thickness of the SrRuO3 (SRO) 
layers and its in-plane lattice mismatch with the single 
crystal SrTiO3 (STO) (SRO: apc~ 3.93 Å, STO: apc= 3.905 
Å), considerable strain relaxation is expected through the 
formation of threading dislocations and inhomogene-
ous spatial distributions in the in-plane lattice constant 
of SRO [88], resulting in a broadening of its Bragg peak. 
The presence of these threading dislocation networks in 
the SRO film is clearly visible in XDM (image taken at 
Qz = SRO 103), appearing as dark lines since the presence 
of rotations in the crystal lattice planes near the disloca-
tions moves the Bragg condition away from its nominal 
position for the dislocation-free regions of the thin film.

The different structural signatures of strain-reliev-
ing mechanisms and spatial distributions of structural 
phases present in the SRO and PZT layers are encoded 
in X(x,y,Qz), and can be extracted by non-negative matrix 
factorization (NMF). In light of the discussion above, the 
constraints of orthogonality (SVD, PCA) and linear con-
vexity (pLSI) are not justifiable for an XDM rod scan, 
since the signal from different structural configurations 
does not satisfy these constraints, but it does satisfy the 

constraint of non-negativity, motivating our application 
of NMF.

Prior to application of NMF, the XDM dataset X(x,y,Qz) 
in Fig.  12b is reshaped into a matrix X(samples, fea-
tures), where each sample is a spatial position (sam-
ples = 700 × 700 pixels) with which is associated a 
feature vector, given by the diffracted intensity I(Qz) 
(features = 56 Qz points). The non-negative matrix fac-
torization of X into low-rank factors (Vk) and sam-
ple distributions (Uk) are shown in Fig.  12 (note that 
size(X) =   49,000 × 56 and  k  =  6 representatives). The 
low-rank factors Vk can be readily interpreted as XRD 
scans associated with different structural “phases” in the 
SRO and PZT films, while their associated Uk show the 
spatial configurations of such phases (note that each Uk is 
reshaped from an n vector to an x × y image).

Closer inspection of the low-rank factors indicates 
that k  = 1–3 represent SRO domains with different d103 
(where dHKL is the spacing between (HKL) Bragg planes) 
as can be clearly seen from a shift in Qz of their Bragg 
peak positions (Fig.  13a) with respect to the spatially 
averaged 103 reflection. The spatial distributions of SRO 
domains with different epitaxial strain states are given 
by their corresponding sample distributions (Uk, with 
k  = 1–3) as shown in Fig. 13b. Note that the intensity of 
each Uk image is directly proportional to how strongly 
a particular region of the sample is associated with the 
structural state characterized by X-ray diffraction scan 
in Vk. In essence, NMF provides the spatial distributions 
of different classes of SRO lattice configuration (given 
by Uk), whose atomic positions, occupancies, etc. can be 
extracted through structural refinement of the XRD scan 
given by Uk.

The presence of SRO domains with different lattice 
constants is consistent with the broadening of the spa-
tially averaged Bragg peak in (Fig. 12a), and a direct con-
sequence of relieving the misfit strain imposed by the 
STO substrate. In addition, to a coherent relaxation of 
strain, with spatial variations in d103 that are localized 
around the misfit dislocation lines, as can be seen in V2, 
there is a significant amount of incoherent strain relaxa-
tion leading to SRO domain segregation with no discern-
ible preference to principal crystallographic directions 
(seen in V1 and V3). Such domain segregation in SRO 
could be associated with the presence of RuO2 precipi-
tations [89], and can be directly checked through tradi-
tional structural refinement of (U1, V1) and (U3, V3) to 
obtain atomic occupancies of the unit cell in these dif-
ferent SRO domains, buried underneath the PZT lay-
ers. Similar to the structural states of SrRuO3, one can 
directly associate k =4–6 as containing structural devia-
tions of PZT domains from the ensemble-averaged lattice 
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Fig. 12  X-ray diffraction scattering and X-ray diffraction Microscopy of (80 nm) Pb(Zr0.2Ti0.8)O3/(50 nm) SrRuO3/SrTiO3 (001). a XRD scan along the 
(10) truncation rod of SrTiO3 (001), showing the PZT and SRO 103 Bragg peaks, Qz is the momentum transfer along the surface normal z, at an X-ray 
energy of 10 keV. b XDM images acquired at each Qz point in a. The total set of images is denoted by X(x,y,Qz), where (x,y) corresponding to lateral 
sample positions and an effective pixel size of 15 nm. c A close-up view of an XDM image taken at the SRO 103 Bragg reflection, showing the pres-
ence of a network of misfit dislocations (dark lines) that relieve the strain imparted on SRO by the substrate, as well as other regions of the film that 
appear in dark contrast, indicating the presence of substantial in-plane lattice variations across the SRO layers. Scale bar is 1 µm and the color bar is 
normalized X-ray diffraction intensity
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configuration (c = 4.19 ± 10−2 Å, a = 3.97 ± 10−2 Å, as 
determined in [86]).

Without additional structural refinement, the NMF 
decomposition allows us to arrive at a qualitative under-
standing regarding the epitaxial strain transfer in this het-
ero-structure. For instance, note that by inspection of V3 
(SRO) and V6 (PZT), we remark that SRO domains with 
lower than average d103 spacing induce a minor change in 
the d-spacing of PZT at the exact same lateral position. 
Furthermore, the changes in d-spacing of PZT as shown 
in V5,6 is found to be largely concentrated near the misfit 
dislocations. These two observations indicate that strain 
transfer from one film to the next is mainly mediated by 
misfit dislocations of SRO which extend through PZT.

The power of matrix factorization techniques applied 
to structural imaging techniques such as XDM, resides 
in its ability to facilitate the extraction of key qualitative 
structural information, which can be additionally refined 
through model-based interpretations (e.g., crystal struc-
ture factor calculations). Additional applications of NMF 
and other matrix factorization techniques to other X-ray 
diffraction imaging techniques promise to reveal a wealth 
of structural information.

Conclusion
In this tutorial paper, we discussed the utility of matrix 
factorization for performing linear unmixing of imaging 
and spectroscopic data commonly acquired via micros-
copy modalities. We presented a matrix factorization 
framework to implement different physical constraints 
such as sparsity, spatial smoothness, and non-negativity 
to constrain the unmixing, leading to more meaningful 
and interpretable endmembers and abundance maps. 
We compared the benefits of enforcing different physi-
cal constraints on ToF-SIMS data such as non-negativity 
(NMF), orthogonality without non-negativity (PCA), spa-
tial smoothness, and sparsity on the resulting spectra and 
abundance maps. Finally, we presented detailed examples 
of the use of constrained matrix factorization approaches 
on different spectroscopy data, including X-ray micros-
copy and scanning probe microscopy datasets. This paper 
uses the open source NMF implementation from https://
github.com/ramkikannan/nmflibrary. The imposition 
of such physical constraints here and in other machine-
learning algorithms will be critical to better understand 

physical mechanisms in large multidimensional datasets 
commonly acquired in modern-day imaging facilities.
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whereby the image intensity in Vk indicates the strength of association between sample regions and the structure encapsulated by the diffracted 
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