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The angiopoietin (ANGPT)-TIE2/TEK signaling pathway is essential for
blood and lymphatic vascular homeostasis. ANGPT1 is a potent TIE2
activator, whereas ANGPT2 functions as a context-dependent agonist/
antagonist. In disease, ANGPT2-mediated inhibition of TIE2 in blood
vessels is linked to vascular leak, inflammation, and metastasis. Using
conditional knockout studies in mice, we show TIE2 is predominantly
activated by ANGPT1 in the cardiovascular system and by ANGPT2 in
the lymphatic vasculature. Mechanisms underlying opposing actions
of ANGPT2 in blood vs. lymphatic endothelium are poorly understood.
Here we show the endothelial-specific phosphatase VEPTP (vascular
endothelial protein tyrosine phosphatase) determines TIE2 response
to ANGPT2. VEPTP is absent from lymphatic endothelium in mouse
in vivo, permitting ANGPT2/TIE2-mediated lymphangiogenesis. Inhibi-
tion of VEPTP converts ANGPT2 into a potent TIE2 activator in blood
endothelium. Our data support a model whereby VEPTP functions as a
rheostat to modulate ANGPT2 ligand effect on TIE2.
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tyrosine kinase

he angiopoietin—-TIE2 (tyrosine kinase with Ig and EGF

homology domains, also known as TEK) receptor tyrosine
kinase pathway regulates vascular homeostasis, maturation, and
remodeling, and has been described as the “gatekeeper” of vascular
quiescence (1-4). TIE2 phosphorylation enhances vascular stability
by promoting endothelial cell survival, reducing responsiveness to
inflammatory stimuli, and strengthening cellular junctions in ma-
ture vessels (5-10). The primary TIE2 agonist, angiopoietin 1
(ANGPT1), is secreted from perivascular cells, acting in a paracrine
manner (7, 11). A second ligand, ANGPT2, has been described as a
context-dependent agonist/antagonist, despite having similar re-
ceptor affinity as the agonistic ligand ANGPT1 (12-14). Unlike
ANGPT1, ANGPT2 is secreted by endothelial cells and acts on the
TIE2 receptor in an autocrine manner (15).

The ANGPT-TIE2 pathway has attracted attention due to
strong associations and causal links with human diseases, in-
cluding rare genetic disorders, such as hereditary vascular mal-
formations and primary congenital glaucoma (16-18), as well as
common diseases, such as sepsis, cancer, diabetes, and cardio-
vascular disease (7, 19, 20). Vigorous efforts have been made to
understand and translate this pathway to the clinic. However, a
major question remains: why does ANGPT2 display opposing
context-dependent roles in different vascular beds (14)? In blood
endothelial cells (BECs), ANGPT?2 is described as an antagonist
of ANGPT1-mediated TIE2 activation (1, 3, 12, 14), while the
situation is reversed in lymphatic endothelial cells (LECs), where
ANGPT?2 serves as the primary TIE2 agonist (21).

In the blood endothelium, where TIE2 signaling plays an im-
portant role in vascular stability, elevated levels of circulating
ANGPT?2 in vascular diseases, such as sepsis, result in TIE2 in-
hibition, leading to increased capillary leakiness and poor clinical

1298-1303 | PNAS | February 6,2018 | vol. 115 | no.6

outcomes (2, 19). Developmental mouse models provide further
support for ANGPT2-mediated antagonism of ANGPT1-TIE2 ac-
tivation in blood vessels (1, 3, 4). Deletion of either Angpt! or Tie2
results in embryonic lethality at embryonic day (E) 10.5 due to severe
defects in cardiovascular development (7-11). This phenotype is
reproduced by endothelial overexpression of Angpr2, supporting an
antagonistic role for ANGPT2 in the blood endothelium (12).

In contrast to its antagonistic role in the blood vasculature,
ANGPT?2 functions as a TIE2 agonist in the lymphatic endo-
thelium (1, 3, 21). Angpt2 knockout mice display lymphatic de-
fects, including chylous ascites, as well as a sprouting defect in
the retinal blood vascular capillaries (22-24). Intriguingly, only
the lymphatic phenotypes were rescued by the obligate TIE2
agonist ANGPT1, supporting an agonistic role for ANGPT2
specific to the lymphatic endothelium (22-24).

Two recent papers have suggested that TIE2 is not required for
lymphatic function in vivo, raising questions about the mechanism
of ANGPT2-mediated lymphangiogenesis (25, 26). However, here
we report that LEC-specific loss of TIE2 phenocopies the lym-
phatic defects observed in Angpt2 knockout mice, confirming that
TIE2 is required for lymphatic development. Based on these data,
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we hypothesize that the context-dependent agonist/antagonist
function of ANGPT? and its opposing effects on TIE2 in different
vascular beds (i.e., LEC vs. BEC) might be explained by differ-
ential expression of molecular components of the pathway, in-
cluding negative regulators, such as the endothelial specific
phosphatase, vascular endothelial protein tyrosine phosphatase
(VEPTP) (27-30).

To elucidate the molecular basis of opposing functions of
ANGPT2 in LECs vs. BECs, we generated a series of gene-
modified mouse lines and determined a critical cell-autonomous
role for TIE2 signaling in lymphangiogenesis. We found that
VEPTP is absent from LECs but abundant in BECs, and then
used cell-biologic and proteomic-based approaches to explore the
effect of VEPTP on ANGPT2-TIE2 activity. Our results show
that VEPTP functions as a molecular “rheostat,” modulating re-
ceptor sensitivity to enable discrimination between ANGPT li-
gands, and provide a molecular mechanism to explain the opposing
roles of ANGPT?2 in blood and lymphatic vasculature.

Results

ANGPT2-TIE2 Signaling Is Essential for Embryonic Lymphangiogenesis.
To identify the molecular basis of the differential functions
of ANGPT2 in LECs and BECs, we characterized the role of
ANGPT2-TIE2 signaling in lymphatic development, where
ANGPT?2 has a well-defined agonistic role (22-24). As expected,
whole-body Tie2 deletion from conception using the Rosa26rtTA;
tetOCre bitransgenic system in mice harboring a Tie2 conditional
by inversion (COIN) allele (7ie2VBF’) resulted in embryonic
lethality between E9.5 and E10.5 (17, 18). However, embryos in-
duced at E12.5 were found to survive until late gestation, allowing
analysis of the lymphatic vasculature. At E16.5, all embryos were
found alive. However, subcutaneous edema was observed in
Tie2WBAE12S5 knockout embryos, which was never observed in Tie2
wild-type or heterozygous controls (Fig. 14). This result was re-
capitulated in lymphatic-specific Tie2 knockouts generated using
ProxICreER (Tie2"™*E1%3 mice), indicating that the edema was
lymphatic in origin (Fig. 1B).

Compared with control littermates, immunostaining revealed
a paucity of PROX1* lymphatic vessels in the dorsal skin of
Tie2™™AE105 knockout mice at E14.5, confirming the impor-
tance of lymphatic-expressed TIE2 in lymphangiogenesis (Fig.
1C). Interestingly, unlike the phenotype observed in lymphatic-
specific knockout embryos, dorsal skin lymphatics of whole-body
knockouts were enlarged compared with littermate controls (Fig.
S1A). This enlargement could be due to the combined deleteri-
ous effects of TIE2 deletion on BECs and LECs.

To determine the role for each ANGPT ligand in dermal lym-
phangiogenesis, we compared the phenotypes of either single or
combined deletion of Angpt! and Angpt2 genes with Tie2 condi-
tional knockout mice. Unlike the marked edema of Tie2WPAF!>°
embryos, single Angptl or Angpt2 whole-body knockout embryos
induced at E12.5 had no apparent edema when dissected at E16.5
(Fig. 1D and Fig. S1B). The fact that loss of the TIE2 receptor led
to a more severe phenotype than loss of either ligand alone sug-
gested compensation or cooperative roles of the two ANGPT Ili-
gands. To test this possibility, we generated compound mutants
lacking both Angptl and Angpt2 from E12.5 onward. This simulta-
neous loss of ANGPT1 and ANGPT2 expression (AL;A2WBAELZS)
recapitulated the phenotype of Tie2"VBAE!>5 mice (Fig. 1D and Fig.
S1B) and embryos exhibited marked edema.

ANGPT2-TIE2 Signaling Is Essential for Mesenteric Lymphatic
Development. Angpt2 has a well-described role in the mesen-
teric and intestinal lymphatic vasculature. Because Tie2 whole-
body or lymphatic knockout embryos induced at E12.5 were not
viable, we tested whole-body deletion at a range of time points
(22-24). Deletion at E13.5 or later resulted in viable mutant
offspring. Tie2"BAE'3> knockout pups exhibited chylous ascites
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Fig. 1. ANGPT2-TIE2 signaling is essential for dermal lymphatic develop-
ment. (A and B) Subcutaneous edema was observed following genetic de-
letion of Tie2. Gross view of mice with each genotype at E16.5 is shown.
White arrows indicate subcutaneous skin edema. In A, doxycycline was given
to pregnant dam from E12.5 to E16.5. In B, Tamoxifen was given from E10.5.
(C) Lymphatic specific deletion of Tie2 results in sparse lymphatic vessel
development. Tamoxifen was injected from E10.5 and mice were dissected
at E14.5. Whole-mount immunofluorescent staining of embryonic skin with
the antibody against PROX1 is shown. *P < 0.05 vs. control. Two-tailed
Student’s t test was used. (D) Subcutaneous edema was observed following
genetic deletion of both Angpt? and Angpt2 but not either alone. (Scale
bars: 5 mm in A, B, and D; 250 um in C)

with severely disturbed lymphatic vessel morphology, indicating
defects of mesenteric lymphatic function (Fig. S2). We then ex-
amined the role of each ANGPT ligand in this TIE2-mediated
developmental process. Whole-body Angpt! knockout pups in-
duced at E13.5 had no apparent phenotype, but chylous ascites
were observed in mice lacking Angpt2 alone or both Angpt! and
Angpt2 (Fig. S2B). Deletion of Tie2 after E15.5 did not result in
overt chylous ascites (Fig. S24), although a reduced number of
lymphatic valves was observed in the mesentery (Fig. S3).

To better understand the role of ANGPT2 in mesenteric lym-
phatic development, we utilized a cell-type—specific approach to
delete Angpt2 in endothelial cells (24). In contrast to the well-
developed lymphatic vessels in control mice, endothelial deletion
of Angpt2 using a lymphatic-expressed Lyvel-Cre (Angpt2*™¥¢'<™)
resulted in severely disturbed lymphatic vessel morphology with
leakage of chyle, phenocopying the Tie2WBAE3S knockout (Fig.
S2D). Collectively, these results demonstrate a requirement for
ANGPT2-TIE2 signaling in mesenteric lymphatic development.

A Regulatory Phosphatase for TIE2, VEPTP, Is Absent from Lymphatic
Endothelium. TIE1 and VEPTP are both known to modulate
activation status of TIE2 and are expressed in BECs (1-4).
However, while TIE1 is expressed in LECs in vivo where it is
required for lymphatic development (26, 31), VEPTP expression
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Fig. 2. Developing dermal lymphatic vessels lack VEPTP expression. (A-C)
Expression pattern of Veptp, Angpt1, and Angpt2 in embryonic dermis at
E15.5. Knockin reporter mouse lines were used to detect expression. Whole-
mount immunofluorescent imaging of embryonic skin dermis was performed
with the antibody against p-gal [GFP, CD31, and neuropilin-2 (NRP2)]. Trans-
genic reporter mice harboring both Veptp'*#* and Tg-Prox1-GFP were ana-
lyzed in A. In C, X-gal staining of whole-mount skin of Angpt2 "+ mice was
performed and counterstained with NRP2, a marker of the lymphatic endo-
thelium. White arrows in A indicate VEPTP-expressing small artery in A. C, Right
shows higher magnification of dotted box in C, Left. (Scale bars: 100 pm.)

in LECs in vivo has not been reported, although it has been
reported in cultured human dermal LECs (32, 33). Using a Veptp
reporter mouse line (30), we determined the expression pattern
of the phosphatase. Both p-galactosidase expression and its ac-
tivity were strongly detected in BECs, but not in PROX1 or
LYVE1" lymphatics of the embryonic dorsal skin, neonatal
mesentery, adult ear dermis, or adult ocular limbus (Fig. 24 and
Fig. S4). Interestingly, ANGPT1-producing cells are closely as-
sociated with CD31% blood vessels but not with NRP2* lymphatic
vessels in embryonic skin (Fig. 2B). In contrast, Angpt2 is
expressed in NRP2* dermal lymphatic vessels (Fig. 2C).

VEPTP Abrogates ANGPT2 Agonistic Activity on TIE2. Given the
striking difference in expression pattern of VEPTP in blood vs.
lymphatic vasculature in mice in vivo and its negative regulatory
role on TIE2, we reasoned that VEPTP might block ANGPT2
agonistic function in BECs. To test this hypothesis, we charac-
terized the interaction of TIE2 and VEPTP in a heterologous
cell model using HEK293 cells, where endogenous expression of
both proteins was absent. In cotransfection experiments, VEPTP
effectively reduced autophosphorylation of TIE2. Phosphorylation
was restored by treatment with a small-molecule inhibitor of
VEPTP, AKB-9785, or with recombinant human (rHu) ANGPT1
(Fig. 3 A and B). VEPTP also reduced the phosphorylation of a
TIE2 gain-of-function mutant (R849W) identified in patients with
hereditary venous malformations (16), confirming its high enzy-
matic activity (Fig. S54). TIE2 and VEPTP form a stable complex
when transfected in cells and they reciprocally regulate each other,
as evidenced by the TIE2-dependent phosphorylation of catalyti-
cally inactive VEPTP (Fig. S5 B and C).

Receptor tyrosine kinases signal through trans- and autophos-
phorylation of tyrosine residues (34). To better understand the
regulation of TIE2 by VEPTP and TIE1, we performed phospho-
proteomic analysis of the full-length TIE2 and TIE1 receptors in
cells. Overall, mass spectrometry detected peptide fragments cov-
ering all but Y1024 of the 19 intracellular tyrosine residues on TIE2
(Fig. 3C). Among the 18 tyrosine residues, 13 were phosphorylated
at varying levels, including the C-terminal Y1102 and Y1108 that
are known to recruit downstream signaling adaptors, such as p85 of
PI3 kinase and DokR (35-37). Juxta-membrane Y816, which has
been reported to recruit Shp2 and Grbl4 for signaling, was also
phosphorylated (35). Next, we tested how VEPTP coexpression
modulates baseline TIE2 phosphorylation levels on individual ty-
rosine sites. We observed marked reduction of all phosphorylation
in the presence of VEPTP, highlighting the broad impact of this
phosphatase to overall TIE2 signal strength (Fig. 3C).

TIE1, a homolog of TIE2, is an orphan receptor tyrosine ki-
nase with no known ligand (1, 3). TIE1 has been shown to in-
teract with TIE2 and its importance both in lymphangiogenesis

A TIE2/VEPTP/AKB C 350
NCTIE2 0 10 30 60 min B TIE2
=300
Q> 2 - |® TIE2+VEPTP
=) - <250
=2 5 200
a s - e .- - -‘ S
Tw B e g‘150
N ©
V.Q 2100
B TE2 2 o
NC  +A1  +Af E 5
O s o OCONDT T ONNLDT DN 0O N DO
T TL 28333355528385883888¢
=1 ErE NSNS S Srrrr T T Fig. 3. VEPTP abrogates agonistic activity of ANGPT2
Lo P
2 <L on TIE2 receptor. (A and B) TIE2 phosphorylation in
a g - - .-
= ! 8. ANGPT1 treated HEK293 cells expressing either TIE2-FLAG alone or
IP: FLAG e L coexpressed with VEPTP-GFP. Cells were incubated
D TIE2 stable cells ~ TIEZVEPTP stable cells 5 6 it with rHUANGPT1 (A1, 200 ng/mL) or a small-molecule
stapic cells Stapic cel> S4 o i - inhibitor of VEPTP (AKB-9785, 15 uM). Phosphoryla-
e L tion of TIE2 was tested by i blotti inst
Y| - - o - . : ion o was tested by immunoblotting agains
P .-S _wew = 2 2 o . i i ¥ phospho-tyrosine (pY) following immunoprecipita-
FLAG| we a -_— - -.. - L — tion using anti-FLAG beads. (C) Phospho-mapping of
bt b= e T TIE2-FLAG protein. pY residue was determined usin
ANGPT1: @ 7p 9 G 2 C %%, B p -P vas et ng
© 0 0~y © 0 0 g mass spectrometry. Averaged intensity of two in-
IP: FLAG © 4 ANGPT% treated dependent experiments with duplicated detection is
E TIE2 stable cells ~ TIE2/VEPTP stable cells %3 i shown. (D and E) TIE2 phosphorylation in HEK293
— — £ * _3’{’ cells with stable expression of TIE2-FLAG alone or
pyb - -i- " - ‘ .:'; *r, . . together with VEPTP-GFP (clone#3). The cells were
E e ‘} < -I% & incubated with either rHUANGPT1 (0-1,200 ng/mL) or
FLAC AR SRS SR SRR o | " rHUANGPT2 (0-1,200 ng/mL). *P < 0.05, **P < 0.01,
ANGPT2: @ 7, Gy 64 7 M © 2, & 6, 7 e and ***P < 0.001 vs. negative control. One-way
D% % ‘300 L % % ‘300 o TIE2 ANOVA with Tukey-Kramer correction was used. Full-
ETIE2/VEPTP length blot images are available in Fig. S8.

1300 | www.pnas.org/cgi/doi/10.1073/pnas.1714446115

Souma et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714446115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714446115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714446115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714446115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1714446115

L T

/

1\

=y

and angiogenesis has been well-characterized (26, 31, 38, 39).
Recently, extracellular cleavage of TIE1 has been shown to play a
role in ANGPT2-mediated TIE2 antagonism in BECs during in-
flammation (40). Our heterologous expression system showed that
TIE1 maintained low levels of autophophosphorylation compared
with TIE2 (Fig. S64). Phosphoproteomic analysis of TIE1, either
with or without TIE2, revealed that TIE1 phosphorylation is in-
duced by TIE2 coexpression (Fig. S6B). Conversely, when a
TIE2 kinase dead mutant protein was coexpressed with wild-type
TIEL], the kinase-dead TIE2 became robustly phosphorylated (Fig.
S6C), indicating reciprocal cross-talk between these kinases.
Ligand-induced TIE2 activation was studied using stable cell-lines
expressing either TIE2-FLAG alone or together with VEPTP-GFP
in HEK293 cells (Fig. S74). Treatment with rHuANGPT1 and
rHuANGPT? increased TIE2 phosphorylation in TIE2-expressing
cells in a dose-dependent fashion (Fig. 3 D and E). However, in the
presence of VEPTP, only rHuANGPT1 was found to activate TIE2,
while treatment with rHUANGPT?2 had no effect (Fig. 3 D and E).

VEPTP Inhibition Restores ANGPT2 Agonistic Activity on TIE2. In a
variety of disease conditions, circulating ANGPT?2 levels increase,
leading to elevated ANGPT2:ANGPT]1 ratios (2, 7, 19, 41). We
wondered if VEPTP inhibition might enable ANGPT2 to be-
come a TIE2 agonist in BECs as seen in LECs. VEPTP inhibition
alone or in combination with rHuANGPT?2 treatment increased
TIE2 phosphorylation in TIE2/VEPTP-expressing stable cells,
whereas rHUANGPT? alone did not (Figs. 3E and 4A4). To de-
termine if ANGPT2 enhances TIE2 signaling above the effect of
VEPTP inhibition alone, we tested the downstream signaling ac-
tivity in response to either ANGPT2 or VEPTP inhibition alone
or in combination in primary and transformed endothelial cell-
lines. Human umbilical vein endothelial cells (HUVECSs) and EA.
Hy926 cells express abundant TIE2 and VEPTP (Fig. S7B).
Treatment with tTHUANGPT1, but not with tHuUANGPT2, in-
creased pAKT levels in these cell lines (Fig. 4B and Fig. S7C). In
contrast, THUANGPT2 increased pAKT abundance in HUVECs,
which were also treated with VEPTP inhibitor (Fig. 4C and Fig. S7D).
Importantly, the level of AKT phosphorylation was greater in cells
treated with both rHUANGPT2 and VEPTP inhibitor than with
VEPTP inhibitor alone. Further downstream, ANGPT1-

*kk

mediated increases in pAKT signaling are reported to cause
forkhead box O1 (FOXO1) phosphorylation, leading to its nu-
clear exclusion (40, 41). This finding was reproduced in our
model, where rHUANGPT1 induced nuclear FOXO1 protein to
translocate to the cytoplasm, while THUANGPT?2 did not (Fig.
4D). However, consistent with our pAKT findings, treatment
with VEPTP inhibitor alone or VEPTP inhibitor in combination
with rHUANGPT? also markedly reduced nuclear accumulation
of FOXO1 (Fig. 4D).

ANGPT1 reinforces vascular junctions and stabilizes blood
vasculature by initiating TIE2 phosphorylation and activating
downstream signaling networks, but also by physically bridging
TIE2 receptors between juxtaposed cells (42, 43). Immunocyto-
chemical analyses revealed TIE2-FLAG protein localized at cel-
lular junctions following stimulation with either rHuANGPT1 or
rHuANGPT?2, but not VEPTP inhibitor, as previously reported
(28, 42). This ANGPT2-induced cellular junctional localization
was not affected by VEPTP inhibition (Fig. S7E). Collectively, our
results have demonstrated that VEPTP inhibition in conjunction
with ANGPT2 stimulation activates TIE2 signaling and drives
translocation of TIE2 to the cell junctions in BECs, mimicking the
actions of ANGPT1.

Discussion

The ANGPT-TIE pathway is comprised of two receptor tyrosine
kinases (TIE1 and TIE2), three ligands (ANGPT], -2, -3/4), and
one phosphatase (VEPTP), which serves as a negative regulator
of TIE2 activation (1-4). While previous knockout mouse studies
have demonstrated a role for ANGPT2 in lymphatic develop-
ment, to our knowledge this report of a requirement for TIE2
signaling in lymphatic development, demonstrating ANGPT2
activation of TIE2 occurs in LECs in vivo, is unique.
Angiogenesis and lymphangiogenesis share several funda-
mental signaling cascades, including growth factor/receptor ty-
rosine kinase pathways needed to establish and remodel the
vascular plexus (1-4). However, while many growth factors have
similar effects on LECs and BECs (4), ANGPT2 has opposing
effects on TIE2 signaling in cultured BECs vs. LECs (1, 3, 4, 12,
21). Many studies have been performed to identify the molecular
basis of the context-dependent functions of ANGPT2 (14), as
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ANGPT2

0.001 vs. NC (negative control). *P < 0.05, #P <
0.01, and *##P < 0.001 vs. AKB alone. (D) Expression
pattern of FOXO1 in EA.hy926 cells. The cells were
treated with ANGPT ligands (600 ng/mL; A2,
rHUANGPT2) and/or VEPTP inhibitor (AKB, 10 pM).
Nuclear accumulation of FOXO1 protein was
quantified in proportion to total DAPI* nuclear
number. ***P < 0.001 vs. NC (negative control),
#p < 0.01 vs. AKB. (Scale bar, 10 um.) One-way
ANOVA with Tukey-Kramer correction or Dun-
nett’s correction was used. Full-length blot images
are available in Fig. S8.
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limited mechanistic understanding of this ligand remains an ob-
stacle to therapeutic development targeting the ANGPT-TIE2
pathway. Outside of the lymphatic endothelium, researchers have
identified several conditions in which ANGPT2 can act as an agonist,
including (i) high ANGPT2 concentration in vitro (44), (i) in stressed
endothelial cells where FOXO1 nuclear accumulation is reduced
(45), and (i) the presence of functional TIE1 protein in cells where
TIE2 is expressed (40). Additionally, ANGPT2 exerts proangiogenic/
vascular-destabilizing signals through integrin-mediated pathways
(46, 47). We propose a simple new model, where TIE2 receptor
sensitivity in BECs and LECs is established by the presence or
absence of VEPTP (Fig. 5).

Recent studies have reported crystal structure analysis of
TIE2 and provide evidence that the differences in oligomerization,
but not the receptor-binding domains of ANGPT ligands, are a
major determinant of their potency (39, 48). Higher oligomeri-
zation status is required to cluster the TIE2 receptors in cis and
elicit downstream signaling cascades due to the relatively large
“physical” distance between them, as characterized by the wide
angular conformational structure on cell membrane (39, 48).
Lower oligomerization status is sufficient to interact with TIE2
receptors across endothelial cellular junctions in trans between
juxtaposed cells (39, 48). Although ANGPT?2 can form high-order
oligomers, it is primarily observed as a dimer (49). In contrast,
ANGPT1 is expressed mostly in high-order oligomers through
intermolecular disulfide bridges, giving ANGPT1 a stronger
TIE2 clustering ability (49). Furthermore, chimeric fusion
protein analyses showed both ANGPT1 and ANGPT2
receptor-binding domains have similar TIE2 activating functions
when artificially multimerized, emphasizing the importance of
oligomerization status (50). Consistent with the model proposed
by Leppédnen et al. (39), we show that ANGPT2 can bridge the
TIE2 receptor in trans, as demonstrated by movement of TIE2
to interendothelial junctions upon ligand exposure, but cannot
activate downstream signaling in HUVECs that require clus-
tering TIE2 receptors in cis. We posit that the low availability
of higher-order ANGPT?2 oligomers necessitates a highly re-
sponsive cellular status, such as that provided by the absence of
VEPTP, to efficiently activate TIE2 signaling.

The ability of phosphatases to set response thresholds for ex-
ternal signals has been described for signaling through the T cell
antigen receptor (TCR), where phosphatases set the threshold for
discrimination between self/weak antigen and strong agonist (51).
For example, PTPN22 limits the downstream signal from TCR
stimulated with a weak agonist, but allows full activation by strong
antigens (52). In a similar manner, we propose that VEPTP limits
ANGPT2-mediated TIE2 phosphorylation and downstream sig-
naling by setting a high threshold, but allows TIE2 to be activated
by the strong agonist, ANGPT1. The divergent expression pattern
of VEPTP in blood vs. lymphatic endothelium explains how it
mediates context-dependent functions of ANGPT2. In contrast,
other known modulators of TIE2 receptor signaling, such as TIE1,
are expressed in both LECs and BECs, making them less-likely
candidates to explain endothelial cell-type—specific differences in
ANGPT?2 functions (26, 31, 53).

Reducing vascular leakage and increasing BEC stability
through TIE2 activation is an exciting therapeutic strategy
for vascular disease, and this is an area of intense research
interest (1-4). Elevated levels of ANGPT2 are present in
diseases characterized by vascular leak and inflammation,
suggesting strategies to convert endogenous ANGPT2 into a
TIE2 activator might be advantageous. Recent studies have
reported that an ANGPT2-binding antibody, ABTAA, can in-
duce multimerization of ANGPT?2 without neutralizing it (20, 41).
This antibody-clustered ANGPT2 mimics the effect of ANGPTI in
BECGs, activating TIE2 and providing beneficial effects in pre-
clinical models of sepsis and cancer (20, 41). In separate studies,
VEPTP inhibition has also been shown to be beneficial
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Fig. 5. VEPTP is a molecular “rheostat,” modulating TIE2 receptor sensi-
tivity to enable discrimination between ANGPT ligands. Schematic model
showing the importance of VEPTP as a molecular rheostat, setting the
threshold for TIE2 responsiveness to each ANGPT ligand. The absence of
VEPTP in LECs lowers the threshold for TIE2 activation and allows ANGPT2 to
activate TIE2-mediated downstream signaling cascades. However, ANGPT1 is
required to activate TIE2 signaling in the BECs, in which VEPTP sets the
higher threshold for TIE2 activation. VEPTP inhibition may lower the
threshold in BECs and turns BECs into LEC-like ANGPT2-responsive cells in
inflammatory diseases, thereby allowing ANGPT2 to activate TIE2-mediated
vascular stabilizing signal.

in preclinical models of eye disease, sepsis, and stroke, reducing
vascular leak and inflammation through TIE2 activation (28, 54,
55). While VEPTP inhibition results in enhanced ligand-in-
dependent phosphorylation of the TIE2 receptor, we propose that
additional benefits of VEPTP inhibition might include conversion
of elevated ANGPT2 in the injured area to an “ANGPT1-like”
TIE2 agonist. In keeping with this hypothesis, pharmacological
inhibition of VEPTP coupled with ANGPT?2 activated TIE2-AKT
signaling in a synergistic fashion.

In summary, we have shown that LECs lack VEPTP, con-
ferring a TIE2 agonistic function on ANGPT2. Conversely,
BEC:s express high levels of VEPTP, which raises the activation
threshold of TIE2 and prevents activation by the weak agonist
ANGPT?2. The data support a model in which VEPTP serves as
a molecular rheostat for TIE2 receptor sensitivity and confers a
cell-type—specific function on ANGPT2. VEPTP inhibition is
an attractive therapeutic target to promote vascular health
through direct activation of the TIE2 receptor and conversion
of ANGPT?2 from an antagonist to an agonistic ligand (Fig. 5).

Materials and Methods

Animals. The mouse lines used for our study have been previously described
(7, 17, 18, 24, 30, 56-58). Whole-body timed deletion of target genes was
achieved by using a bigenic Rosa26rtTA;tetOCre system, as previously
described (7, 17, 18). The transgenic mouse lines were maintained on a
mixed background due to the large number of transgenes required.
However, littermate controls were used for all phenotype analyses. Full
details of mouse analysis are described in S/ Materials and Methods.

Cell Culture Experiments and Phospho-Proteomics. The cells were cultured with
standard methods and stimulated with rHUANGPT1 (R&D Systems),
rHUANGPT2 (R&D Systems), and AKB-9785 (a VEPTP inhibitor) (54) for 30 min
at 37 °C unless otherwise mentioned. For phosoho-mapping analysis,
HEK293 cells were transfected with plasmid vectors for expressing TIE2-
FLAG, TIE1-FLAG, and VEPTP-GFP, either alone or in combination. The pro-
teins in corresponding SDS gel pieces were digested with trypsin and chy-
motrypsin, and digested peptides were analyzed with LC-MS/MS.
Abundance of phophorlyation sites were semiquantitatively compared across
the samples using spectral counting (number of peptide spectrum matching or
PSM) (59). Full details of analysis are described in SI Materials and Methods.

Statistics and Reproducibility. Results are expressed as means + SEM. Statis-

tical analysis was carried out using two-tailed Student’s t test or one-way
ANOVA followed by Tukey-Kramer's test or Dunnett's correction for
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multiple comparisons using GraphPad Prism software. A P value less than
0.05 was considered as statistically significant.

Study Approval. All animal experiments were approved by the Animal Care
Committee of Mount Sinai Hospital, University of Toronto, Toronto and the
Institutional Animal Care and Use Committee of the Center for Comparative
Medicine at Northwestern University, Chicago.
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