
Optimal estimation of drift and diffusion coefficients in the 
presence of static localization error

J. Devlin1, D. Husmeier2,*, J. A. MackenzieiD,1,†

1Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, Glasgow 
G1 1XH, United Kingdom

2School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, United 
Kingdom

Abstract

We consider the inference of the drift velocity and the diffusion coefficient of a particle 

undergoing a directed random walk in the presence of static localization error. A weighted least-

squares fit to mean-square displacement (MSD) data is used to infer the parameters of the assumed 

drift-diffusion model. For experiments which cannot be repeated we show that the quality of the 

inferred parameters depends on the number of MSD points used in the fitting. An optimal number 

of fitting points popt is shown to exist which depends on the time interval between frames Δt and 

the unknown parameters. We therefore also present a simple iterative algorithm which converges 

rapidly toward popt. For repeatable experiments the quality depends crucially on the measurement 

time interval over which measurements are made, reflecting the different timescales associated 

with drift and diffusion. An optimal measurement time interval Topt exists, which depends on the 

number of measurement points and the unknown parameters, and so again we present an iterative 

algorithm which converges quickly toward Topt and is shown to be robust to initial parameter 

guesses.

I Introduction

Understanding the properties and dynamics of moving particles is of primary interest in a 

variety of disciplines. Examples include the study of cell movement in cell biology [1,2], 

elucidating the driving forces of metastasis in cancer research [3], understanding the causes 

of animal mass migration in ecology [4], monitoring crowd behavior in social science [5,6], 

and studying rumour diffusion in social networks [7].

Typically, the position of a particle is extracted from a sequence of digital images. The 

measured trajectory is the path observed using a device such as a microscope connected to a 

video camera. The measured trajectory can be subject to two different types of localization 

error, usually referred to as static error and dynamic error [8]. Static error is the difference 
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between the measured and true position of an immobile particle or the instantaneous position 

of a moving particle. The source of static error therefore comes from the spatial resolution of 

the measuring instrument. Dynamic errors are inaccuracies which arise when measuring 

particles which move in time. An example of dynamic error is motion blur which can occur 

due to the camera shutter being left open to maximize the number of photons being recorded 

in any one frame. For transport by pure diffusion it has been shown [9] that the precision of 

determining the diffusion constant is negligibly effected by motion blur and hence in the 

main paper we will assume that it can be ignored (we do present some numerical simulations 

of motion blur in Sec. 6 of the Supplemental Material to investigate the effect of this 

assumption). We will, however, include the effects of static error in the calculations which 

follow.

The analysis of the resulting trajectory data has traditionally been obtained using the mean-

square displacement (MSD) [8,10–12]. Recently it has been recognized that the quality of 

the statistical inference of diffusion coefficients from realistic particle data is nontrivial. 

Qian et al. [10] were first to consider this question for a drift-diffusion model in an isotropic 

medium. Their analysis, however, did not consider the more practically relevant situation 

where static error is present in the data collection. The effect of static error on the quality of 

inference of diffusion coefficients using MSD analysis was addressed by Michalet [13]. 

Estimates of the MSD at any given time point were obtained using time-averaged quantities 

which makes the analysis nontrivial due to the nonuniform variance in the MSD data as well 

as the data being highly correlated. Michalet considered the uncertainty in the estimation of 

the diffusion coefficient and static error using weighted and ordinary least-squares 

regression. Due to the heteroscedasticity of the MSD data one would expect the weighted 

least-squares (WLS) approach to outperform ordinary least squares. This in general is shown 

to be true if no consideration is given to the number of MSD data points used in the fitting 

[12,13]. However, the analysis of the uncertainty in the regression coefficients allows the 

identification of an optimal number of fitting points which depends on the total number of 

measurement points as well as the control parameter x = η2/DΔt, where η is the standard 

deviation of static error, Δt is the frame duration or time between measurements, and D is 

the diffusion coefficient. Specifically, for a small value of x, corresponding to a large value 

for the diffusion coefficient or the time lag, the best estimate of the diffusion coefficient was 

found by using the first two MSD points; while for a large value of x the best estimate was 

obtained by using a larger number of points. Surprisingly, Michalet found that if the number 

of fitting points was optimized using weighted and ordinary least squares, then there was 

very little difference in the optimal level of uncertainty in the parameters.

A related paper was published around the same time by Berglund [14], who proposed the 

use of a maximum likelihood estimator (MLE) to infer the diffusion coefficient, also for 

single particles undergoing Brownian motion in the presence of static error. Following this 

work, Michalet and Berglund [15] provided theoretical Cramér-Rao lower bounds (CRLB) 

for the uncertainties in the estimates of both parameters. Furthermore, they showed through 

simulations that the CRLB was attained using an MLE estimator as well as the optimized 

least-squares approach using ordinary least squares with the optimal number of fitting 

points. More recently, Vestergaard [9] considered the use of a simple covariance-based 
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estimator (CVE) and experimental protocols for the determination of parameters for pure 

diffusion and showed that the CVE performed well in comparison to the CRLB.

The use of MSD has also been used for other models of particle transport. Savin and Doyle 

[8] derived a general formula for the MSD in the prescence of both static and dynamic 

errors, for any type of particle motion, and used this to study Maxwell and Voigt models of 

viscoelastic materials. Shanbhag [16] also looked at the determination of the diffusion 

coefficient for systems where long time diffusive behavior is preceeded by a short time 

nondiffusive behavior. A simple measure of the local curvature of the MSD curve was used 

to determine the nondiffusive regime which was then excluded from the fitting process used 

to determine the diffusion constant. For a persistent random migation model for self-

propelled particles, Tang and Underhill [17] showed that accuracy and precision of the 

parameters defining the model depended on the timescale over which the MSD was fitted 

and that this should include the transition region from ballistic to diffusive behavior.

In this paper we extend the analysis of Michalet [13] to particles undergoing drift as well as 

diffusion in the presence of static error. Drift-diffusion or biased random-walk models have 

been used in many areas particularly in biology, for example, in the detection of biased 

motion of leukocytes [18] and T cells [19] and in animal movement [4]. The inclusion of 

drift gives rise to two timescales associated with the diffusive and transport processes, 

making the optimal determination of the model parameters more difficult compared to the 

diffusion only case. Qian et al. [10] looked at the variance present in the estimation of the 

MSD in a diffusion only model and the limit that this would impose on the detection of a 

drift velocity if the MSD curve was fitted by a quadratic polynomial. This study, however, 

did not explicitly look at the uncertainties in parameter estimations obtained from fitting the 

MSD to data from a drift-diffusion model with static error. Saxton [20] used the radius of 

gyration tensor in an attempt to measure the asymmetry of measured particle trajectories to 

determine the presence of directional bias. This work, however, did not consider the effect of 

static error or a quantification of the drift-diffusion model parameters. Here we show that by 

using weighted least-squares quadratic regression to fit the ensemble time-average MSD 

curve, the diffusion coefficient, drift magnitude, and strength of the static error can be 

estimated. This can be done in two different ways depending on whether the experimental 

data can be recollected. If experiments cannot be repeated, following the work of Michalet 

[13], then an optimal number of fitting points can be found to best infer the parameters with 

the data at hand. If repeating experiments is possible, then an optimal measurement time 

interval is shown to exist which minimizes the uncertainty in inferring the parameters when 

using WLS on all the MSD points. Both quantities depend on the model parameters 

themselves and so iterative algorithms are presented for both approaches to obtain an 

estimate of the optimal number of fitting points and the optimal measurement time interval, 

along with estimates of the parameters in each. The cases of nonisotropic media and where 

the particles undergo multiple types of diffusion will not be considered in this paper. All 

mathematical derivations will be provided in the Supplemental Material [21].

The layout of the rest of the paper is as follows. In Sec. II we introduce the stochastic drift-

diffusion equation (SDE) that the particles are assumed to follow and calculate a theoretical 

expression for the mean and variance of the squared displacement and variance of the MSD. 
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The parameters will be estimated using weighted least-squares regression and so expressions 

for the variance of the regression coefficients and the covariance of the MSD are presented. 

In Sec. III we present the results for nonrepeatable experiments, including the estimation of 

the optimal number of fitting points and use of an iterative algorithm to estimate the model 

parameters. Similar results for repeatable experiments, including estimating the optimal 

measurement time interval and the corresponding iterative algorithm, are presented in Sec. 

IV. A discussion of the use of the results in this paper is given in Sec. V and conclusions are 

given in Sec. VI.

II Stochastic Drift-Diffusion Model

We will assume that all the particles move in two dimensions. The true location of a particle 

at time t will be denoted by the random variable Xt and it will be assumed that it evolves 

according to the drift-diffusion SDE,

dXt = α dt + 2DdWt . (1)

The drift velocity α = α[cos(θd), sin(θd)], where α is the drift magnitude and θd is the drift 

direction; for simplicity we assume that α and θd are fixed so do not depend on time. The 

diffusion coefficient is denoted by D and dWt = (dW1, dW2), where dW1,2 are independent 

Wiener processes. We will assume that the measured position of a particle is subject to 

additive independent and identically distributed static error of the form (0, η2I), where η2 

is the variance of the static error and I is the identity matrix. Throughout this paper we 

assume that the static error is independent of time. Note that we do not consider 

experimental factors which affect the level of static error such as finite frame duration and 

pixelization of video images; the interested reader can find these issues addressed in Savin 

and Doyle [8].

A The mean-squared displacement curve

Assuming that particles follow the drift-diffusion equation (1), the probability density 

function (PDF) for their displacement at time t is given by [22]

p x, t = 1
4πDt exp − x − α t 2

4Dt .

The observed displacement of a particle from the origin at time t will be denoted by the 

random variable Xt
o . Since Xt

o = Xt + Z, where Z is the random variable denoting the static 

error with PDF,

pn z = 1
2πη2 exp − z

2η2
2

,

then the PDF of Xt
o can be shown to be
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po xo, t = 1
2π 2Dt + η2 exp

− xo − α t
2

2 2Dt + η2 .

The measured displacements of the particles are made relative to the origin with the addition 

of static error. If Xt denotes the random variable for the measured displacement, then 

Xt = Xt
o − Z, and hence its PDF is given by

p x, t = 1
2π 2Dt + 2η2 exp

− x− α t2

2 2Dt + 2η2 . (2)

The measured MSD is defined as

ρ t ≡ 𝔼 Xt
2 = ∫ℝ2 x 2p x, t dx .

Using the PDF for the observed displacement (2) it can be shown (see Supplemental 

Material, section 1) that

ρ t = α2t2 + 4Dt + 4η2 . (3)

This result has been derived previously without the inclusion of static error; for example, by 

Qian et al. [10] and Codling et al. [22]. Note that ρ(t) is independent of the drift angle θd. If 

this is to be determined from experimental data, then a separate procedure must be used and 

we outline such an approach in the Supplemental Material (section 7).

The variance of the measured square displacement

Var(|Xt|
2) ≡ 𝔼(|Xt|

4) − [𝔼(|Xt|
2)]2

can be shown (see Supplemental Material, section 1) to be

Var(|Xt|
2) ≡ 4α2t2 2Dt + 2η2 + 4 2Dt + 2η2 2 . (4)

To our knowledge this result has not been explicitly stated before. In the absence of drift it is 

clear that Var(|Xt|2) = [ρ(t)]2 as the PDF for the measured squared displacement is an 

exponential distribution [13]. However, when drift is present then Var(|Xt|2) ≠ [ρ(t)]2 and 

hence the PDF for the squared displacements cannot be exponential. It is interesting to note 

that the variance of the squared displacement grows cubically in time when drift is present, 

whereas it only grows quadratically in the absence of drift. This observation has important 
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implications when considering how to optimally infer the parameters of the model as time 

intervals which are too large may result in extremely noisy estimates of the MSD.

In terms of the experimental data, we will assume that there are NS observed trajectories, 

each comprising of particle coordinates using equal time interval between frames tn = nT/N 
= nΔt, n = 0, …, N, covering the measurement time range [0, T]. The entire observed 

experimental data will therefore be denoted as

xn
j = xn

j , yn
j T , 1 ⩽ n ⩽ N + 1, 1 ⩽ j ⩽ NS .

There are many possible ways to estimate the MSD [13] but the most widely used is the 

ensemble time-average overlapping MSD. This is constructed by first calculating NS time-

averaged MSDs

ρn
j = 1

N + 1 − n ∑
i = 1

N + 1 − n
|xi + n

j − xi
j |2 ,

n = 1, …, N, j = 1, …, NS,
(5)

then averaging over trajectories to obtain

ρn = 1
NS

∑
j = 1

NS
ρn

j , n = 1, …, N . (6)

We will use a weighted least-squares fit to the ρn values in the next section to estimate the 

parameters in the model and this requires the variance σn
2 of ρn. In the Supplemental Material 

(section 2) we show that
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σn
2 =

n
6K2 4n2K + 2K − n3 + n 4D Δ t 2

+8α2D Δ t 3 n3

3K2 3Kn + 1 − n2

+ 8η2

K2 K − n [η2 − αn Δ t 2] n ⩽ K

+K[ αn Δ t 2 + 4Dn Δ t + 2η2] /NS

1
6K 6n2K − 4nK2 + 4n + K3 − K 4D Δ t 2

+8α2D Δ t 3 n2

3K 3nK − K2 + 1 n > K

+ 8η2

K [ αn Δ t 2 + 4Dn Δ t + 2η2] /NS,

(7)

where K = N + 1 − n. Note that in the absence of drift, the formulas above reduce to those 

appearing in Michalet [13].

To investigate the behavior of the MSD (3) as well as the quality of the ensemble time-

averaged estimate (6), simulated data were obtained by solving numerically the drift-

diffusion SDE (1) by the Euler-Maruyama method with NS = 10 trajectories and N = 100 

time points. Figure 1 shows a plot of the theoretical MSD ρ(t) compared with the estimate 

ρn. These experiments were for D = 2 μm2/s, α = 1 μm/s, η = 2 μm. To estimate the 

uncertainty in ρn, Fig. 1 also includes plots of ρn ± σn. Both the theoretical σn given by (7) 

and an empirical estimate of σn, obtained using 10 independent sample values of ρn, are 

shown. The plot on the left shows simulations with a time interval of T = 4 s while the right 

plot shows simulations with the same parameter values but with a larger time interval T = 

100 s. We can see that as time increases the size of the uncertainty in ρn increases and for 

small times ρn does not approximate ρ(t) well. This suggests a sufficiently large T is 

required in order to approximate the MSD accurately. We have also observed that choosing 

T too small lowers the accuracy of inferring the drift velocity, while taking the interval too 

large lowers the accuracy of inferring the diffusion coefficient. This is due to the quadratic 

form of the MSD, giving rise to two different timescales for the diffusive and drift processes.

B Variance of the regression coefficients

Since ρ(t) = a + bt + ct2, where a = 4η2, b = 4D, and c = α2, the coefficients can be inferred 

by quadratic regression [23]. Let σn
2 be the variance of ρn at the time point tn = nT/N, 1 ⩽ n 

⩽ N, and σnm
2 = 𝔼(ρnρm) − 𝔼(ρn)𝔼(ρm) be the covariance between ρn and ρm, where 1 ⩽ n, m 

⩽ N.

For a quadratic polynomial of the form μ(t) = a + bt + ct2, the variance of the regression 

coefficients, calculated by fitting the first p MSD points, can be estimated by [13]
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σa
2 ≈ ∑

n = 1

p
σn

2 ∂a
∂μn

2
+ 2 ∑

n = 1

p
∑

m = 1

n − 1
σnm

2 ∂a
∂μn

∂a
∂μm

,

3 ⩽ p ⩽ N,
(8)

σb
2 ≈ ∑

n = 1

p
σn

2 ∂b
∂μn

2
+ 2 ∑

n = 1

p
∑

m = 1

n − 1
σnm

2 ∂b
∂μn

∂b
∂μm

,

3 ⩽ p ⩽ N,
(9)

σc
2 ≈ ∑

n = 1

p
σn

2 ∂c
∂μn

2
+ 2 ∑

n = 1

p
∑

m = 1

n − 1
σnm

2 ∂c
∂μn

∂c
∂μm

,

3 ⩽ p ⩽ N,
(10)

where

∂a
∂μn

=
S2S4 − S3

2 − S1S4tn + S1S3tn
2 + S2S3tn − S2

2tn
2

σn
2 Δ

, (11)

∂b
∂μn

=
S0S4tn − S0S3tn

2 − S1S4 + S2S3 + S1S2tn
2 − S2

2tn
σn

2 Δ
, (12)

∂c
∂μn

=
S0S2tn

2 − S0S3tn − S1
2tn

2 + S1S2tn + S1S3 − S2
2

σn
2 Δ

, (13)

and

Sk = ∑
n = 1

p tn
k

σn
2 , k = 0, …, 4, 3 ⩽ p ⩽ N,

Δ =

S0 S1 S2
S1 S2 S3
S2 S3 S4

⋅

(14)
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Note that the lower limit for p reflects the minimum number of points needed to fit a 

quadratic polynomial, while the upper limit corresponds to fitting using all the MSD points. 

We show in the Supplemental Material (section 3) that the covariance of the MSD is

σnm
2 =

16nD2 Δ t 2

6KP −n3 − 2Pn2 + 1 − 6m2 + 6 N + 1 m n + 2P

+ 8α2 Δ t 3mn2D
3KP −n2 + 3 −m2 + N + 1 m + 1/3 + 32η2nD Δ t

K

+ 8η4 −n + 2P
KP + 8α2 Δ t 2mn2η2

KP /NS m + n ⩽ N

8D2 Δ t 2

3K −m3 + 3 + 3N − 4n m2 + 8 N + 1 n − 2 − 3N2 − 6N m

−6n3 + 6 N + 1 n2 − 4N2 + 8N n + N N + 2 N + 1

+ 8α2D Δ t 3mn
3K m2 − 2 N + 1 m + 3n2 − 3 N + 1 nN2 + 2N m + n > N

+ 8η2

K α2 Δ t 2mn + 4Dn Δ t + η2 /NS,

(15)

where K = N + 1 − n and P = N + 1 − m. Again, in the absence of drift, the covariance (15) 

is exactly as stated in Michalet [13].

In this paper we are interested in the optimal estimation of the diffusion coefficient D and 

the drift magnitude α. Since these are related to the regression coefficients b and c, we look 

to minimize σb/b + σc/c, the relative errors in b and c. This can be done in two ways 

depending on the experimental protocol.

III Results using the Optimal number of Fitting Points

A Determination of the optimal number of fitting points

If experiments cannot be repeated, then the optimal estimates of the model parameters may 

be obtained by fitting a subset of the MSD points. For this, we assume that the MSD is 

calculated using all N time points [as in Eqs. (5) and (6)] and then fit using a subset of these 

points (see Sec. IIB). In the Supplemental Material (section 4.1) we look at optimizing the 

number of fitting points for different choices of NS and N, as well as results for inferring the 

diffusion coefficient, drift magnitude, and standard deviation of the static error. To 

investigate optimizing the number of fitting points, we look at the theoretical value of the 

uncertainty σb/b + σc/c using (8)–(14) for different values of p and compare this with an 

empirical estimate calculated from simulations. For the estimated uncertainty, we calculate 

the MSD data points then use WLS regression to obtain estimates for b and c by fitting with 

the first p points, where 3 ⩽ p ⩽ N. This was repeated 1000 times to empirically estimate the 

values of σb and σc. Figure 2 shows the theoretical and simulated value of σb/b + σc/c as a 

Devlin et al. Page 9

Phys Rev E. Author manuscript; available in PMC 2019 October 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



function of the number of fitting points p for two different Δt values for η = 0.5 μm, 2 μm, 

and 8 μm. These experiments were for D = 2 μm2/s, α = 1 μm/s, η = 2 μm, NS = 10, and N = 

100, with Δt = 1 s giving T = 100 s for the left plot, while Δt = 10 s giving T = 1000 s for the 

right plot. We denote the optimal number of fitting points which minimizes σb/b + σc/c by 

popt. First notice that we have good agreement between the simulations and the theoretical 

expressions. Although it is difficult to see, from the left plot when Δt is small, the optimal 

estimation of the parameters is obtained using all 100 MSD points in the fitting for all values 

of η tested. On the other hand, if Δt is taken to be larger, then there may be an optimal 

number of fitting points which is less than N. In the right plot, for η = 0.5 μm, 2 μm, and 8 

μm, we have that the optimal number of fitting points for each case are popt = 7, 8, and 100, 

respectively. The dependence of the optimal number of fitting points on Δt is due to the two 

different timescales associated with drift and diffusion. Notice that the value of popt depends 

on the model parameters D, α, and η, as well as the size of the time interval between frames 

Δt and the total number of time points N. In the Supplemental Material (section 4.2) we 

provide a MATLAB routine which determines popt (D, α, η, Δt, N) given these input 

parameters.

Algorithm 1 Iterative algorithm to find popt and estimates of D, α, and η

      Input: MSD data found at N fixed time points with time step Δt = T/N, and 

convergence parameter τ.

      Output: Estimates of optimal number of fitting points popt and parameters D, α and 

η.

  1: Set the number of fitting points p0 = N and set i = 0.

  2: if i = 0 then

  3:       σn
2 i = 1, 1 ⩽ n ⩽ pi,

  4: else

  5:      σn
2 i = σn

2 Di, αi, ηi, Δ t  using (7), 1 ⩽ n ⩽ pi.

  6: end if

  7: Use WLS regression with weights 1/σn
2 i  on the first pi points of the MSD to get the 

parameter estimates Di, αi and ηi.

  8: Update pi+1 = popt (Di, αi, ηi, Δt, N).

  9: if (pi+1 − pi)/pi+1 < τ then

10:     end algorithm,

11: else

12:     Set i = i + 1 and go back to Step 2.

13: end if
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B Iterative algorithm to calculate popt

The difficulty with using popt (D, α, η, Δt, N) to infer the model parameters is we require the 

values of D, α, and η themselves in order to calculate it. We therefore consider the following 

iterative technique for determining popt. The iterative algorithm initially estimates D, α, and 

η by fitting all N MSD points. The weighting used in the fitting is initially taken to be 

uniform, and then, for all future iterations, we estimate the variance of the MSD by 

substituting the current parameter estimates into (7). The algorithm then adapts the number 

of fitting points according to Algorithm 1.

The tolerance τ determines the stopping criterion depending on the relative differences 

between two successive pi values.

We tested the iterative algorithm for the parameter values D = 2 μm2/s, α = 1 μm/s, and η = 

2 μm for three different time steps, Δt = 1 s, Δt = 10 s, and Δt = 100 s. Each simulation run 

uses N = 1000 time points and NS = 10 trajectories to create the MSD data and a quadratic 

fit. Since simulations are likely to end after a different number of iterations, Steps 9–11 of 

Algorithm 1 will be ignored and instead all simulations are stopped after 10 iterations. These 

simulations were then repeated 100 times. By denoting the mean value of a quantity by the 

angular brackets 〈·〉 we indicate the performance of the algorithm by plotting 〈pi〉, 〈|Di/D 
− 1|〉, and 〈|αi/α − 1|〉 in Fig. 3. The first thing to notice is that the algorithm converges to 

popt in a couple of iterations for the cases considered, with most being after just one 

iteration. We do not see much improvement in 〈|αi/α − 1|〉 when fit with the optimal number 

of fitting points, compared with all the MSD points, for any value of Δt. However, we do see 

a decrease in its value as we increase Δt. This is due to the value of the measurement time 

interval T increasing as we increase Δt. This increase in T moves us into the drift timescale 

where the inference of α is better. The value of 〈|Di/D − 1|) decreases after one iteration in 

all cases, with a larger decrease for larger values of Δt. The final value of 〈|Di/D − 1|) 

decreases when Δt = 1 s is increased to Δt = 10 s but then increases for Δt = 100 s. Here a 

small value of Δt, corresponding with a small value of T, is likely to give data which is static 

error dominated. When we increase Δt we leave the noisy domain and so the inference of D 
is improved. However, when we increase T too much, we leave the diffusive timescale and 

so the inference of D begins to deteriorate. This example shows that the choice of Δt is 

important for the optimal inference of both the parameters. Additional experiments were run 

for different values of D and α, which can be found in the Supplemental Material (section 

4.3).

C Single-particle parameter estimation using popt

While the analysis and results presented so far assume the availability of data for an 

ensemble of particles, in some situations only single-particle data are available. We now 

consider how the results we have perform in the single-particle case. An important point to 

note is that the optimal number of fitting points for both the single-particle case and 

ensemble of particles case are identical. This is because when calculating the variance and 

covariance of the MSD in the ensemble particle case, we simply take the single-particle 

variance and covariance and divide by NS, as stated in the Supplemental Material (sections 2 

and 3). Hence, when calculating the variance of the regression coefficients in (8)–(10), for 
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the ensemble case, we can take out a factor of 1/NS from σn
2 and σnm

2 . Therefore, the value of 

σb/b + σc/c in the ensemble case will be a factor of NS smaller than the single-particle case 

but the shape of the curve will be the same in both cases.

When using Algorithm 1 with an ensemble of particles, Steps 2–6 could be ignored and the 

variance of the MSD can be estimated empirically from the data. This obviously cannot be 

done for the single-particle case. This stresses the importance of having the theoretical 

expression for the variance of the MSD (7) as WLS regression can be still be done using 

single-particle data.

Figure 4 shows the results of the iterative algorithm for the same parameter values as in Fig. 

3 but for NS = 1. Since we only have a single particle, we expect the relative errors to be 

higher. Therefore, in each right plot, the dashed line will now correspond to a 10% error. 

Notice that the value of 〈pi〉 takes a couple more iterations to converge but still does so in a 

small number of iterations. We often see the relative errors converge before 〈pi〉, which is a 

result of the shallow minimum around popt in the right plot of Fig. 2. We have also observed 

similar behavior for repeatable experiments; for example, Figs. 5 and 7. We see the same 

trend for 〈|αi/α − 1|〉 as before, namely that fitting with the optimal number of fitting points 

does not improve its value much, but using a large value of Δt does. However, we see that 

the value of 〈|Di/D − 1|〉 is significantly improved; for example, looking at the case where Δt 
= 100 s, we start with around a 10 000% error and end below a 10% error. This is a 

considerable improvement compared with the ensemble case seen in Fig. 3. We provide 

further examples of single-particle experiments for different values of D and α in the 

Supplemental Material (section 4.4).

IV Results using the Optimal Measurement Interval

A Determination of the optimal measurement time interval

If experiments are able to be repeated then the optimization can be done with respect to the 

measurement time interval T rather than the number of MSD fitting points. This has the 

advantage that the optimal measurement time interval could help inform future experiments. 

For this method we assume that the MSD is calculated from all N time points and that all ρn 

data points are used in the fitting process. Note that since all the MSD points are used in the 

fitting, a new value of T will correspond with a new value of Δt. As stated before we 

concentrate on the optimal inference of the diffusion coefficient and drift magnitude. In the 

Supplemental Material (section 5.1) we again present similar results for different choices of 

NS and N, as well as results for inferring the diffusion coefficient, drift magnitude and the 

standard deviation of the static error.

Here, the theoretical uncertainty σb/b + σc/c is calculated over many different values of T 
using (8)–(14) with p = N so that all the MSD points are used in the fitting, and is compared 

with simulations. The simulated result was found by calculating the MSD and using WLS 

regression to obtain estimates of b and c. This was repeated 1000 times to obtain estimates 

of σb and σc. Figure 5 shows the comparison between the theoretical and simulated value of 

σb/b + σc/c over many different values of T for η = 0.5 μm, 2 μm, and 8 μm. These 
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experiment were for D = 2 μm2/s, α = 1 μm/s, NS = 10, and N = 100. We denote the value of 

T which minimizes the uncertainty σb/b + σc/c by Topt. We can see that we have good 

agreement between the theory and simulated uncertainties, more so closer to Topt. We also 

see that for all the cases tested, there exists an optimal measurement time interval. For η = 

0.5 μm, 2 μm, and 8 μm these optimal measurement time intervals are Topt ≈ 735 s, 780 s, 

and 1216 s. In the Supplemental Material (section 5.2) we provide a MATLAB routine which 

determines Topt (D, α, η, N) given the input parameters.

B Iterative algorithm to calculate Topt

As before, the function to calculate Topt depends on the model parameters and so another 

iterative algorithm was created. Note that each new iteration corresponds with repeating the 

experiment with a new measurement time interval Ti. To begin the iteration we need to 

provide an initial guess for Topt, which we denote by T0, with time interval between frames 

Δt0 = T0/N. The algorithm then adapts the time according to Algorithm 2.

The role of the under-relaxation parameter ωi is to improve the robustness of the algorithm 

by reducing oscillations; this is effectively a low-pass filter for the time series of 

adjustments. For example, if the initial guess T0 is far from the optimal value Topt, then the 

values Ti will quickly be adapted toward the optimal time. Close to the optimal time the 

algorithm can display oscillations in the convergence behavior, i.e., (Ti+1 − Ti) × (Ti − Ti−1) 

< 0. When this occurs the relaxation parameter ωi is decreased to smooth out the difference 

between iterates. The tolerance τ determines when to stop the algorithm depending on the 

relative differences between two successive time points. The rate at which the value of ωi is 

decreased in Step 10 is determined by the adjustment parameter ψ where 0 < ψ ⩽ 1. In the 

experiments that follow, the value of ψ = 0.8 has been used but additional values of ψ were 

tested in the Supplemental Material (section 5.3).

Algorithm 2 Iterative algorithm to find Topt and estimates of D, α, and η

    Input: Initial estimate of measurement time interval T0 and measurement interval 

between frames Δt0, number of time points N, adaptation parameter ψ and convergence 

parameter τ.

    Output: Estimates of optimal time Topt and parameters D, α and η.

1: Guess an initial time T0 with corresponding Δt0 and set the relaxation parameter ω0 = 

1 and set i = 0.

2: if i = 0 then

3:       σn
2 i = 1, 1 ⩽ n ⩽ N,

4: else

5:      σn
2 i = σn

2 Di, αi, ηi, Δ ti  using (7), 1 ⩽ n ⩽ N.

6: end if
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7: Calculate the MSD at the N time points with interval Δti up to Ti and use WLS on all 

the points with weights 1/σn
2 i  to get the parameter estimates Di, αi and ηi.

8: Update Ti+1 = (1 − ωi)Ti + ωiTopt (Di, αi, ηi, N) and calculate Δti+1 = Ti+1/N.

9: if i ⩾ 2 and (Ti+1 − Ti) × (Ti − Ti−1) < 0 then

10:      ωi+1 = ψ × ωi,    0 < ψ ⩽ 1

11: else

12:      ωi+1 = ωi

13: end if

14: if (Ti+1 − Ti)/Ti+1 < τ then

15:      end algorithm

16: else

17:      Set i = i + 1 and go back to Step 2

18: end if

The iterative algorithm was tested for the two different initial measurement time intervals, 

T0 = 107 s and T0 = 10−3 s. Both experiments were for D = 2 μm2/s, α = 1 μm/s, η = 2 μm, 

NS = 10, and N = 100; for these parameters Topt ≈ 780 s. Again, Steps 14–16 of Algorithm 2 

will be ignored and instead all simulations are stopped after 10 iterations. These simulations 

were then repeated 100 times. The quantities 〈Ti〉, 〈|Di/D − 1|〉 and 〈|αi/α − 1|〉 are shown in 

Fig. 6. Notice that the initial guess T0 = 107 s significantly overestimates the true value of 

Topt, but that the value of 〈Ti〉 converges rapidly to a value close to Topt. While the value of 

〈|αi/α − 1|〉 becomes less accurate as we progress, the value of 〈|Di/D − 1|〉 quickly falls 

from around a 1000% error to under a 10% error in a small number of iterations. When 

using a much smaller initial time of T0 = 10−3 s, we see that 〈Ti〉 still converges to Topt in a 

small number of iterations. Initially the value of 〈|Di/D − 1|〉 is of the order of magnitude 102 

while 〈|αi/α − 1|〉 is of the order of magnitude 103, corresponding to a 10 000% and 100 

000% error, respectively. This highlights the fact that an incorrect choice of T can lead to 

very large inaccuracies in the value of inferred parameters. However, using the adaptive 

algorithm we see that as the 〈Ti〉 values get closer to Topt, the errors both reduce to under 

10%. This stresses the importance of using Topt when inferring D and α using all the MSD 

points in the fitting. Additional experiments were run for different values of D and α, which 

can be found in the Supplemental Material (section 5.3).

C Single-particle parameter estimation using Topt

The results for Topt can also extend to the single-particle case for the same reasons as the 

popt method. The optimal measurement time interval will be the same for an ensemble of 

particles and the single-particle cases. Figure 7 compares the performances using the same 

initial measurement time intervals, T0 = 107 s and T0 = 10−3 s, for the same parameter 

values as those in Fig. 6 but with NS = 1. The value of 〈Ti〉 continues to converge in a small 
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number of iterations and we observe that the results for 〈|Di/D − 1|〉 and 〈|αi/α − 1|〉 have 

similar dynamics to the ensemble case. These show the strength of the iterative algorithm as 

they give good results even in the single-particle case where we have less information. 

Further experiments for different values of D and α can be found in the Supplemental 

Material (section 5.4).

The practical feasibility of this procedure to change the measurement time interval depends 

on the chosen application domain. For instance, in environmental statistics, where the task 

is, e.g., to monitor the spread of pollutants and contaminants in ground water, it is common 

practice to repeatedly estimate the same physical quantities. This setting therefore naturally 

lends itself to the integration of the proposed iterative adjustment scheme. For other 

applications, like the study of collective cell movement with high-resolution microscopy, a 

change of the experimental protocol may be required to allow (and budget) for a series of 

experiments that enable iterative adjustments of the measurement time intervals.

V Discussion

A Fitting method

Throughout the paper we assume that WLS regression is used to infer the parameters of the 

model. Michalet [13] showed that, in the absence of drift, the uncertainty in the parameters 

when using WLS and ordinary least squares (OLS) were similar as long as the optimal 

number of fitting points were used. When drift is included we find that WLS gives better 

results, both for using the optimal number of fitting points and the optimal measurement 

time interval, as shown in Fig. 8. We can see that in all cases using WLS gives better results 

than using OLS. When fitting with a subset of the MSD points, corresponding to the top 

plots, we do not have a big difference in the minimal uncertainty between WLS and OLS, 

but when optimizing the measurement time interval, corresponding to the bottom plot, we 

see a significant difference, with WLS being almost an order of magnitude better.

B Initial parameter estimates

Our analysis has shown that the optimal number of fitting points or the optimal measurement 

time depend on the quantities of interest themselves—the diffusion coefficient D and the 

drift magnitude α − via

popt = popt D, α, η, Δ t, N and Topt = Topt D, α, η, N . (16)

If we have reliable initial guesses for these parameters, then they can simply be inserted into 

(16) to estimate popt or Topt; however, such specific prior knowledge is rarely available. 

What we usually do have, though, is prior knowledge in terms of interval bounds or, more 

generally, prior probabilities. The simplest case is a uniform distribution of a prior credible 

interval, but more general forms of distributions may be derived from first principles; let us 

denote them by p(D), p(α), and p(η). From this, we can derive the prior expectation of Topt:

Devlin et al. Page 15

Phys Rev E. Author manuscript; available in PMC 2019 October 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Topt
0 = ∫ Topt D, α, η, N p D p α p η dDdαdη,

which in practice can be estimated with a Monte Carlo sum:

Topt
0 = 1

M ∑
i = 1

M
Topt D, α, η, N ,

where (αi, Di, ηi) are independent draws from p(α)p(D)p(η) with sample size M. This 

provides a good initial guess for the unknown optimal time Topt. A similar procedure could 

be used to generate an initial estimate for popt.

C Practical considerations in applications

An implicit assumption on which the proposed methodology is based is that of complete 

observation. This may not be valid in a real experiment, with missing values caused, e.g., by 

fluorophore bleaching. If the proportion of missing values is small, and values are missing at 

random, then there are established statistical procedures based, e.g., on the expectation-

maximization algorithm [24], which replace the missing values of the complete-observation 

model by their conditional means, given the current parameter values, and then optimize 

both in an iterative procedure. While this iteration suffers from an increase in the 

computational complexity, the changes to the mathematical procedure and estimation 

equations are minimal. The challenge of dealing with missing values is, in general, more 

complex if data are missing systematically, e.g., as a consequence of particles leaving the 

field of view of the camera. However, in this situation Algorithm 1 can be used with single-

particle data to determine the drift and diffusion parameters for each particle using the 

optimal number of fitting points assuming the frame rate is fixed. This procedure will 

produce a distribution for each parameter, which can be analyzed to determine if the model 

assumption of equal diffusion and drift parameters for each particle is valid. If it is, then the 

empirical mean and variance can be used for parameter estimation and uncertainty 

quantification. Using the optimal number of fitting points for each particle will reduce the 

spread in the parameter distributions which would result if a nonoptimal number of fitting 

points were used as originally discussed by Saxton [12] and Michalet [13].

A further assumption has been that the advection-diffusion model of Eq. (1) provides an 

accurate mathematical description of the true process under investigation. This may not be 

the case, e.g., due to inhomogeneities in the medium, leading to a more complex spatial 

distribution of the advection and diffusion parameters. In addition, there has recently been 

much interest in modeling animal movement (e.g., Hooten et al. [25]) and cell movement 

(e.g., Jones et al. [2]) with advection-diffusion type processes. However, in these cases we 

are not dealing with genuine physical processes but with more complex biological processes 

that merely exhibit similar characteristics. So an important question is that of model critique, 

i.e., to establish whether the assumed mathematical process provides an adequate description 

of the observed data. To this end, one can choose from a series of statistical techniques, 

ranging from computationally cheap asymptotic methods, like chi-square and G tests (e.g., 
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McDonald [26]), to computationally more expensive nonasymptotic procedures, like the 

parametric bootstrap [27,28]. However, what all these methods have in common is the 

assumption of a reliable procedure for accurate parameter estimation in the assumed model, 

as otherwise a correct or adequate model may be rejected erroneously. Hence any form of 

model critique will greatly benefit from the improved parameter estimation procedure 

proposed in the present paper.

There are many scenarios where we want to discriminate between alternative models based 

on the observed data. For instance, we may want to establish whether the system of interest 

is subject to advection as opposed to be driven by diffusion only. In other scenarios, we may 

want to know if there are significant other driving forces in the system in addition to 

advection and diffusion. Since these models are nested, one can fit the MSD data and then 

use an F-test to test the null hypothesis that the data have arisen from the simpler model. 

Again, the procedure is based on the assumption that the model parameters have been 

estimated accurately. As we have shown, this depends strongly on how the MSD data are 

fitted, and the proposed procedure for variance reduction makes a important contribution 

here.

VI Conclusions

When particles are assumed to undergo Brownian motion with drift, and the measured 

position of the particles is subject to static localization error, the accurate inference of model 

parameters is dependent on either the number of MSD points used in the WLS fitting or the 

measurement time interval, depending on the experimental protocol. In both cases, when T 
is too small we get inaccurate estimates for the drift magnitude, as well as the data being 

dominated by the static error, while larger values of T result in inaccurate inference of the 

diffusion coefficient. For experiments which cannot be repeated, an optimal number of 

fitting points popt was found which optimized the inference of the model parameters. 

Similarly, for repeatable experiments, an optimal measurement time interval Topt was found. 

Both popt and Topt depended on the parameters themselves and so an iterative algorithm was 

created for both procedures which gives optimally accurate estimates of the parameters. This 

depended on the calculation of an analytical form for the variance and covariance of the 

time-average overlapping MSD, particularly the variance as this could be used to perform 

WLS in the single-particle case.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A plot of the theoretical MSD curve (3) (solid black line), the ensemble time-averaged 

estimate ρn (6) (dotted blue line), along with ρ(t) ± σn, where σn is estimated empirically 

using 10 samples (dot-dashed red line) and ρ(t)±σn where σn is given by (7) (dashed black 

line), for a measurement time interval of T = 4 s (a) and T = 100 s (b). These experiments 

were for D = 2 μm2/s, α = 1 μm/s, η = 2 μm, NS = 10, and N = 100.
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Fig. 2. 
A plot of the theoretical value of σb/b + σc/c (solid lines) and its empirically estimated value 

using 1000 samples (dashed lines) when fit with the first p MSD points for η = 0.5 μm, 2 

μm, and 8 μm (from bottom to top, respectively, in both plots) for Δt = 1 s giving T = 100 s 

(a) and Δt = 10 s giving T = 1000 s (b). These experiments were for D = 2 μm2/s, α = 1 

μm/s, NS = 10, and N = 100. The optimal number of fitting points are 100 for all values of η 
in (a) and 7, 8, and 100 for η = 0.5 μm, 2 μm, and 8 μm, respectively, in (b).
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Fig. 3. 
A plot of the value of 〈pi〉 for each iteration with standard error bars [(a), (c), and (e)], along 

with a plot of the value of 〈|Di/D −1|〉 (red crosses) and 〈|αi/α − 1|〉 (blue circles) for each 

iteration with standard error bars [(b), (d), and (f)] for Δt = 1 s [(a) and (b)], Δt = 10 s [(c) 

and (d)], and Δt = 100 s [(e) and (f)]. These experiments were for D = 2 μm2/s, α = 1 μm/s, 

η = 2 μm, NS = 10, and N = 1000. The dashed line in the plots of 〈pi〉 correspond to popt = 

50 (a), popt = 16 (c), and popt = 7 (e), while the dashed line in the plots of 〈|Di/D − 1|〉 and 〈|
αi/α − 1|〉 correspond with the value 10−2, indicating a 1% error.
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Fig. 4. 
A plot of the value of 〈pi〉 for each iteration with standard error bars [(a), (c), and (e)], along 

with a plot of the value of 〈|Di/D − 1|〉 (red crosses) and 〈|αi/α − 1|〉 (blue circles) for each 

iteration with standard error bars [(b), (d), and (f)] for Δt = 1 s [(a) and (b)], Δt = 10 s [(c) 

and (d)], and Δt = 100 s [(e) and (f)]. These experiments were for D = 2 μm2/s, α = 1 μm/s, 

η = 2 μm, NS = 1, and N = 1000. The dashed line in the plots of 〈pi〉 correspond to popt = 50 

(a), popt = 16 (c), and popt = 7 (e), while the dashed line in the plots of 〈|Di/D − 1|〉 and 〈|
αi/α − 1|〉 correspond with the value 10−1, indicating a 10% error.
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Fig. 5. 
A plot of the theoretical value of σb/b + σc/c (solid lines) and its empirically estimated value 

using 1000 samples (dashed lines) against many different values of T for η = 0.5 μm, 2 μm, 

and 8 μm (bottom to top, respectively). These experiments were for D = 2 μm2/s, α = 1 

μm/s, NS = 10 and N = 100. For η = 0.5 μm, 2 μm, and 8 μm, the optimal measurement time 

intervals are Topt ≈ 735 s, 780 s, and 1216 s, respectively.
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Fig. 6. 
A plot of the value of 〈Ti〉 for each iteration with standard error bars [(a) and (c)], along with 

a plot of the value of 〈|Di/D − 1|〉 (red crosses) and 〈|αi/α − 1|〉 (blue circles) for each 

iteration with standard error bars [(b) and (d)]. These experiments were for D = 2 μm2/s, α = 

1 μm/s, η = 2 μm, NS = 10, and N = 100, with a starting time of T0 = 107 s [(a) and (b)] and 

T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti 〉 correspond to Topt ≈ 780 s, 

while the dashed line in the plots of 〈|Di/D − 1|〉 and 〈|αi/α − 1|〉 correspond with the value 

10−1, indicating a 10% error.

Devlin et al. Page 24

Phys Rev E. Author manuscript; available in PMC 2019 October 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 7. 
A plot of the value of 〈Ti〉 for each iteration with standard error bars [(a) and (c)], along with 

a plot of the value of 〈|Di/D − 1|〉 (red crosses) and 〈|αi/α − 1|〉 (blue circles) for each 

iteration with standard error bars [(b) and (d)]. These experiments were for D = 2 μm2/s, α = 

1 μm/s and η = 2 μm, NS = 1 and N = 100, with a starting time of T0 = 107 s [(a) and (b)] 

and T0 = 10−3 s [(c) and (d)]. The dashed line in the plots of 〈Ti〉 correspond to Topt ≈ 780 s, 

while the dashed line in the plots of 〈|Di/D − 1|〉 and 〈|αi/α − 1|〉 correspond with the value 

10−1, indicating a 10% error.

Devlin et al. Page 25

Phys Rev E. Author manuscript; available in PMC 2019 October 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 8. 
A plot of an empirically estimated value of σb/b + σc/c using WLS (solid red line) and OLS 

(dashed black line) as a function of the number of fitting points [(a) and (b)] or fit with all 

the MSD points over a number of measurement time intervals (c). These experiments were 

for D = 2 μm2/s, α = 1 μm/s, η = 2 μm, NS = 10, and N = 100. For the plots using the 

number of fitting points we have that Δt = 1 s giving T = 100 s (a) and Δt = 10 s giving T = 

1000 s (b).
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