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Abstract

We present a simple but accurate algorithm to calculate the flow and shear rate profile of

shear thinning fluids, as typically used in biofabrication applications, with an arbitrary viscos-

ity-shear rate relationship in a cylindrical nozzle. By interpolating the viscosity with a set of

power-law functions, we obtain a mathematically exact piecewise solution to the incom-

pressible Navier-Stokes equation. The algorithm is validated with known solutions for a sim-

plified Carreau-Yasuda fluid, full numerical simulations for a realistic chitosan hydrogel as

well as experimental velocity profiles of alginate and chitosan solutions in a microfluidic

channel. We implement the algorithm in an easy-to-use Python tool, included as Supple-

mentary Material, to calculate the velocity and shear rate profile during the printing process,

depending on the shear thinning behavior of the bioink and printing parameters such as

pressure and nozzle size. We confirm that the shear stress varies in an exactly linear fash-

ion, starting from zero at the nozzle center to the maximum shear stress at the wall, indepen-

dent of the shear thinning properties of the bioink. Finally, we demonstrate how our method

can be inverted to obtain rheological bioink parameters in-situ directly before or even during

printing from experimentally measured flow rate versus pressure data.

Introduction

Biofabrication, or bioprinting, is a novel technology aimed at applying common 3D printing

techniques to fabricate living tissues. In extrusion-based biofabrication, the survival and func-

tionality of printed cells strongly depend on the hydrodynamic stresses that the cells experi-

ence during printing [1–5]. These stresses arise mainly from viscous shear forces in the printer

nozzle and are thus directly related to the flow profile and the viscosity of the bioink [6–11] in

which the cells are suspended. In an effort to reduce hydrodynamics stresses, shear thinning

bioinks have been designed that exhibit a nearly flat velocity profile and correspondingly low

shear rates in the nozzle center, in contrast to purely Newtonian liquids that develop a para-

bolic flow profile with higher shear rates throughout most of the nozzle [12–19]. Consequently,
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cells suspended in shear thinning bioinks can be expected to show increased survival rate and

better functionality after printing [4, 16, 20, 21].

To describe the rheology of inelastic, time-independent, shear thinning materials, a variety

of viscosity models exists, which are collectively labeled as generalized Newtonian fluids [22].

One of the simplest models assumes a power-law, also known as Ostwald-de Waele relation-

ship [4, 23, 24]. Real shear thinning materials, however, show power-law behavior only in a

limited range of shear rates, while Newtonian behavior is observed above and below this

range. The latter is particularly relevant for bioprinting applications and prevails in the central

region of the printing nozzle where the velocity approaches a constant value and thus a vanish-

ing shear rate. To properly model this behavior, a widely used description is the Carreau-

Yasuda (CY) [22, 25] model, which features a central power-law region that smoothly transi-

tions into two Newtonian plateaus in the limits of low and high shear rates. Many commonly

used hydrogel materials for bioprinting [26] but also polymer melts or solutions [27] can be

accurately characterized with the CY model. Existing methods to calculate theoretically the

velocity profile in the printing nozzle for a CY fluid [28, 29] require the shear rate at the nozzle

wall as an input parameter. Experimentally, however, this quantity is usually not known.

Instead either the pressure difference or the volume flux serve as control parameter.

In this work, we present an algorithm to compute the full velocity, shear rate, and viscosity

profile in a printing nozzle for generalized Newtonian fluids such as shear thinning bioinks.

Our algorithm is based on interpolating an arbitrary viscosity-shear rate relation by piecewise

continuous power-law functions, and requires only the experimentally imposed printing

parameters such as the channel radius and the driving pressure difference or flow rate as input

values. To allow for an efficient application of our method in everyday laboratory work, we

provide a user-friendly implementation of our algorithm for CY fluids as a Python tool

included as S1 File. This tool is much simpler to use than typical computational fluid dynamics

software and at the same time can provide higher accuracy at much less computational load.

The calculated shear stresses are a measure for the mechanical load experienced by cells

embedded in the bioink and can thus directly be correlated to post-printing cell viability mea-

surements [1, 11]. We confirm that the well-known linear shear stress distribution found in

Newtonian pipe flow is also valid for shear thinning fluids. We validate our algorithm by com-

paring it to the exact solution for a simplified Carreau-Yasuda fluid, to full numerical Lattice

Boltzmann simulations for a realistic chitosan hydrogel under typical printing conditions, and

to experimental velocity profiles of a shear thinning alginate solution in a microfluidic channel.

Furthermore, we show how our method can be inverted to construct a capillary rheometer,

which allows users to determine the rheological parameters of a given bioink using only a bio-

printer and a standard laboratory scale without the need of a sophisticated rheometer. Such in-
situ measurements of bioink rheology combined with the calculation of expected shear rates

will help users to optimize the printing process and to achieve the desired printing results espe-

cially when bioprinting shear stress-sensitive living cells.

1 Theory and results

1.1 Viscosity model

Our algorithm starts from an experimentally known viscosity-shear rate relation Zð _gÞ and

interpolates it by a series of power-law functions. The viscosity-shear rate relationship of the

bioink, e. g. a cell-laden hydrogel, or any other generalized Newtonian fluid, can be approxi-

mated by a continuous, piecewise function as given in (S-1) and depicted in Fig 1a. In every

interval, the viscosity-shear rate relation is described by a power-law model Zið _gÞ ¼ Ki _g
ni � 1
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with a consistency parameter Ki and a dimensionless exponent ni. The ith interval is bounded

by the shear rates _Gi� 1 and _G i, and we demand Zð _gÞ to be continuous at these bounds.

This continuity condition together with a set of _Gi uniquely determines the power-law

parameters Ki and ni in every interpolation interval, as detailed in section S-1.2.

We note that this approach can be applied to any material described in terms of generalized

Newtonian fluids, including yield stress fluids. Furthermore, our method includes cell-laden

bioinks, as, on the one hand, the presence of cells has been shown to only slightly alter the

materials’ rheological behavior [5, 30]. On the other hand, the macroscopic rheology of a cell

suspension, determined e. g. via shear rheometry or our capillary rheometry method presented

in section 3, can be used as input for our method.

1.2 Governing equations

Analogously to the well-known Poiseuille flow of a Newtonian fluid [31, pp. 180 ff.], we

assume a stationary, laminar, and pressure driven flow, with the velocity having only an axial

component u depending on the radial position r. We consider a cylindrical channel and

neglect entrance and exit effects. Applying these flow conditions, the incompressible Navier-

Stokes equations reduce to the ordinary differential equation as shown in section S-1.3:

G ¼
1

r
@

@r
rZ _gð Þ

@u
@r

� �

ð1Þ

Here, the constant pressure gradient G≔ @p
@z ¼

Dp
L is defined by the pressure drop Δp = p0 − pL<

0 over a channel segment of length L. For a Newtonian fluid, i. e. Zð _gÞ ¼ Z, integration of

Eq (1) directly yields the well-known linear radial dependency of the shear stress:

s rð Þ ¼ Z _g ¼ �
G
2
r ð2Þ

Fig 1. Viscosity and flow profile interpolation. (a) The viscosity-shear rate relationship of an arbitrary shear thinning fluid obtained e.

g. from a rheometer measurement is interpolated by power-law intervals. The bounds of the intervals (vertical lines) are given by the

intermediate shear rates, _G i. By using a large number of intervals, any arbitrary viscosity-shear rate relationship can be approximated as

closely as desired. (b) A long cylinder with uniaxial, stationary flow is used as a model for the flow of a bioink through a printer nozzle.

The flow profile is split into radial intervals Ri determined implicitly via the intermediate shear rates _G i.

https://doi.org/10.1371/journal.pone.0236371.g001
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Similar to the piecewise viscosity model in Fig 1a, we decompose the axial velocity u(r) and the

shear rate _gðrÞ into radial intervals Ri as given in (S-29) and (S-32) and illustrated in Fig 1b for

the velocity.

Inserting these piecewise profiles into the Navier-Stokes equation Eq (1) yields the follow-

ing system of equations where i denotes the intervals as above:

G ¼
1

r
@

@r
½� rKi _g i rð ÞÞ

nið � ð3Þ

_g iðrÞ ¼ �
@uiðrÞ
@r

ð4Þ

In order to solve this system of equations we assume the axial velocity to be continuously dif-

ferentiable and the shear rate to be continuous. The flow shall further fulfill a no-slip boundary

condition at the channel wall and have its maximum at the channel center. The mathematical

solution to the system of equations Eqs (3) and (4) is detailed in section S-1.4 and section S-1.5

and can be summarized as follows: the shear rate profile is obtained by integrating Eq (3) over

the radial position once. Inserting this solution into Eq (4) yields the velocity profile after

another integration over r. Both integrations come along with integration constants that are

determined employing the boundary conditions of the flow and the continuity conditions as

stated above.

1.3 Results

The first equation Eq (3) can be rearranged and integrated once to obtain the shear rate profile

in the ith interval:

_g i rð Þ ¼ �
G

2Ki
r

� �
1

ni ð5Þ

From this, the velocity profile is obtained by integrating over r, which ultimately yields (cf. (S-

58)):

uiðrÞ ¼ �
�

�
G

2Ki

�
1

ni

ni

ni þ 1
r1þ 1

ni

þ

�

�
G

2Kk

�
1

nk

nk

nk þ 1
A1þ 1

nk

�
Xk� 1

j¼i

Rj
_G j

njþ1

njþ1 þ 1
�

nj

nj þ 1

 !

ð6Þ

Here, the newly introduced index k denotes the radial interval that contains the physical

boundary of the channel, i. e. Rk−1� A� Rk with the channel radius A.

The radial shear stress profile can, similarly to the Newtonian case, be derived from Eq (1),

yielding the same linear behavior:

s rð Þ ¼ � Z _gð Þ
@u
@r
¼ �

G
2
r ð7Þ

This shows that the shear stress profile in a cylindrical channel is independent of the shear

thinning properties of the material.

Using the solutions for the shear rate (5) and the velocity (6), we derive mathematical

expressions for the flow rate as well as the average velocity, shear rate, viscosity, and shear
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stress. Details of the derivation and the corresponding solutions can be found in (S-63), (S-66),

(S-71) and (S-74), respectively (cf. section S-1.6). The flow rate or, equivalently, the average

flow velocity determines the printing speed in 3D bioprinting processes. The average shear

rate and shear stress can be used to estimate cell damage during printing [2, 4] as detailed in

section S-1.8 of the S1 File. We discuss the inclusion of possible wall-slip effects [35] in section

S-1.9 of the S1 File.

2 Validation

To validate our method, we implement the presented algorithm in a Python [32] tool, included

as S1 File together with an explanatory tutorial in section S-3 and available at https://github.

com/sjmuellerbt/CYprofiles. Our tool performs the viscosity interpolation according to sec-

tion 1.1 for a five-parameter Carreau-Yasuda fluid, given in Eq (9). The radial profiles for

velocity, shear rate, viscosity, and shear stress and their respective averaged quantities are cal-

culated after providing the printing parameters, i. e. the nozzle radius and the pressure gradi-

ent or an imposed flow rate.

We first validate our algorithm using an exact global mathematical solution for a simplified

CY model. Next, we compare our algorithm with Lattice Boltzmann simulations for a general

CY model using the open source software package ESPResSo [33, 34], for which we extended

both the CPU and GPU implementation with several inelastic viscosity models, including the

CY model. We finally perform experimental velocity profile measurements in a microfluidic

channel and confirm the theoretical prediction of our Lattice Boltzmann simulations.

2.1 Validation with global solution

We consider a simplified Carreau-Yassuda (CY) model of the following form

~Z _gð Þ ¼
~Z0

1þ K _g
ð8Þ

where ~Z0 is the viscosity in the limit of zero shear rate and K is a time constant. For this model,

an exact global solution to the NSE Eq (1) can be found as described in(S-79) and (S-81) (cf.

section S-1.7). As shown in Fig 2, we find excellent agreement between this exact solution and

the calculated profiles using our Python tool.

2.2 Validation with Lattice Boltzmann simulations

The general CY model [25] is given by

~Zð _gÞ ¼ ~Z1 þ
~Z0 � ~Z1

½1þ ðK _gÞ
a1 �

a2
a1

; ð9Þ

where ~Z1 is the viscosity in the limit of infinite shear rates and the exponents a1 and a2 deter-

mine the shape of the transition between the zero-shear Newtonian plateau and the power-law

region as well as the power-law behavior. For this general CY fluid a global mathematical solu-

tion to the NSE does not exist. We therefore compare our algorithm to Lattice-Boltzmann sim-

ulations using realistic bioink and printing parameters for a chitosan hydrogel taken from [26]

with the following rheological parameters: ~Z0 ¼ 5807 Pas, K = 5.33 s, a1 = 1.35 and a2 = 0.87.

The simulation setup consists of a 5 × 400 × 400 (x × y × z) box with a cylindrical boundary

along the x-axis corresponding to a physical radius of A = 100 μm. The flow is periodic in x-

direction thus leading to an effectively infinitely long channel. Further details of the Lattice-

Boltzmann simulations are given in the S1 File.
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The calculated and simulated flow profiles are in excellent agreement (Fig 3) thus validating

our algorithm for a general CY fluid.

2.3 Validation with experimental flow profile measurements

As experimental proof, we measure the flow profile of an alginate solution along the centerline

of a microchannel and compare our findings to Lattice Boltzmann simulations of the same

geometry.

We prepare a 2.0% alginate solution by mixing 800 mg of alginate (Grindsted PH 176,

Dupont, USA) in 50 ml Dulbecco’s phosphate buffered saline under constant stirring over-

night at room temperature together with yellow-green fluorescent beads (FluoroSphere car-

boxylated beads, Invitrogen, diameter: 0.5 μm). The alginate solution is injected under defined

pressure into a polymethylmetacrylate microfluidic channel equipped with male mini Luer

lock connectors (Darwin Microfluidics, France, internal volume: 8 μl) via a 15 cm long silicon

tube (inner diameter: 1 mm). The channel has a length of 58 mm and a quadratic cross section

of 190 μm × 190 μm, similar in size to the cross section of a typical printing needle. A square

cross section of the channel was chosen to avoid optical distortions that would arise from the

Fig 2. Validation with a mathematical solution. Flow profiles for the simplified CY model: the global mathematical

solution and the prediction by our algorithm agree very well. The parameters are N = 1000, η0 = 100 Pa s, K = 1.0 s and

G = −1.95 × 106 Pa m−1.

https://doi.org/10.1371/journal.pone.0236371.g002
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curvature of a cylindrical glass capillary in combination with the refractive index differences

between glass and alginate. We visualize the flow of alginate using an epifluorescence micro-

scope (DM4, Leica Microsystems, Germany) equipped with a CCD camera (frame rate: 100

Hz, Prosilica GE680, Allied Vision, Germany) and a 100 mW laser diode (473 nm). The micro-

scope is focussed at the mid-section of the channel (height: 95 μm).

We perform measurements at a pressure of 300 kPa, close to actual printing conditions.

The maximum flow speed in the center of the channel is around 2 cm s−1, which is too fast to

track the beads between successive frames. Instead, the velocity is estimated from the length of

the linear streaks of the beads during exposure, as shown in Fig 4a, divided by the exposure

time of 7 ms.

We perform Lattice Boltzmann simulations of the pressure driven flow of the alginate solu-

tion in a square microchannel. The simulation setup consists of a 5 × 400 × 400 (x × y × z)

box with plane boundaries in y- and z-direction forming a square channel that corresponds to

the 190 μm × 190 μm microfluidic channel used in the experiment. The viscosity parameters

were obtained using our capillary rheometry method described in section 3 as ~Z0 ¼ 3:65 Pas,
_gc ¼ 21:71 s� 1 and α = 0.67, according to equation Eq (10) below. Since we do not know the

pressure drop across the mini Luer-lock connectors and tubings, we estimate the pressure gra-

dient from the maximum flow speed measured at the center of the channel. Accordingly, we

Fig 3. Validation with Lattice Boltzmann calculations. Flow profiles of a chitosan hydrogel with a pressure gradient

of G = −7.0 × 107 Pa m−1 and N = 1000.

https://doi.org/10.1371/journal.pone.0236371.g003
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find that 79% of the total pressure drop of 300 kPa occurs across the 58 mm long channel,

while the mini Luer-lock connectors and tubings account for the remaining 21%.

Fig 4b depicts the measured flow profile in comparison to our Lattice Boltzmann simula-

tions. We see excellent agreement of the measured velocity profile and our numerical predic-

tion. Further measurements of alginate hydrogels with different concentrations, as well as a

chitosan hydrogel, at various printing pressures and in different channel geometries are

included as S1 File.

3 Inverse application for a capillary rheometer

Not all laboratories working in bioprinting may have access to sophisticated rheometers for

measuring the non-linear viscosity of their bioinks. Moreover, bioinks are often highly sensi-

tive fluids with a large batch-to-batch variation, and the sample used for rheometer measure-

ments may not behave in the same way as the sample used for the actual printing process. In

this section, we show how our method can be inverted to perform in-situ capillary rheometry

measurements using only a bioprinter and a standard laboratory scale. For this, we measure

Fig 4. Validation with experimental flow measurements. Experimental measurement of the flow profile of a 2%

alginate solution in a 190 μm × 190 μm microchannel. (a) Example micrograph of the bead tracking procedure. The

velocity with respect to the lateral position is obtained as the length (yellow circles and labels) of the streaks divided by

the exposure time. (b) The measured flow profile is in excellent agreement with our Lattice Boltzmann simulations.

https://doi.org/10.1371/journal.pone.0236371.g004
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the pressure versus flow rate relationship [35] for a range of discrete pressure values. Using

our Python tool, we then extract from this data the non-linear viscosity parameters of the

bioink.

3.1 Experimental setup

We prepare a 2.5% alginate solution using the protocol described in section 2.3 without the

addition of fluorescent beads. We measure the viscosity of the alginate solution at a tempera-

ture of 25˚C at shear rates between 0.01 s−1 and 100 s−1 using a cone-plate rheometer (DHR-3,

TA-Instruments, USA). Alternatively, we measure the viscosity with a custom-made bioprin-

ter that we use here as a capillary rheometer. A schematic of the experimental setup is shown

in Fig 5. The alginate solution is driven with a defined pressure (K8P electronic pressure regu-

lator, Camozzi Automation, Italy) through a steel needle (21G blunt cannula #9180109-02,

B-Braun, Germany, 28 mm length, 551 μm inner diameter). The pressure is increased stepwise

from 20 kPa to 200 kPa in steps of 20 kPa. The driving pressure is measured with a pressure

Fig 5. Experimental capillary rheometer setup. Schematic of the experimental setup using a custom-made bioprinter as capillary rheometer:

the bioink is driven through a syringe under defined pressure, and the flow rate of the extruded alginate is measured with a precision scale.

https://doi.org/10.1371/journal.pone.0236371.g005
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transducer (DRMOD-I2C-R10B, B+B Thermo-Technik GmbH, Germany), and the flow rate

of the extruded alginate is measured with a precision scale (DI-100, Denver Instrument, USA).

We then fit the zero-shear viscosity, ~Z0, the corner shear rate, _gc, and the power-law shear

thinning exponent, α, of a 3-parameter Carreau-Yasuda fluid to match the measured flow rate

versus pressure relationship. The viscosity-shear rate relationship is given by

~Z _gð Þ ¼ ~Z0

�

1þ

�
_g

_gc

�a�� 1

; ð10Þ

which is derived from Eq (9) by omitting the infinite-shear viscosity (~Z1 ¼ 0), and introduc-

ing the corner-shear rate _gc ¼ K � 1 as well as the single exponent α = a1 = a2. Fitting is per-

formed using a Marquard-Levenberg least-squares method implemented in the Python library

SciPy, where the squared difference between the measured and the computed flow rate is mini-

mized for each pressure level. The flow rate is computed according to (S-64) with the printing

parameters mentioned above and N = 150 interpolation intervals between shear rates of 10−6

s−1 to 108 s−1. Since the inner diameter of the printer cartridge is large compared to that of the

nozzle, we neglect a possible pressure drop along the cartridge.

3.2 Results

When measured with a cone-plate rheometer, the viscosity of a 2.5% alginate solution displays

a pronounced shear rate dependency (Fig 6a), which is well described by a 3-parameter CY

model according to Eq (10). Specifically, at shear rates below the corner shear rate

_gc � 17:8 s� 1, the viscosity is approximately constant, with ~Z0 � 7:9 Pas. At shear rates above

_gc, the viscosity decreases according to a power-law with exponent α� 0.74.

When the same 2.5% alginate solution is extruded through a 28 mm long 551 μm diameter

capillary, we find an over-proportional increase in flow rate with increasing pressure (Fig 6b).

Specifically, a doubling in pressure causes an approximately 10-fold increase in flow rate. This

experimentally measured flow rate versus pressure relationship is exactly predicted by our

numerical solution (blue line in Fig 6b), adding further support to the validity of our

algorithm.

If a rheometer is not available, the above procedure can be inverted to obtain the rheological

properties of the bioink as follows: starting from a first guess of the CY parameters, the pres-

sure versus flow rate is computed using our Python tool. Subsequently, the viscosity parame-

ters are refined until the prediction matches with the experimental data as shown in Fig 6b.

The parameters obtained from the flow-rate versus pressure data (red squares in Fig 6b) are

~Z0 � 6:8 Pas, _gc � 27:9 s� 1, and α� 0.78 and differ only slightly from the parameters

extracted from the cone-plate rheometer measurements. Accordingly, also only a slight differ-

ence between both parameter sets is seen in the velocity, shear rate and viscosity profiles

shown in Fig 7. Also visible in Fig 6b is an increasing deviation of the flow rate versus pressure

prediction for the cone-plate rheometer from the measured data with increasing pressure.

This is likely due to shear rheometers not being able to achieve the large shear rates that occur

under realistic printing conditions, while the capillary rheometer method intrinsically

accounts for that.

A specific advantage of this capillary rheometry approach is that the experiment can be per-

formed with the very same bioink that is currently in the printing cartridge prior to the actual

printing process. Since most bioprinters are pressure controlled, i.e. the bioink is extruded

through a printing needle with a constant pressure, the highly non-linear increase of the flow

rate with increasing pressure makes it difficult to find the optimal printing parameters and to
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predict the material shear stresses during the printing process. Our algorithm solves both

problems.

Conclusion

We presented a simple yet highly accurate algorithm to calculate the velocity and shear rate

profiles for generalized Newtonian fluids, such as shear thinning bioinks, in cylindrical noz-

zles. For this, an arbitrary experimentally known viscosity-shear rate relation is split into a set

Fig 6. Comparison between capillary rheometer and cone-plate rheometer results. (a) Viscosity versus shear rate

for a 2.5% alginate solution as measured with a cone-plate rheometer (data from 4 independent measurements, red

squares) shows the pronounced shear thinning of a CY fluid that is well characterized by 3 fit parameters (black line)

according to Eq (10). This shear thinning behavior can be predicted (blue line) from an independent capillary

rheometry experiment using our Python tool. (b) Flow rate versus pressure relationship of the alginate solution when

extruded through a 28 mm long 551 μm diameter capillary (red squares). This relationship follows our numerical

solution using 3 fit parameters (blue line). The flow rate versus pressure relationship can similarly be predicted (black

line) from the viscosity values obtained from an independent cone-plate rheometer experiment shown in the upper

panel, showing significant deviations with increasing pressure.

https://doi.org/10.1371/journal.pone.0236371.g006

PLOS ONE Shear thinning flow calculations inside a bioprinter needle

PLOS ONE | https://doi.org/10.1371/journal.pone.0236371 July 24, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0236371.g006
https://doi.org/10.1371/journal.pone.0236371


of continuous intervals described by power-laws. This includes the possibility to predict veloc-

ity and shear stress profiles in pure as well as cell-laden bioinks. In each interval, an exact solu-

tion for the shear rate and velocity is computed and connected to neighboring intervals to

obtain a continuous smooth profile over the entire nozzle diameter. For the shear stress, the

linear radial dependency independent of the fluid rheology was confirmed. In addition, the

total flow rate as well as the average viscosity, shear rate and shear stress are also found

mathematically.

We implemented our method as an easy-to-use Python tool for calculating the velocity and

shear rate profiles for a Carreau-Yasuda fluid. To validate this tool, we compared our predic-

tions to a mathematically exact global solution and to Lattice Boltzmann simulations for realis-

tic chitosan hydrogels under typical bioprinting conditions. In both cases, we found excellent

agreement. We further measured the velocity profile of an alginate solution in a microfluidic

channel and found good agreement with Lattice Boltzmann simulations.

An important experimental application of our theoretical method is capillary rheometry.

Here, the flow rate versus pressure relationship for a given hydrogel is obtained using a stan-

dard bioprinter. This data can then be fit to our theoretical predictions yielding the

Fig 7. Alginate flow profile from capillary rheometer and cone-plate rheometer data. Flow profiles of 2.5% alginate

hydrogel with a pressure difference of Δp = −105 Pa and N = 150. There is only a slight difference between the flow

profiles calculated from the viscosity parameters obtained with a cone-plate rheometer (black line) and our capillary

rheometer (blue line).

https://doi.org/10.1371/journal.pone.0236371.g007
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corresponding rheological parameters of the bioink. We illustrated this application for alginate

and found good agreement with classical rheometer data.

Our method and the accompanying Python implementation provide a fast and simple tool

to predict flow rates and shear stresses during bioprinting for a given bioink and thus will help

to optimize printing parameters, especially for shear stress-sensitive living cells.

Supporting information

S1 File. Mathematical derivation, further experimental validation, and user’s guide. The

supplementary material for the manuscript contains a detailed mathematical derivation of the

presented method and a simple model to estimate the force and deformation experienced by a

cell in shear thinning capillary flow. We also include further experimental measurements for

alginate 2% and 3% and chitosan 3% in square and rectangular microchannels, as well as the

corresponding error calculations. A user’s guide for the developed Python tool is provided.

(PDF)

S2 File. CYprofiles.py. File containing the implemented classes of our tool.

(PY)

S3 File. Tutorial.py. File with a basic usage example for the implemented classes.

(PY)

Acknowledgments

We thank Werner Schneider and Jia You for designing and building the capillary rheometer

and for performing the measurements, Lena Fischer and Rainer Detsch for help with alginate

preparation, Delf Kah, Alexander Winterl and Christoph Mark for help with the development

of the bioprinter control software, and Ronny Reimann for the creating the experimental setup

schematic. We gratefully acknowledge computing time provided by the SuperMUC system of

the Leibniz Rechenzentrum, Garching, as well as by the Bavarian Polymer Institute (BPI).
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