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Abstract Despite the documented antibiotic-induced disruption of the gut microbiota, the impact

of antibiotic intake on strain-level dynamics, evolution of resistance genes, and factors influencing

resistance dissemination potential remains poorly understood. To address this gap we analyzed

public metagenomic datasets from 24 antibiotic treated subjects and controls, combined with an

in-depth prospective functional study with two subjects investigating the bacterial community

dynamics based on cultivation-dependent and independent methods. We observed that short-

term antibiotic treatment shifted and diversified the resistome composition, increased the average

copy number of antibiotic resistance genes, and altered the dominant strain genotypes in an

individual-specific manner. More than 30% of the resistance genes underwent strong differentiation
nces and
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at the single nucleotide level during antibiotic treatment. We found that the increased potential for

horizontal gene transfer, due to antibiotic administration, was �3-fold stronger in the differentiated

resistance genes than the non-differentiated ones. This study highlights how antibiotic treatment has

individualized impacts on the resistome and strain level composition, and drives the adaptive evo-

lution of the gut microbiota.
Introduction

The human intestines are densely populated by diverse micro-
bial inhabitants, which collectively constitute the gut micro-
biota. About 1000 prevalent bacterial species colonize the
human gastrointestinal tract, playing a pivotal role in health

and disease of the host. Besides influencing physiology of the
digestive tract, the gut microbiota also affects development,
immunity, and metabolism of the host [1]. External forces,

including antibiotic treatment or dietary intake, shape the
composition of the gut microbiota with the potential for rapid
changes, thereby affecting the microbe–host homeostasis [2,3].

Antibiotics have been widely used since the Second World
War resulting in dramatic benefits to public health [4]. How-
ever, the rapid increase in antibiotic resistance (AR) has

become an escalating worldwide issue [5]. Antibiotic-resistant
pathogens lead to treatment failure and contribute to increas-
ing morbidity, mortality, and healthcare costs. Over 70% of
bacteria causing hospital-acquired infections have antibiotic

resistance toward at least one common antibiotic for treatment
[6]. Previous metagenomic studies have revealed the influence
of antibiotic administration on the gut microbiota in various

ways, including (1) altering the global taxonomic and func-
tional composition or the diversity of the gut microbiota
[7–11], (2) increasing the abundance of bacteria resistant to

the administered antibiotic [12], (3) expanding the reservoir
of resistance genes (resistome) [13], or (4) increasing the load
of particular antibiotic resistance genes (ARGs) [11,14]. The
disruptive effects of antibiotic treatment on gut microbiota

can be transient or long-lasting [15]. Nevertheless, there is a
paucity of information about how the resistome structure
shifts and how the genotype of ARGs evolve and differentiate

when the microbiome is challenged with antibiotics. In addi-
tion, how antibiotic exposure influences strain-level variation
within the gut microbiome remains poorly understood.

Antibiotic resistance can be acquired through point muta-
tions (de novo evolution) or horizontal gene transfer (HGT)
[16]. De novo resistance mutations can modify the antibiotic

cellular targets or alter the expression of antibiotic resistance
genes and therefore alter the resistance levels of the bacterial
strain harboring them [17]. Unlike de novo resistance muta-
tions, horizontal gene transfer allows bacteria to adapt more

rapidly to an environment containing antibiotics [16]. Further-
more, the gastrointestinal tract, densely populated with bacte-
ria, enables the gut microbiota to act as a resistance reservoir

which likely contributes to the spread of ARGs to opportunis-
tic pathogenic bacteria [18–20]. The exchange of ARGs has
been documented to occur in the human gut between strains

carrying vancomycin and sulfonamide resistance genes in Ente-
rococcus faecium and Escherichia coli, respectively [21,22].
Recently, the in situ HGT of ARGs in the infant gut was

described [23]. However, factors triggering the HGT of ARGs
in the human gut remains insufficiently explored. Therefore,
system level investigations are needed to determine whether
antibiotic administration alters the dissemination potential of
ARGs, and more importantly, which factors are associated

with the altered dissemination potential of ARGs in the human
gut.

In this study, we first analyzed public metagenomic data
from a longitudinal study of 18 cefprozil treated and 6 control

volunteers [12]. We surveyed the strain-level dynamics, shift of
the resistome structure, evolution of resistance genes at the sin-
gle nucleotide level, and factors associated with the variation

of dissemination potential. In this first stage of in silico analysis
we demonstrated the diversification of the resistome and in situ
evolution of strains upon antibiotic intake. We then performed

an in-depth prospective and functional study on longitudinal
samples from one cefuroxime treated and one control subject
using both culture-dependent and culture-independent

approaches.

Results

Antibiotic treatment diversifies the resistome composition and

increases the copy number of ARGs at the intraspecies level

We analyzed public metagenomic data from a longitudinal
study of 18 cefprozil treated and 6 healthy control volunteers

[12] (each subject was sampled at day 0, 7, and 90) that aimed
to investigate whether the initial taxonomic composition of the
gut microbiota is associated with the reshaped post-antibiotic
microbiota. Using these data we investigated the dynamics

and diversification of the resistome, strain-level selection, vari-
ation of the dissemination potential of antibiotic resistance,
and the single-nucleotide level differentiation under antibiotic

treatment.
To evaluate to what extent the composition of the resistome

was altered in response to antibiotic treatment, we quantified

the compositional distance between samples at different time
points. An NMDS plot based on the Jaccard distance of
ARGs presence/absence profile of each sample revealed that

the resistome composition was more drastically altered in the
antibiotic treated group than the control group during treat-
ment (Figure 1A). The compositional distances between base-
line and treatment samples within the same treated

individual were significantly larger than those in the control
group (0.14 vs. 0.06 on average, P < 0.01 with Wilcoxon
rank-sum test, Figure 1A). Additionally, we observed that

the compositional differences between post-treatment
(90 days) and the baseline samples within the same individual
were also significantly larger in the treated group than in the

control (0.135 vs. 0.075 on average, P = 0.04, Wilcoxon
rank-sum test, Figure 1A), revealing the persistent diversified
ARG composition after antibiotic perturbation.

We next studied whether antibiotic treatment could select

similar sets of antibiotic resistance genes and converge the
resistome composition across individuals. If the gut
resistome presents a more common response, instead of an
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individualized response, to an antibiotic treatment, we would
expect the resistome compositions to become more similar
after the treatment across individuals. We found that the dis-

similarity of the ARGs composition measured by the Jaccard
distance between individuals increased significantly over time
in the antibiotic treated group (baseline: 0.44 vs. treatment:

0.52, on average, P < 0.01 with Wilcoxon rank-sum test, Fig-
ure 1B), indicating that the overall composition of the resis-
tome diversified under antibiotic treatment across

individuals. No significant increase in resistome divergence
was observed in the control group (P > 0.05 with Wilcoxon
rank-sum test, Figure 1B). When considering the ARGs abun-
dance rather than the presence/absence, we observed a similar

pattern. The Bray–Curtis distance based on the ARG abun-
dance profile between individuals increased significantly during
treatment (0.615 vs. 0.685, P < 0.01 with Wilcoxon rank-sum

test, Figure S1). The diversified resistome suggests that antibi-
otic exposure drives an individualized selection of antibiotic
resistance genes. Additional statistical analyses revealed that

both the baseline species-level taxonomic composition and
the baseline resistome composition are significantly correlated
with the resistome composition after treatment (P< 0.001,

Mantel’s test with permutation = 5000).
The significantly diversified resistome composition during

antibiotic treatment encouraged us to investigate whether
the copy number of the ARGs (the ratio of gene depth to

the relative genomic abundance of the species harboring this
gene) could be altered during treatment. Incorporating the
reference genomes of the 28 most prevalent species (at least

1% of relative abundance in at least half of the samples from
24 individuals, Table S1), we quantified the average copy
number of each ARG. We found that genes annotated to

confer resistance toward most classes of antibiotics, including
aminoglycosides, beta-lactams, tetracyclines, and glycopep-
tides, increased the copy number significantly by 22% on

average during the treatment (P < 0.001, Wilcoxon rank-
sum test, Figure 1C). The copy number of efflux pumps
annotated as ARGs also increased significantly by 8%
(P < 0.001, Wilcoxon rank-sum test, Figure 1C). In contrast,

ARGs in the control group had no significant increase in
copy number (P = 0.76, Wilcoxon rank-sum test, Figure 1C)
during the same period. The significant increase in copy num-

ber of antibiotic resistance genes in response to antibiotic
treatment could be explained by either the selection of strains
Figure 1 Divergence of the resistome and dominant strains in the prev
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with existing ARGs (one or multiple copies) or the horizontal
transfer of ARGs.

Antibiotic treatment drives single nucleotide level differentiation

at non-synonymous sites

Next, we investigated how the genotype of ARGs varied at the

single nucleotide level within each species’ population during
antibiotic treatment. The analysis of single nucleotide variants
(SNV) based on the shotgun metagenomic data of 72 samples

from 24 individuals revealed that there is a significantly higher
proportion of differentiated sites (see Methods for definition)
in the treated subjects than the control group (3.0% vs.

1.1%, P < 0.001, Wilcoxon signed-rank test, Figure 1D).
There is also a significantly higher proportion (31% vs. 13%,
P < 0.001 with Wilcoxon signed-rank test, Figure S2A) of
genes containing differentiated sites in the treated subjects than

the controls, consistent with antibiotic exposure driving com-
positional changes in ARG allele frequency and spectrum.
By examining sub-categories of ARGs, we observed that most

genes, including those annotated as efflux pumps or conferring
resistance toward beta-lactams, tetracyclines, and glycopep-
tides, have a significantly higher proportion of differentiated

sites in the treated group compared to the control
(P < 0.001, Wilcoxon signed-rank test, Figure 1D), indicating
antibiotic-driven differentiation of the human gut resistome.

To evaluate the potential functional influence of the differ-

entiated sites in the treated subjects, we investigated the fre-
quency of differentiation at either non-synonymous sites
(0-fold degenerate sites) or synonymous sites (4-fold degener-

ate sites). Compared with all the sites in the coding region, sin-
gle nucleotide differentiation is drastically enriched at non-
synonymous sites (91.1% vs. 64.9% for differentiated sites

and all sites, respectively), suggesting that intraspecies level
selection tended to influence the functional potential of the
ARGs within the population of each bacterial species.

We further investigated whether there are some commonly
differentiated sites in the ARGs among antibiotic treated indi-
viduals. We found that 11 genes harbored at least one recur-
rent differentiated site, and these genes were observed in at

least 25% of the treated individuals. These commonly differen-
tiated genes, which belong to the MexE or RND efflux family,
originate mainly from the species Bacteroides uniformis and

Bacteroides vulgatus, or other Bacteroides species (Table S2).
alent species upon antibiotic intake
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Increased HGT potential of the resistome is associated with SNV

differentiation

We further investigated whether the dissemination potential of
ARGs was altered during antibiotic treatment. The chance of

HGT transfer (HGT potential) for a particular gene is associ-
ated with two factors, the intrinsic HGT tendency of the gene
and its prevalence in the population. Therefore, we estimated
the HGT potential for the ARG families by combining the rel-

ative abundance and the HGT rate [24] (HGT poten-
tial = HGT rate � abundance, see Methods). According to
the above definition, the gene-level variation of HGT potential

is noticeably correlated with the abundance variation. We
found that the HGT potential increased in both differentiated
and non-differentiated ARG families during antibiotic treat-

ment (P < 0.05 with Wilcoxon signed-rank test), while the
HGT potential in differentiated ARGs increased more drasti-
cally and significantly than in the non-differentiated ones

(19% vs. 5% on average, P < 0.01, Wilcoxon signed-rank test,
Figure 1E). This suggested that ARGs with differentiated sites
could play more important roles in dissemination of antibiotic
resistance upon antibiotic intake. The pattern of the

differentiation-associated increase in HGT potential was not
observed in the control subject at the same time period
(Figure S2B).

We discovered a significantly positive correlation between
community-level fold-change of the HGT potential and the
average rate of differentiated sites in the ARGs (Pearson’s cor-

relation coefficient 0.50, P = 0.038, Figure S3), suggesting that
ARGs with a higher proportion of differentiated sites tend to
increase their HGT potential more drastically. One explana-
tion for this differentiation or SNV-associated increase in the

HGT potential is that ARGs with multiple genotypes co-
exist within the population for particular species before the
antibiotic treatment and these genotypes confer distinct selec-

tive advantages or link with other beneficial alleles of ARGs
under antibiotic pressure. Therefore, antibiotic treatment tends
to select ARGs with selectively advantageous mutations,

increasing their abundance and HGT potential. In contrast,
non-differentiated ARGs genes harboring homogeneous alleles
or multiple alleles with similar selective advantage under

antibiotic pressure would randomly select the strains harbor-
ing them and maintain their allele frequency.

Antibiotic pressure shifts the intraspecies population structure

The diversified resistome composition and single nucleotide
differentiation revealed the influence of antibiotic treatment
on the human gut resistome. Therefore, we further investigated

how antibiotic pressure drives changes in the intraspecies-level
population structure of intestinal species regarding the domi-
nant strain genotypes. We reconstructed the phylogenomic tree

for the concatenated genomes of the dominant strains from 28
prevalent species (see Methods). Our results reveal that the 28
dominant strains of the treated subjects present significantly

closer phylogenetic relationships between samples from the
same individual than the samples across individuals
(P < 0.01, permutation test, Figure 1F), indicating an individ-
ualized antibiotic selection for the dominant strains within

each subject. This individual-specific strain selection during
treatment was also observed for each individual species, e.g.,
Ruminococcus bromii (Figure S4A). Furthermore, we noticed
a significantly higher divergence (phylogenetic distance) of
the dominant strains between the baseline and treated samples

in the treated group than the control (0.052 vs. 0.015 on aver-
age, P < 0.01, Wilcoxon signed-rank test, Figure 1F–G), sug-
gesting that antibiotic pressure drove a significant shift of the

dominant strain genotype, therefore influencing the intraspe-
cies population structure. This is consistent with the aforemen-
tioned strong differentiation trend for the ARGs. Interestingly,

when we examined the post-treatment (day 90) recovery pat-
terns by comparing the phylogenetic distances of the dominant
strains between baseline treated and post-treatment samples in
the treated group, we found that the dominant strains in only

39% (7 out of 18) of the individuals had a closer phylogenetic
relationship with the corresponding baseline samples than the
treatment samples (Figure 1F). This suggests that the shift in

intraspecies population structure upon antibiotic treatment
could be long-lasting.

If antibiotic treatment tends to select dominant strains or

ARGs with more similar genotypes, we should observe smaller
phylogenetic distances between treatment samples across indi-
viduals, as compared with the distances between the baseline

samples across individuals. The results show that there are
no significantly different phylogenetic distances between the
cross-individual treatment samples and cross-individual base-
line samples of the dominant strains or domain ARG genotype

(P> 0.05, Wilcoxon signed-rank test, Figures 1F and S4B),
suggesting that antibiotic treatment tends to select dominant
strains and ARGs with individual-specific genotypic

signatures.
Furthermore, we found that the differences in genome-

wide nucleotide diversity in 28 prevalent species are not sig-

nificant between the treated and control groups (average
fold-change: 1.12 vs. 1.05, P = 0.73, Wilcoxon signed-rank
test, Figure 1H), indicating no large-scale selective sweep or

strain domination in most of the species. Interestingly, we
did find in particular individuals and species (e.g., Bacteroides
uniformis in individuals 10, 13, 17, and 19) a drastically
decreased (less than half of the baseline) genome-wide nucleo-

tide diversity (Table S3), suggesting that incomplete selective
sweep occured due to antibiotic exposure. Combined with the
strong divergence of the dominant strains in the treated

group, our analysis indicates that cefprozil intake reshapes
the intraspecies population structure by selecting individual-
specific strains and ARGs.
Cefuroxime treatment increases antibiotic resistance levels of the

human gut microbiota

The analyses based on public data revealed the general ten-

dency for differentiation and diversification of the resistome
upon antibiotic treatment. Subsequently, we prospectively
and functionally assessed the impact of antibiotic treatment

on the resistance levels of the gut microbiota to a panel of
antibiotics in one treated and control subject using both
cultivation-based multiplex phenotyping and cultivation-

independent functional and shotgun metagenomics (Figure 2A
and Methods). We defined the level of phenotypically resistant
gut microbiota as the ratio of colony counts on the antibiotic-

containing plates to the antibiotic-free plates. The overall level
of phenotypically resistant gut microbiota increased



Figure 2 Cefuroxime treatment enhanced the resistance to multiple antibiotics and converged the cultured resistant bacterial communities

A. Experimental design: Two healthy adult human donors were selected for this study. One subject underwent a standard 5-day treatment

with cefuroxime (500 mg, 3 times a day) while the other subject was not treated, serving as a control. Fecal samples from multiple time

points were extracted for downstream experiments, including cultivation-based multiplex phenotyping, DNA sequencing of 16S rRNA,

and functional and shotgun metagenomics (see Methods for more details). B. Summary of the average percentage resistance levels before,

during, and after treatment from both b-lactam and non-b-lactam plates in the treated subject. C. Variation of the relative antibiotic

resistance over time in the presence of different antibiotics. D. Heatmap of the pairwise community dissimilarity, as measured by the

Morisita–Horn index, across cultivated plates at different time points in the treated and control subjects. Species are in the same order in

the vertical and horizontal directions. E. NMDS based on the Morisita–Horn dissimilarity of communities cultured with different

b-lactam antibiotics in treated subjects (stress value <0.05). The brown ovals surround the samples from sample time points. Cefo,

cefotaxime; Ceph, cephalexin; Cefu, cefuroxime; Pip, pipercillin; Cefe, cefepime; Amp, ampicillin; Diclo, Dicloxacillin. F. Heatmap of

antibiotic resistance from b-lactam plates for the species with significantly boosted resistance during treatment. +denotes the resistance is

significantly higher (BH adjusted P < 0.01 with permutation test) than that in the baseline sample in the treated subject.
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significantly by 140% (P < 0.05, Wilcoxon rank-sum test) on
the b-lactam plates during cefuroxime treatment (day 5) (Fig-
ure 2B–C, Table S4). Even though the phenotypic resistance

levels to various b-lactams partially recovered after the treat-
ment, resistance never returned to their initial levels, even
3 months after treatment. In addition, the resistance levels of

non-b-lactam plates showed a moderate (49% on average)
but statistically significant increase (P < 0.05, Wilcoxon
rank-sum test) during treatment in the cefuroxime-treated sub-

ject (Figure 2B–C), suggesting that certain bacteria, possibly
harboring multiple types of antibiotic resistance genes or
multiple-antibiotic resistance genes, were selected during
cefuroxime treatment. In contrast, no statistically significant

increase in resistance was observed in either b-lactam or
non-b-lactam antibiotic plates in the control subject
(Figure 2C).

To evaluate the variation in taxonomic composition of cul-
tured resistant bacteria in both cefuroxime-treated and control
subjects at different time points, we performed 16S rRNA

sequencing of the colonies grown on different antibiotic con-
taining plates. We observed that the community dissimilarity
(beta-diversity), measured by the Morisita–Horn index,

between antibiotic plates from the treated subject decreased
after the cefuroxime treatment. This converging pattern of
resistant communities among different antibiotic plates was
not observed in the control subject (Figures 2D and S5). In

addition, the pattern of converged taxonomic composition of
the resistant bacteria is significantly stronger (P < 0.01, Wil-
coxon rank-sum test) on b-lactam plates than on the non-b-
lactam plates (Figures 2D and S6). An NMDS plot based on
the 16S rRNA taxonomic profiles of each cultured antibiotic
plate revealed that the taxonomy profiles on b-lactam plates

were significantly altered (P < 0.01, permutational MANOVA
test) over time (Figure 2E). Such strong differentiation was not
observed on the non-b-lactam plates (P > 0.05, permutational

MANOVA test).
Figure 3 The variation of the genome-wide nucleotide diversity

A. PCA based on the genome-wide nucleotide diversity at different time

species, Escherichia coli and Enterococcus faecium show exceptional gen

of the temporal variation at the genome-wide diversity were shown ju

during treatment across the genome coordinates in Escherichia coli an
By comparing the relative resistance of each species (16S
based taxonomy) on b-lactam plates between baseline (day 0)
and treatment (day 5) samples, we identified 12 species with

significantly increased phenotypic resistance during treatment
(BH adjusted P < 0.05 using permutation test) from all
b-lactam plates in the cefuroxime-treated subject (Figure 2F).

Most of these species, mainly from the genus Bacteroides, sus-
tained enhanced resistance for one to three months (Figure 2F).
We further implemented the same statistical tests on non-

b-lactam plates from the cefuroxime-treated subject, as well
as on both b-lactam and non-b-lactam plates from the control
subject. No species with significantly increased resistance were
identified, suggesting that the cefuroxime treatment might

select for species with higher resistance to multiple b-lactams.

Antibiotic treatment reduces genome-wide nucleotide diversity in

Escherichia coli and enterococcus faecium

We next investigated the temporal variation of genome-wide
nucleotide diversity (clonal diversity) in different species with

metagenomic analysis of the cefuroxime treated and control
subjects (Figure 2A and Methods). We found that Escherichia
coli and Enterococcus faecium showed exceptional variation

patterns of whole genome diversity compared with all other
species during cefuroxime treatment (Figure 3A). We observed
strong evidence for the occurrence of genome-wide selective
sweeps in these two species with a sharp decrease in genome

level nucleotide diversity during treatment (Figure 3A–B),
indicating that particular strains with low or intermediate ini-
tial frequency were strongly selected in the face of antibiotic

pressure. These strains dominated the population with clonal
expansion during antibiotic treatment and reduced the hetero-
geneity of the population. In addition, the temporal variation

patterns between the E. coli and E. faecium were quite different
in terms of their post-treatment recovery mode. The genome-
wide nucleotide diversity of E. coli recovered gradually but
points in the treated subject. Each dot represents one species. Two

ome-wide selective sweeps. Three sub-figures describing the pattern

xtaposed with the species. B. The nucleotide diversity before and

d Enterococcus faecium in the treated subject.
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never returned to its initial level after the cefuroxime treatment
(Figure 3A), suggesting the persistence of antibiotic selected
strains of E. coli. This incomplete recovery of the nucleotide

diversity indicates that the fitness of the strain surviving antibi-
otic treatment was still competitive within the population in
the antibiotic-free environment. In contrast, the diversity of

E. faecium recovered rapidly after antibiotic treatment, sug-
gesting that the antibiotic selected strain had a fitness cost in
absence of antibiotic treatment, as indicated in previous stud-

ies [25,26]. No genome-wide reduction in nucleotide diversity
was observed in other species during treatment in the treated
subject (Figure 3A). We observed random temporal variations
of the genome-wide diversity in the control subject, which

remained relatively stable over time (Figure S7), indicating
that the overall strain level dynamics in the gut microbiome
are more pronounced during antibiotic treatment, consistent

with the observation using the public data.

Functionally selected ARGs experience strong selection at the

single nucleotide level

We next adopted functional metagenomics to investigate the
influence of the cefuroxime intake on the prevalence of differ-

ent types of functionally validated ARGs over time. The
results from all functional selections before treatment identi-
fied various types of ARGs, while b-lactamases increased
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A. Temporal variation of the gene abundance for functionally selecte

functionally selected non-b-lactamase antibiotic resistance genes.

proportions of differentiated sites. The proportions of genes with diffe

shown in the subfigure. D. Proportion of genes with recent HGT signa

and non-differentiated ARGs.
drastically and dominated (87% of relative abundance) the
recovered genes (Figure 4A–B) during the cefuroxime treat-
ment. The b-lactamases decreased post-treatment but

remained prevalent (37%) in the functional selections (Fig-
ure 4A). When quantifying the ARGs abundance from
b-lactam and non-b-lactam plates separately, we noticed a very

similar dominance of b-lactamases on the b-lactam plates dur-
ing the treatment (Figure S8A). Additionally, we detected an
increase in efflux genes on the non-b-lactam plates during

the cefuroxime treatment period (Figure S8B), suggesting co-
selection of other resistance genes. This consistent with our
results from the cultivation plates, where resistance levels were
also enhanced on some non-b-lactam antibiotic plates. To val-

idate the increased abundance of b-lactamases in the gut
microbiota of the treated subject, we mapped the shotgun
metagenomic data to the functionally validated b-lactamases.

The results showed that b-lactamases increased drastically dur-
ing treatment in the cefuroxime-treated subject while there was
no such trend in the control subject (Figure S9).

Since the genome-wide selective sweep in E. coli and E. fae-
cium revealed a strong selective force imposed by antibiotic
treatment at the intraspecies level, we subsequently investi-

gated further how the functional ARGs diversified within the
population of each species during the cefuroxime treatment.
The analysis of SNV, combining functional and shotgun
metagenomics data, revealed that the 114 functionally selected
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ARGs contain a significantly higher proportion of differenti-
ated sites in the cefuroxime-treated subject than in the control
(0.037 vs. 0.004, P < 0.01 with Wilcoxon signed-rank test)

(Figure 4C). At the same time, the proportion of functional
ARGs with SNV signals of selection (genes with at least one
differentiated site) is significantly higher in the treated subject

than in the control (56% vs. 22%, P < 0.01 with Fisher’s exact
test) during or after treatment (Figure 4C), consistent with our
findings based on the computationally annotated metage-

nomics datasets (Figure 1D). Further analysis revealed that
the nucleotide diversity (p) of ARGs decreased significantly
(P < 0.01 with Wilcoxon signed-rank test) during treatment
in the cefuroxime-treated subject (Figure S10), consistent with

the strong diversification of the allele frequency at the single
nucleotide level.

Differentiated functional ARGs tend to be recently horizontally

transferred

To evaluate the taxonomic origin and potential of recent HGT

in functionally selected ARGs, we identified the last common
ancestor (LCA) of highly homologous hits (identity >95%
at amino acid level) of the functional ARGs against the NR

database using blast (see Methods). We explicitly defined
recent HGT-related ARGs by considering the confidence level
of LCA and the taxonomic information from NR hits (see
Methods). This analysis indicates that there is a higher propor-

tion of differentiated functionally selected ARGs involved in
recent HGT events than in the non-differentiated ones (57%
vs. 42%) (Figure 4D). To validate this trend of recent HGT

in differentiated ARGs, we incorporated the public data
described above [12] and observed a very similar pattern—
the differentiated ARGs tend to be more recently transferred

than the non-differentiated ones (Figure S11), suggesting a
stronger HGT trend in the differentiated ARGs.

The higher rate of recent HGTs in differentiated ARGs

motivated us to investigate further whether these ARGs were
associated with plasmid-mediated bacterial conjugation. We
searched for all highly homologous hits (>95% identity) in
the NCBI plasmid RefSeq database using the ARGs as

queries. We found that about 33% of differentiated and
11% of non-differentiated ARGs have highly similar (>95%
identity at amino acid level) plasmid hits (Figure 4D), support-

ing the role of plasmids in harboring and circulating these
ARGs. Since only plasmid hits with high identity (>95%)
were considered, we can be quite confident that a substantial

proportion (33%) of differentiated ARGs are actively trans-
ferred among species via plasmids in the recent evolutionary
history. In our prospective study, we also observed that the
HGT potential in differentiated ARGs increased more drasti-

cally than in the non-differentiated ones (304% vs. 142%,
P < 0.01 with Wilcoxon signed-rank test, Figure S12) as we
proposed above using the public dataset.

Discussion

In this study, we observed antibiotic-induced strain-level
dynamics, resistome diversification, and increased resistance
dissemination potential within the human gut. The integrative
approach deployed in this study enabled the elucidation of

complex dynamics of the resistome and gut microbial strains
during antibiotic treatment. We used computational analyses
of existing metagenomic datasets to find evidence for antibiotic
induced diversification of the resistome, as well as substantial

treatment induced differentiation of antibiotic resistance genes.
We further elucidated widespread strain level dynamics exacer-
bated by antibiotic treatment. Combining these results, we

showed that the increased dissemination potential of antibiotic
resistance gene is strongly associated with the frequency of the
differentiated sites during antibiotic treatment. We then per-

formed a functional survey in a prospective intervention study,
enabling detailed culture-based and culture-independent char-
acterization of the human gut resistome and resistance pheno-
types. The consistent findings from two experimental designs

reflect the generalization of our conclusions.
Previous studies have provided evidence that certain factors

could influence the HGT potential in the human intestine. For

instance, it has been shown that human intestinal epithelial
cells produce proteinaceous compounds that modulate antibi-
otic resistance transfer via plasmid conjugation in E. coli [27].

Another study using a mouse colitis model demonstrated that
pathogen-driven inflammation of the gut promoted conjuga-
tive gene transfer between Enterobacteriaceae species due to

the transient bloom of the pathogenic Enterobacteriaceae
[28]. Our results revealed a similar but more comprehensive
scenario about the increased HGT potential under antibiotic
treatment, supporting the hypothesis that antibiotic pressure

could drive the dissemination of the resistome [16]. According
to the definition of HGT potential, the overall increase in
ARG abundance could be the major reason for the overall

increased HGT potential, although the increased ARG abun-
dance may neither guarantee an increased HGT potential
(see Methods), nor is it proportionate to overall increased

abundance [24]. More importantly, we observed that the
increased HGT potential of ARGs was compounded by antibi-
otic selection of these genes at the single nucleotide level, high-

lighting the association between evolutionary plasticity and the
horizontal transfer of ARGs [29]. The single nucleotide level
differentiation could be explained by the existence of a huge
multiplicity of bacterial clones within single species in the gut

before the antibiotic perturbation. Antibiotic treatment is the
driving force selecting the alleles conferring higher survival
advantage, leading to genotype differentiation and abundance

increase.
Due to the fact that the disturbed microbiota could lead to

adverse health outcomes [30], secondary infections [31], or

increased risk of colorectal cancer [32], personalized medicine
for a bacterial infection should in the future incorporate infor-
mation of the patient’s gut microbiota. The knowledge of the
personalized gut microbiota sets the basis for predicting the

stability or dynamics at the whole community level or individ-
ual bacterium upon perturbation [33]. Although we cannot
predict the clinical impact or the gut microbe dynamics due

to insufficient sample size and lack of clinical records in our
study, our data suggest that antibiotic therapy leads to person-
alized resistome diversification and individual-specific, strain-

level selection in the gut microbiota. The selective sweep
observed in E. coli and E. faecium highlights the influence of
antibiotic treatment on the intraspecies level dynamics. In line

with this, future antibiotic treatment should be more personal-
ized regarding the dosage, duration, and combination of drugs
based on the unique strains and resistome composition in each
patient to minimize the unintended disruption of the gut
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microbiota. Unfortunately, how the initial gut microbiota
composition relates to antibiotic treatment efficacy, side
effects, long-term susceptibility to different pathogens, or dis-

eases is poorly explored thus far. Therefore, more studies with
longitudinal sampling and sequencing of the gut microbiota,
evaluation of antibiotic efficacy, and surveillance of suscepti-

bility for infections or other diseases are needed. Such data
could uncover the microbiota-dependent antibiotic efficacy
and side effects, the interaction networks between antibiotic

and gut microbes, and long-term microbial dynamics, paving
the way for future microbiome-based diagnosis and treatment.

Although our strain-level analyses offer novel insights into
the dynamics of the resistome composition, copy number vari-

ation, and single nucleotide level differentiation of ARGs upon
antibiotic treatment, the scarcity of reference strain genomes
for many species and the incompleteness of the ARG database

as well as the non-robust annotation methods could poten-
tially bias these quantifications to certain extent and limit the
generalization of our conclusions. Another caveat is that

although metadata, including gender, age, weight, etc., for
each individual were provided in the original study of the pub-
lic data, the sample size was not sufficient for further in-depth

analyses regarding these potentially confounding factors.
Future studies with more individuals, increased sampling den-
sity, and the development of more comprehensive ARGs data-
bases and accurate annotation methodologies would be of

great value.

Materials and methods

Retrieval of public data

A total of 72 samples from 18 cefprozil treated subjects and 6
control subjects used in the study of Raymond et al. [12] were
downloaded from NCBI SRA PRJEB8094. Each subject pro-

vided three longitudinal samples—baseline (day 0), treatment
(day 7), and post treatment (day 90).

Experimental design

To functionally validate the findings of our computational
analysis based on public metagenomic datasets, two healthy

adult human female subjects (age 25–29, diet not controlled)
who had not taken any antibiotics for at least one year were
selected for this study. One subject underwent a standard 5-

day treatment with cefuroxime (500 mg, 3 times a day) while
the other subject had no treatment, serving as a control. Eight
fecal samples were collected longitudinally over a period of
three months corresponding to pre-treatment (Day 0), two

time points during treatment (Days 2 and 5), one week post-
treatment (Day 12), two weeks post-treatment (Day 19), three
weeks post-treatment (Day 26), one month post-treatment

(Day 33), and three months post-treatment (Day 97). All par-
ticipants consented to these experiments and sample collec-
tions and downstream experiments and data processing

followed ethical guidelines (Hvidovre Hospital) throughout
the study. Samples were transported to an anaerobic chamber
within an hour of collection. Five grams were separated out for

culturing (only on Day 0, Day 5, Day 12, Day 19, Day 33, and
Day 97) and 2.5 g were used for DNA extractions. The remain-
ing stool samples were stored at �80 �C.
Cultivation, DNA extraction, and 16S gene sequencing

The stool samples were cultivated with or without the presence
of 16 antibiotics, followed by DNA extraction and sequencing
of 16S rRNA as described previously [34]. Briefly, five grams

of fecal sample was resuspended in 50 mL of prereduced (resa-
zurin, 0.1 mg/mL) 1� PBS and 10-fold serial dilutions were
plated on Gifu Anaerobic Media (GAM) agar with or without
antibiotics in duplicate. The plates were incubated anaerobi-

cally at 37 �C for 5 days. Bacterial colonies were then manually
scraped off the surface of the agar and collected in 10 mL
tubes. DNA was extracted from the collected samples using

the MoBio UltraClean Microbial DNA Isolation kit.

Identification of the species with enhanced resistance from

cultured plates

The relative resistance level for each OTU is defined as the
ratio of the relative abundance of the OTU from each antibi-

otic plate to the relative abundance of the same OTU in the
control plate at each time point. To test whether certain OTUs
had overall enhanced resistance over time, the resistance levels
(e.g., all b-lactam plates) for each OTU were compared using a

Wilcoxon signed-rank test [35] between the test time points
(during or post treatment) and the baseline.

DNA extraction, library construction, and sequencing for culture-

independent methods

The fecal samples for culture-independent methodologies were

extracted using 2.5 g of sample with the MoBio PowerMax
Mega Soil DNA Isolation kit following the standard protocol.
DNA from the treated subject’s samples from Day 0, Day 5,

Day 19, Day 26, and Day 33 was used to construct functional
metagenomic libraries as modified from Sommer et al. [19].

All DNA fragments from 1056 functional clones were
sequenced using Sanger sequencing, imported into CLC Main

Workbench where the cloning vector sequence was removed
and reads of poor quality were discarded. Assembly of reads
from all samples was attempted simultaneously in order to

simplify the final output and identify sequences sharing the
same sequence. All assembled contigs were hand checked for
errors and correct alignment. A total of 197 contigs consisting

of 2 or more sequences and 104 unassembled single sequences
were retrieved. Open reading frames (ORFs) were annotated
using ORFinder (http://www.ncbi.nlm.nih.gov/gorf/gorf.
html). ORFs were annotated by comparing the protein

(pFAM database, blastX, cdd database) or nucleotide (blastn,
CARD database, ARDB database) sequences to known
sequences in several databases with 80% identity and cover-

age. Sequence reads were removed from the annotation list if
no match to known or suspected antibiotic resistance genes
could be found. Forward and reverse reads from the same

sequence that overlapped along the same resistance gene(s)
were merged into a single annotation.

Deduction of HGTs and calculation of HGT rate

The protein sequences of the functional ARGs were mapped to
the NCBI NR database using blastp (�e 1E�5) first. The latest
common ancestor (LCA) at species level based on highly

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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homologous (identity >95%) hits for each ARG was deduced
using MEGAN [36]. By definition, 100% confidence of the
LCA at species level reflects an explicit origin of species and

0% confidence reveals a, theoretically, infinite gene flow
among species. An ARG was deduced as recent HGT related
when all following criteria were satisfied, (1) more than 2

highly homologous hits (identity >95%); (2) confidence of
LCA at species level less than 50%; and (3) the highly homol-
ogous hits were observed in at least two species, excluding the

hits with incomplete taxonomic information at species level.
To estimate the plasmid-mediated recent HGTs, we mapped
all the ARGs against the NCBI plasmid RefSeq database
[37] and only hits with >95% identity remained for further

analysis.
A total of 154,805 gene families were retrieved from the

HGTree database [38]. Protein sequences of the functional

ARGs were mapped to HGTree families with blastp e-value
1E�5. The HGTree family with the highest number of hits,
which satisfied the blast e-value <1E�5 and coverage

>50% in the short sequence of query and subject, was defined
as the gene family of that ARG. Phylogenetic reconciliation
analysis was carried out using RANGER-DTL [39] based on

the species tree and gene tree deduced by the HGTtree with
optimized parameters described before [40]. Only the inter-
species level HGTs remained for downstream analysis. The
number of HGTs was divided by the total length of the phylo-

genetic tree in this family to deduce the family-level HGT rate.

Shotgun metagenome library construction and sequencing

Culture-independent fecal extracts from treated subject sam-
ples Day 0, Day 2, Day 5, Day 12, Day 19, Day 26, Day 33,
and Day 97 and control subject samples Day 0, Day 2, Day

19, and Day 97 were used to build shotgun metagenomic
libraries using the Nextera XT kit with the standard protocol.
The HiSeq 1500 was used for 100 bp PE sequencing in the

CGS of The University of Hong Kong and the average
throughput for each sample was 10.5 Gbp. The raw sequences
can be found in BGID (CRA000815).

Quality control for the raw sequences of shotgun metagenomic

data

To retrieve the high quality reads for downstream analyses, we

used a series of quality control steps to remove the low quality
reads/bases as described previously [41,42]. In the first step, all
the Illumina primer/adaptor/linker sequences were removed

from each read. Subsequently, we mapped all the reads to
the human genome with BWA version 0.7.4-r385 [43], and
reads with >95% identity and 90% coverage to the human

genome were removed as human DNA contamination. We fur-
ther filtered the low quality regions, reads, and PCR duplicates
using a previously described procedure [44].

Reference mapping, gene copy number calculation, variant

calling, dominant strain identification, and annotation of

antibiotic resistance genes

The Metagenomic Intra-Species Diversity Analysis System
(MIDAS) [45] was adopted to calculate the gene copy number
and call single nucleotide variants within each species using the
default setting. To filter out low quality SNVs, the read error
was controlled by a base quality score 30 and mapping quality
were controlled by MAPQ 20 from MIDAS. The relative

abundances of genes in each sample were further estimated
using a RPKM measurement (number of reads per kbp length
of gene per million mappable reads) using in-house scripts. The

28 prevalent species in the public shotgun metagenomic data
were defined as the species with at least 1% of relative abun-
dance in at least half of the samples from 24 individuals

(Table S1). To annotate the antibiotic resistance genes, a hid-
den Markov Model based profile searching was carried out
using Resfams [46] with default parameters on the pangenome
genes from MIDAS. To identify the genotypes of the domi-

nant strain of each prevalent species at either genome level
or gene level, we used the script of ‘‘call_consensus.py” from
MIDAS package. The phylogenetic tree was reconstructed

using FastTree [47] with maximum likelihood method with
default parameters.

Definition of HGT potential

For a single gene i, the HGT potential (HGTPi) is defined as,

HGTPi ¼ HiAi ð1Þ
where Hi is the aforementioned HGT rate in this gene family i
and Ai is the relative abundance of this gene in the sample.

For a set of n genes, the overall HGT potential is defined as,

HGTP ¼
Xn

i¼1

HiAi ð2Þ

According to formula (1), the increase in the HGTP for a
gene is proportional to the increase in the abundance. How-

ever, for a set of genes, the overall increased abundance may
not necessarily lead to an increase in overall HGTP according
to formula (2). For example, a set of genes A, B, and C have

HGT rates 0.5, 1, and 2, respectively. The initial and final rel-
ative abundance for these three genes are (0.1, 0.3), (0.2, 0.3),
(0.3, 0.1), respectively. The overall fold-change of the abun-

dance and HGTP is 16.7% and �23.5%, respectively. This
example illustrates that the variation of the HGTP for a gene
set is not only correlated to the overall abundance variation
(an increased overall abundance may lead to a decreased over-

all HGT potential), but also the dependency between the abun-
dance change and the HGT rate of each gene.

Detecting differentiated sites

To identify the potential adaptively evolved variant sites in the
genes, we calculated the difference of the allele frequency spec-

trum, which was extracted from the variants calling using
MIDAS mentioned above, using Fisher’s exact test between
treatment and baseline samples at each single nucleotide vari-

ant site. For example, the A:T ratio for a particular variant site
in one ARG is 1:9 initially but was altered to 7:3 during the
treatment, indicating potentially adaptive evolution where
the allele frequency distribution has been differentiated. To

correct for the influence of sequence depth on the statistical
power, the maximum depth for each site was down-sampled
a maximum of 10 before Fisher’s exact test was carried out.

The raw P values were adjusted to false discovery rate
(FDR) using Benjamin’s method [48].
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Statistical analysis

The enhanced overall resistance level in the culture-dependent
plates and the species with enriched resistance across multiple
plates were analyzed using the Wilcoxon signed-rank test [35].

Detection of differentiated sites according to the allele fre-
quency spectrum and the higher proportion of differentiated
sites in the ARGs in the treated subjects were carried out based
on Fisher’s exact test and Wilcoxon signed-rank test, respec-

tively. The difference between resistant bacterial communities
when comparing baseline and treatment plates was carried
out using the permutational MANOVA test using VEGAN

[49]. The NMDS analysis and the stress value calculation were
performed using VEGAN. The statistical differences between
groups regarding compositional distances (Bray–Curtis dissim-

ilarity) of gut microbiota or resistome, the Jaccard distance of
resistome, the copy number of ARG families, HGT potential,
phylogenetic distances, genome-wide nucleotide diversity, or

nucleotide diversity of ARGs, were tested using Wilcoxon
signed-rank test. The statistical correlation of the taxonomic
composition and resistome profile was performed by Mentel’s
test.
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