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Autoimmune inflammation including autoantibody-induced inflammation is responsible for
the lethal organ damage. Autoantibody-induced inflammation can be separated in two
components, autoantibody production, and local inflammatory responses. Accumulating
evidence has suggested that regulatoryT cells (Treg) control both antibody production and
the numbers and functions of effector cells such as innate cells andT helper cells. Autoan-
tibodies are produced by both the follicular and extrafollicular pathways. Recently, follicular
regulatory T cells (TFR) and Qa-1 restricted CD8+ Treg were identified as populations that
are capable of suppressing follicular T helper cell (TFH)-mediated antibody production. In
local inflammation, CD4+CD25+Foxp3+ Treg have the capacity to control inflammation
by suppressing cytokine production in T helper cells. Although complement proteins con-
tribute to autoantibody-induced local inflammation by activating innate cells,Treg including
CD4+CD25+Foxp3+ Treg are able to suppress innate cells, chiefly via IL-10 production. IL-
10-secretingT cells such asT regulatory type I (Tr1) andTr1-like cells might also play roles in
the control of Th17 and innate cells. Therefore, several kinds of Tregs have the potential to
control autoimmune inflammation by suppressing both autoantibody production and the
local inflammatory responses induced by autoantibodies.
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INTRODUCTION
Autoimmune inflammation is responsible for the lethal organ
damage, and autoantibodies play a pivotal role in triggering
inflammation. Immune complexes are readily detectable in the
articular tissues of rheumatoid arthritis (RA) patients and the
glomeruli of systemic lupus erythematosus (SLE) patients. These
immune complexes are regarded as important players in the
pathogeneses of these diseases as they initiate and maintain the
inflammatory cascade and tissue destruction. In addition, immune
complex deposition in articular tissue has been reported to have
harmful effects in many experimental models of arthritis. The pas-
sive transfer of antibodies to an autoantigen that is found in the
joints is an established method for inducing arthritis. For example,
antibodies to glucose-6-phosphate isomerase (GPI), a ubiquitous
cytoplasmic enzyme, induce spontaneous arthritis upon injection
into susceptible mice (Matsumoto et al., 2002), and the adminis-
tration of a cocktail of anti-type II collagen antibodies to DBA/1
mice also invokes severe arthritis (Terato et al., 1992). However,
it is particularly notable that these antibody-induced arthritis
models are transient and fail to achieve chronicity (Myers et al.,
1997), which suggests that a continuous supply of autoantibodies
is required for the development of chronic joint inflammation.

In contrast to arthritis models, there are no lupus models that
are invoked by the passive transfer of autoantibodies. However,
plasma cell-depletion by a proteasome inhibitor clearly demon-
strated the importance of a continuous supply of autoantibodies
for systemic autoimmunity; i.e., treatment with bortezomib, a pro-
teasome inhibitor, depleted the number of plasma cells producing

antibodies to double stranded DNA; eliminated autoantibody
production; ameliorated glomerulonephritis; and prolonged the
survival of two lupus-prone mice strains, NZB/W F1, and MRL/lpr
mice. Among five bortezomib-treated mice that displayed pro-
teinuria of >100 mg/dl before treatment, four showed proteinuria
of <100 mg/dl after treatment. These findings suggest that the
suppression of autoantibody production leads to reduced organ
inflammation in lupus (Neubert et al., 2008).

In addition to the production of autoantibodies by B cells,
antibody-induced inflammation by itself is another target of ther-
apeutic intervention. In mouse models of arthritis, the synthesized
immune complexes bind to“inflammatory”Fc-receptors on intra-
articular cells and then activate complement protein (Rowley
et al., 2008). Complement fragments bound to immune complexes
induce tissue injury, and FcR stimulation cumulatively activates
mononuclear cells in situ, causing the activated cells to release
pro-inflammatory cytokines. In turn, these responses attract neu-
trophils and macrophages, which can damage synoviocytes and
chondrocytes. As mentioned above, immune complex-induced
arthritis is a prototypic inflammatory process that is characterized
by the release of pro-inflammatory cytokines and the activation
of degradative enzymes. In a GPI-induced arthritis model, it was
found that anti-GPI autoantibodies act through FcγRIII receptors
and C5a (Ji et al., 2002). Micro-positron emission tomography
studies revealed that the localization of anti-GPI antibodies is
dependent on mast cells, neutrophils, Fc-receptors, and immune
complexes (Mandik-Nayak and Allen, 2005). In anti-collagen
antibody-induced arthritis (CAIA), complement activation, and
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FIGURE 1 | Control of autoantibody-induced inflammation by regulatoryT cells.

innate cells are also critical for the effector phase of arthritis
(Hietala et al., 2004; Daha et al., 2011). With regard to systemic
autoimmunity, MRL/lpr mice lacking factor B or factor D devel-
oped less severe nephritis than the control mice (Watanabe et al.,
2000; Elliott et al., 2004). Factor B is cleaved by factor D and
resulting catalytic subunit Bb forms C3 convertase. In addition,
the anti-double stranded DNA antibody titer is not altered by
factor D deficiency, indicating that complement activation is not
required for the production of autoantibodies in MRL/lpr mice.
Activated complement interacts with Fcγ receptors and comple-
ment receptors on innate effector cells (such as macrophages and
monocytes) to induce local inflammation (Wasowska, 2010).

Therefore, autoantibody-induced inflammation can be sepa-
rated into two components, autoantibody production and the
local inflammatory response. Recently, accumulating evidence
has shown that regulatory T cells (Treg) control both antibody
production and the numbers and functions of effector cells
such as innate cells and T helper cells. This article will discuss
the Treg-mediated suppression of these two components during
inflammation (Figure 1).

Treg-MEDIATED SUPPRESSION OF AUTOANTIBODY
PRODUCTION
TWO MECHANISMS FOR AUTOANTIBODY PRODUCTION
In the course of thymus-dependent responses, B cells interact
with T cells in the outer T cell zones of the lymphoid organs
and differentiate along either the follicular or extrafollicular path-
way (Lee et al., 2011). In the follicular pathway, activated B cells
form germinal centers (GC) and undergo somatic hypermuta-
tion and selection. Subsequently, they exit GC as high-affinity

long-lived plasma cells or memory B cells. In the extrafollicular
pathway, B cells migrate to splenic bridging channels or junction
zones and the borders between T cell zones and the red pulp or
extramedullary lymph node cords. These migrated B cells form
clusters of short-lived plasmablasts. Thus both the follicular and
extrafollicular pathways contribute to autoantibody production in
murine disease models.

Extrafollicular B cell response-mediated autoantibody production
William et al. (2002) observed that the splenic autoreactive B
cells of autoimmune MRL/lpr mice proliferate and undergo active
somatic hypermutation at the T zone-red pulp border rather
than in GC. They examined the extrafollicular generation of
plasmablasts in AM14 VH transgenic (Tg) mice, which pos-
sess rheumatoid factor (RF)-producing B cells with moderate
affinity for IgG2a. Intriguingly, AM14 B cells on the MRL/lpr
background spontaneously differentiate into extrafollicular plas-
mablasts and undergo somatic hypermutation at the T zone/red
pulp border. In addition, they reported that the extrafollicular
plasmablast response is induced by the administration of IgG2a
anti-chromatin antibodies, which presumably form immune com-
plexes in vivo with endogenous chromatin (Herlands et al., 2007).
This response was found to be T cell independent, although it was
totally dependent on MyD88 signaling downstream of Toll-like
receptor 7 (TLR7) and TLR9 (Herlands et al., 2008). However,
another study revealed that although AM14 B cells can be acti-
vated, differentiate, and undergo isotype-switching independent
of antigen-specific T helper cells, T cells dramatically enhance the
AM14 B cell response via CD40L and IL-21 signaling (Sweet et al.,
2011).
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GC-mediated autoantibody production
Because affinity-enhancing somatic hypermutations are preva-
lent in autoantibodies, it has long been hypothesized that these
autoantibodies are derived from GC. Mouse strains that frequently
develop autoimmune diseases (NZB/W F1, BXSB, MRL/lpr, san-
roque, and NOD mice) spontaneously form GC-like structures
in their spleens, and the onset of autoantibody production cor-
relates with GC formation. Recently, several pieces of evidence
have suggested that dysregulated T follicular helper (TFH) cells
significantly contribute to autoimmunity by inducing the aberrant
selection of autoreactive B cells. The lupus-like disease that occurs
in sanroque mice is caused by Roquinsan/san-induced accumulation
of TFH cells that maintain spontaneously formed GC (Vinuesa
et al., 2005). The glomerulonephritis and pathogenic autoanti-
body production displayed by sanroque mice are ameliorated by
Bcl6 haploinsufficiency (Linterman et al., 2009). Moreover,SLAM-
associated protein (SAP) deficiency experiments have highlighted
the important roles played by TFH cells in the conditions suffered
by sanroque mice. SAP interacts with a conserved tyrosine-based
motif that is found in the cytoplasmic tail of SLAM family mem-
bers, and Sh2d1a (the gene for SAP) deficiency abrogates TFH

formation and GC responses, but not extrafollicular antibody
responses. Since SAP deficiency ameliorates the lupus-like phe-
notype of sanroque mice, it can be assumed that aberrant TFH

cell activation is responsible for the autoimmunity that they dis-
play. BXSB mice develop a severe form of lupus caused by the
yaa locus, which induces the overexpression of a cluster of X-
linked genes that includes Tlr7 gene. Although B6.yaa mice are
not overtly autoimmune, the introduction of Sle1, which con-
tains the autoimmune-predisposing Slam/Cd2 haplotype, into
their genome causes them to develop fetal lupus (Subramanian
et al., 2006). Intriguingly, CD4+ T cells from B6.Sle1.yaa mice
develop the molecular signature of TFH cells and also show altered
expression levels of various cytokines and chemokines.

The source of human autoantibodies revealed by B cell-depletion
therapy
As discussed above, dysregulation of the follicular or extrafollicular
pathway can cause systemic autoimmune disease in mice. How-
ever, the contributions of follicular and extrafollicular checkpoints
to the production of disease-associated autoantibodies are more
difficult to evaluate in humans than in mice. Levels of autoanti-
bodies do not always correlate with disease activity and response to
treatment. For example, the serum concentrations of some autoan-
tibodies correlate with disease activity (i.e., anti-double stranded
DNA antibodies and anti-PR3 antibodies), while the titers of other
autoantibodies [i.e., anti-ribonucleoprotein (RNP) antibodies and
anti-Ro and La antibodies] remain stable irrespective of disease
status. The heterogeneous autoantibody effects have also been
observed in patients treated with anti-CD20 monoclonal anti-
body, which depletes B cells and plasmablasts but not long-lived
plasma cells (Cambridge et al., 2003, 2006; Lu et al., 2009). In lupus
patients, the levels of anti-nucleosome and anti-double stranded
DNA antibodies are significantly decreased at 6–8 months after the
administration of anti-CD20 monoclonal antibody. In contrast,
the same treatment does not significantly alter the levels of anti-
Ro, Sm, or RNP antibodies (Cambridge et al., 2006). This suggests

that anti-nucleosome and anti-double stranded DNA antibod-
ies are produced through extrafollicular responses, which usually
generate short-lived plasma cells, while antibodies to nucleic acid-
associated antigens (Ro, Sm, and RNP) are derived from follicular
responses, which generate long-lived plasma cells. In RA patients,
the levels of IgA-RF, IgG-RF, and IgG anti-cyclic citrullinated pep-
tide (CCP) antibodies are decreased at 6 months after the adminis-
tration of anti-CD20 monoclonal antibody, and the decreases are
proportionately greater than the decreases in their respective total
immunoglobulin classes (Cambridge et al., 2003). Plasmablasts
and short-lived plasma cells originating from the extrafollicular
response might be the major source of RF and anti-CCP anti-
bodies (Looney et al., 2008). Therefore, both extrafollicular- and
follicular-mediated antibody productions should be controlled in
the treatment of human autoimmune inflammation.

APPROACHES TO AUTOANTIBODY SUPPRESSION
Antibody suppression with CD4+CD25+ Foxp3+ Treg
In general, T cells are indispensable sources of help signals,
which promote B cell antibody production. Therefore, control
of antibody production at the level of T cells is a rational
approach to autoantibody suppression. Indeed, several T cell
populations are able to suppress B cell antibody production. In
humans, CD4+CD25+CD69− Treg that suppress antibody pro-
duction in vitro have been found in GC. The fact that these
CD4+CD25+CD69− Treg hardly express CXCR5 suggests that
they mainly reside in the T cell-rich zones of secondary lym-
phoid tissues (Lim et al., 2004). However, T cell activation
switches their chemokine receptor expression pattern from CCR7
to CXCR5 and switches their chemotactic responses from CCL19
to CXCL13. Thus, activation might change the migratory behavior
of CD4+CD25+CD69− Treg so that they can migrate to GC. After
migrating to GC, CD4+CD25+CD69− Treg negatively regulate T
cell-dependent B cell responses through their suppressive activity
toward T cells.

The preferential killing of antigen-presenting B cells by
CD4+CD25+ Treg was reported in C57BL/6 mice (Zhao et al.,
2006). B cell death is not mediated by the Fas–Fas ligand path-
way, but instead is mediated by a granzyme-dependent, partially
perforin-dependent pathway. Direct suppression of B cells by Treg
was also reported in chronic systemic autoimmunity (Iikuni et al.,
2009). For example, CD4+CD25+ Treg have been demonstrated
to inhibit B cell antibody production in in vitro models of murine
and human lupus. Treg use granule exocytosis pathways involving
perforin and granzyme to induce contact-dependent apoptosis in
B cells. However, in spite of the fact that CD4+CD25+ Treg from
both young and old NZB/W F1 mice retain a capacity to suppress
IgG production in B cells, autoantibodies continuously accumu-
late in these mice. Therefore, whether CD4+CD25+ Treg could
be used to efficiently control autoantibody production in systemic
autoimmunity needs to be examined further.

Recently, several groups simultaneously identified mice
CD4+CD25+Foxp3+ Treg subpopulations that are able to sup-
press B cell antibody production (Chung et al., 2011; Linterman
et al., 2011;Wollenberg et al., 2011). Chung et al. (2011) identified a
subset of Treg cells that express CXCR5 and Bcl6 and localize to GC
in mice and humans. The expression of CXCR5 on Treg depends
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on Bcl6, and CXCR5+Bcl6+ Treg are absent from the thymus but
can be generated from CXCR5−Foxp3+ natural Treg precursors.
A deficiency of CXCR5+ Treg results in enhanced GC reactions
involving B cells, affinity maturation of antibodies, and plasma
cell differentiation. These results demonstrated that the Bcl6–
CXCR5 axis of Treg is one mechanism by which GC responses are
controlled. In addition, they observed that Foxp3-mutated scurfy
mice display a moderate increase in their TFH population but a
markedly increased number of GL7+CD95+ B cells. Collectively,
these observations suggest that Foxp3+ follicular regulatory (TFR)
cells are more specialized for controlling the generation of GC
B cells. Linterman et al. (2011) also described a population of
Foxp3+Blimp-1+CD4+ T cells that accounted for 10–25% of the
CXCR5highPD-1highCD4+ T cells found in immunized GC. In the
absence of these TFR cells, they noted outgrowths of non-antigen-
specific B cells in GC and a decreased number of antigen-specific
B cells. Therefore, both groups revealed that TFR play a role in
controlling GC reactions by inhibiting the selection of antigen-
specific- and non-specific B cells. Because CXCR5-expressiong TFR

localize to GC, TFR may suppress GC-mediated autoantibody pro-
duction. However, whether TFR actually suppress autoantibody
production and whether TFR deficiency results in autoimmunity
remain to be addressed.

Antibody suppression with Qa-1 restricted CD8+ Treg and other Treg
subsets
A recent study reported that Qa-1 restricted CD8+ Treg cells
directly inhibit Qa-1+ TFH cells. Qa-1 is a non-classical MHC class
Ib molecule presenting a peptide derived from the signal sequence
of classical MHC class I proteins, named Qa-1 determinant mod-
ifier (Qdm), as well as peptides derived from proteins associated
with infectious or inflammatory responses (Lu et al., 2006). Previ-
ously, a subpopulation of CD8+ T cells was reported to suppress
T cell help to B cells (Noble et al., 1998), and subsequent studies
have shown that Qa-1 restricted CD8+ T cells inhibit experimental
autoimmune encephalomyelitis (EAE) by targeting autoreactive
CD4+ cells (Hu et al., 2004). Nevertheless, although Qa-1 deficient
mice showed dysregulated immune responses to immunization
with self and foreign antigens, Qa-1−/− mice do not develop spon-
taneous autoimmunity. Since Qa-1 interacts with both the T cell
receptor (TCR) on CD8+ T cells and the CD94/NKG2A receptor
expressed by activated CD4+ T cells, Qa-1 knock-in mice, B6 Qa-
1(D227K) mice, were generated. B6 Qa-1 (D227K) mice harbor a
Qa-1 amino acid exchange mutation that disrupts the binding of
Qa-1 to the TCR/CD8 complex, but has no effect on its binding to
the inhibitory NKG2A receptor. Intriguingly, the B6 Qa-1 (D227K)
mice exhibit lupus-like systemic autoimmune disease and a five-
fold to sixfold increase in their numbers of TFH cells (Kim et al.,
2010).

Analysis of the surface phenotype of Qa-1 restricted CD8+
Treg indicated that they express CD44, ICOSL, and CXCR5 and
the CD44+ICOSL+CD8+ T cells inhibit the generation of high-
affinity antibodies and Qa-1+ TFH cells. This observation pro-
vides a clue that might greatly increase our understanding of
autoantibody production. However, the antigen-specificity of Qa-
1 restricted CD8+ Treg during TFH cell suppression remains
unclear because the repertoire of peptides presented by Qa-1 is

substantially smaller than the repertoire of classical MHC mole-
cules (Lu et al., 2006). Only a small number of peptides have been
identified that bind to Qa-1 and stimulate CD8+ T cells, including
dominant Qdm as well as peptides from HSP60, insulin, Salmo-
nella GroEL, and TCR Vβ chains. Thus, Qa-1 restricted CD8+ Treg
might suppress TFH cells irrespective of the antigen-specificity of
the TCR on TFH cells. Because Qa-1 restricted CD8+ Treg express
CXCR5 and migrate to lymphoid follicles (Kim et al., 2010), Qa-1
restricted CD8+ Treg may suppress GC-mediated autoantibody
production.

TFR and Qa-1 restricted CD8+ Treg appear to be impor-
tant checking mechanisms for antibody production. However,
no Treg populations that control autoantibody production and
autoimmunity in an antigen-specific manner have yet been iden-
tified. Although the importance of T regulatory type I (Tr1)
cells for controlling immune responses has been described in a
number of reports, anti-CD46-induced IL-10-secreting T cells
even enhance antibody production by B cells (Fuchs et al.,
2009). Recently, several CD4+ T cell populations that possess
regulatory activity have been identified (Fujio et al., 2010).
CD4+CD25−LAP+ T cells and CD4+NKG2D+ T cells produce
both IL-10 and TGF-β (Oida et al., 2003; Dai et al., 2009), and
CD4+CD25−IL-7R− T cells and CD4+CD25−LAG3+ T cells pro-
duce large amounts of IL-10 (Haringer et al., 2009; Okamura
et al., 2009). The association between these recently identified
Treg and antigen-specific autoantibody suppression should be
investigated. In particular, CD4+CD25−LAG3+ T cells, which
characteristically express the anergy-linked transcription factor
Egr2, might be associated with autoantibody suppression, because
T cell-specific Egr2-deficient mice exhibit lupus-like disease (Zhu
et al., 2008) and polymorphisms in the EGR2 gene are associated
with human SLE susceptibility (Myouzen et al., 2010). Although
both TFR cells and Qa-1 restricted CD8+ Treg express CXCR5
and may suppress GC-mediated autoantibody production, Treg
populations which suppress extrafollicular response are yet to be
identified.

Treg-MEDIATED SUPPRESSION OF LOCAL INFLAMMATION
IL-10-MEDIATED SUPPRESSION OF INFLAMMATION
Nguyen et al. (2007) reported a role of CD4+CD25+Foxp3+ Treg
in antibody-induced arthritis at several levels. They examined the
effect of the scurfy loss of function mutation of the Foxp3 gene in
K/BxN mouse model. These mice carry the KRN transgene, which
encodes a TCR reactive against a peptide from GPI and the autore-
active T cells promote the production of vast quantities of anti-GPI
antibodies, which are sufficient to induce arthritis after trans-
fer into normal recipients (Korganow et al., 1999). The absence
of CD4+CD25+Foxp3+ Treg led to more accelerated aggressive
arthritis with significantly earlier autoantibody production. How-
ever, the broadened spectrum of affected joints in Foxp3-mutated
K/BxN mice was not due to the earlier appearance of autoantibod-
ies and could not be reproduced by increasing anti-GPI antibody
load. Therefore, CD4+CD25+Foxp3+ Treg are supposed to play
a role in effector phase manifestations. Their another observa-
tion that Foxp3+ Treg accumulated in inflamed joint of K/BxN
serum-transferred B6 mice suggested that Foxp3+ Treg actively
migrate to the site of antibody-induced inflammation and control
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the local inflammatory process. Although the mechanism of this
Foxp3+ Treg-mediated suppression was not clarified, IL-10 was
mentioned as a candidate mediator.

Furthermore, a single transfer of CD4+CD25+ Treg markedly
slowed the progression of collagen-induced arthritis (CIA), which
could not be attributed to the loss of systemic type II collagen-
specific T and B cell responses (Morgan et al., 2005). The trans-
ferred CD4+CD25+ Treg were found in the inflamed synovium
soon after the transfer, indicating that regulation occurs locally
in the joints. It is unlikely that the transferred CD4+CD25+
Treg acted against CIA solely via the suppression of T cell
immunity involving the Th17 cell response since the effector
phase of CIA depends on T cell-independent immune responses
(Ehinger et al., 2001). Thus, the transferred CD4+CD25+ Treg
might have interacted with local innate cells as well as effector
T cells.

CD4+CD25+ Treg-mediated control of innate cells was found
to be IL-10 and TGF-β dependent in a colitis model (Maloy et al.,
2003). Indeed, IL-10 production might be a key factor controlling
local inflammation. Human IL-10 suppresses the expression of
MHC class II, co-stimulatory, and adhesion molecules (De Waal
Malefyt et al., 1991; Willems et al., 1994). IL-10 also inhibits the
production of inflammatory cytokines and the T cell stimulating
capacity of antigen-presenting cells (APC; Fiorentino et al., 1991;
Allavena et al., 1998), and local IL-10 production has been shown
to suppress TNF-α and IL-1α production (Lubberts et al., 2000).
CD4+CD25+ Treg downregulate the expression of co-stimulatory
molecules on APC (Cederbom et al., 2000) and restrain the mat-
uration and antigen-presenting function of dendritic cells in an
IL-10-dependent manner (Misra et al., 2004; Houot et al., 2006).
Furthermore, IL-10 was recently reported to suppress Th17 cells
(Huber et al., 2011). Interestingly, both CD4+Foxp3+ Treg and
CD4+Foxp3−IL-10-producing cells (Tr1) are able to control Th17
cell numbers in an IL-10-dependent manner. Therefore, it was sug-
gested that Tr1 cells can compensate for a paucity of Foxp3+ Treg
and vice versa during the suppression of innate and Th17 cells.

Tr1 cells are considered to be different from Th1, Th2, and
Th17 cells based on their cytokine production profile; i.e., they
secrete high levels of IL-10. Tr1 cells are inducible in vitro and
in vivo, and they can also be isolated from humans and mice in
steady state conditions (Roncarolo et al., 2011). Tr1 cells are able
to suppress Th1-mediated colitis induced by the transfer of naïve
CD4+CD45RBhi cells into SCID mice as well as EAE (Roncar-
olo et al., 2001). Although few reports have directly compared
IL-10 production between CD4+CD25+ Treg and Tr1-like cells,
CD4+CD25−LAG3+ Treg secrete significantly higher amounts of
IL-10 than CD4+CD25+ Treg (Okamura et al., 2009). Thus, Tr1
cells and Tr1-like cells might have the ability to control innate
immune cells.

SUPPRESSION OF T CELL CYTOKINE PRODUCTION
In several antibody-induced autoimmune inflammations such
as RA-synovitis and lupus nephritis, co-existence of antibody
deposition and T cell infiltration is frequently observed. RA is
a prototypic autoimmune disease characterized by chronic joint
inflammation and the production of cytokines, including TNF-
α, IL-6, IL-15, IL-17, and IL-1β. These cytokines are thought to

be derived from both innate cells and effector T cells. In the
K/BxN arthritis model, T cells can augment antibody-induced
arthritis independently of their influence on antibody produc-
tion (Jacobs et al., 2009). This enhancement was mediated by
IL-17 producing CD4+ T cells preferentially recruited to the
environment of the arthritic joint. Therefore, Treg-mediated sup-
pression of effector T cells may be also beneficial in control-
ling autoantibody-induced inflammation accompanied with T
cell infiltration. In the past, IFN-γ producing Th1 cells were
thought to be the principal mediators of autoimmune inflam-
mation such as that observed in RA. However, IL-17 has emerged
as a key driver of inflammation and is detectable in the RA syn-
ovium. IL-17 and IL-17F promote inflammation on several levels,
as their receptors IL-17RA and IL-17RC are expressed on both
hematopoietic and non-hematopoietic cells. IL-17 and IL-17F
induce the production of pro-inflammatory cytokines like IL-6,
IL-1β, and TNF-α, and pro-inflammatory chemokines such as
CXCL1, GCP-2, and IL-8 and thus promote tissue inflammation
and neutrophil recruitment at sites of inflammation (Bettelli et al.,
2008).

CD4+CD25+ Treg not only suppress the proliferation of con-
ventional T cells, but also their production of inflammatory
cytokines, such as TNF-α and IFN-γ. In contrast, IL-17 pro-
duction is not suppressed when human CD4+CD25+ Treg are
added to responder T cells in vitro (Annunziato et al., 2008;
Flores-Borja et al., 2008), and murine CD4+CD25+ Treg pro-
mote Th17 cell development both in vitro and in vivo (Chen
et al., 2011; Pandiyan et al., 2011). As IL-17 is important for
infection control, the resistance of Th17 cells to suppression by
CD4+CD25+ Treg cells makes sense. However, in a previous study
CD4+CD25+Foxp3+ Treg-specific ablation of STAT3 resulted
in the development of fetal intestinal inflammation due to the
loss of Th17 cell suppression in mice (Chaudhry et al., 2009).
Moreover, other studies have suggested that some subpopulations
of CD4+CD25+ Treg cells are capable of regulating Th17 cell
responses. For example, CD4+CD25+ Treg expressing CD39 (an
ectonucleotidase that hydrolyzes ATP) were reported to be able
to suppress Th17 cell responses (Fletcher et al., 2009). In addi-
tion, CD4+CD25+CD39+ Treg numbers are reduced in patients
with multiple sclerosis (MS), suggesting that an association exists
between this Treg population and the suppression of pathogenic
Th17 cells. Therefore, at least some CD4+CD25+ Treg are sus-
pected to suppress the production of inflammatory cytokines in
inflamed organs.

EAE is an animal model of MS that is induced by the injec-
tion of myelin components. Until recently, the pathogeneses of
MS and EAE were thought to be initiated by myelin-specific Th1
cells. However, a number of lines of evidence have indicated
that Th17 cells induce central nervous system (CNS) inflam-
mation (Oukka, 2007). For example, it was reported that the
Th17:Th1 ratio of infiltrating T cells in EAE determines where
inflammation occurs in the CNS (Stromnes et al., 2008), and
T cell infiltration and inflammation in the brain parenchyma
only occur when Th17 cells outnumber Th1 cells and trigger
a disproportionate increase in IL-17 expression in the brain.
In contrast, T cells showing a wide range of Th17:Th1 ratios
induce spinal cord parenchymal inflammation. Tg mice bearing
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a TCR against the myelin basic protein (MBP) that had been
crossed with recombination-activating gene 1 (Rag1)-deficient
mice (Tg MBP/Rag −/−) developed spontaneous EAE, whereas Tg
MBP/Rag +/+ mice did not (Lafaille et al., 1994). This discrep-
ancy can be explained by the existence of Treg in the Rag +/+
mice but not the Rag −/− mice because the adoptive transfer
of CD4+CD25+ Treg from wild-type mice to Tg MBP/Rag −/−
mice prevented the development of spontaneous EAE (Hori et al.,
2002). Moreover, adoptive transfer experiments have revealed that
transferring large numbers of CD4+CD25+ Treg purified from
the peripheral lymph nodes of naive mice reduced the incidence
and severity of EAE (Kohm et al., 2003). In a study conducted
by Matsumoto et al. (2007), peripheral CD4+CD25+ Treg from
mice with EAE suppressed the development of chronic EAE in
the recipient rats. Therefore, CD4+CD25+Foxp3+ Treg appar-
ently have the capability to suppress T helper cell-mediated organ
inflammation, and this effect may be beneficial in the control of
the antibody-induced inflammation accompanied with effector T
cell infiltration.

CONCLUSION
The current standard treatment for autoimmune disease is
non-specific immunosuppression with steroids and immunosup-
pressants, which inevitably leads to opportunistic infections. As
autoantibodies are key components in the development of autoim-
mune inflammation, targeting autoantibody-induced immunity
is a rational approach to the treatment of autoimmune diseases.
The modulation of Treg function is a promising physiologi-
cal approach to suppressing both autoantibody production and
autoantibody-induced local inflammation. Further examinations
of CD4+CD25+ Treg and other Treg subsets are necessary in
future.
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