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A B S T R A C T

Adipose tissue is a significant source of mesenchymal stem cells for regenerative therapies; however, caution
should be taken as their environmental niche can affect their functional properties. We have previously
demonstrated the negative impact of obesity on the function of adipose-derived stem cells (ASCs). Here we have
evaluated other possible properties and targets that are altered by obesity such as the recently described long
non-coding molecule Gas5, which is involved in glucocorticoid resistance. Using ASCs isolated from obese
(oASCs) and control subjects (cASCs), we have analyzed additional metabolic and inflammatory conditions that
could be related with their impaired therapeutic potential and consequently their possible usefulness in the
clinic.

1. Introduction

Adipose tissue (AT) is a multifunctional and highly dynamic organ
that, beyond its traditional role as a lipid storage site, is also a major
endocrine organ [1] and an abundant source of stem cells [2]. AT
secretes numerous factors, termed adipocytokines, which can originate
from any cellular compartment (adipocytes, preadipocytes, immune
cells, etc.,), and are major regulators of AT metabolism [3,4]. AT also
serves as a novel source of adult stem cells, termed adipose stem cells
(ASCs), which have great potential for therapeutic applications [5].
However, we and others have shown that the environmental niche in
which ASCs reside has a profound impact on their functional properties
[6–8].

Changes to AT mass are associated with endocrine and metabolic
dysfunction and are linked to obesity [9] and a chronic inflammatory
milieu [10], resulting in an altered cytokine profile that is often
accompanied by insulin resistance and dyslipidemia [11]. Obese
individuals present increased circulating levels of several inflammation
markers [12,13] including Il-6, IL-8 and IL-1b, whose origin in AT is
primarily the nonadipocyte component [14]. This overproduction of
proinflammatory cytokines and the absence of anti-inflammatory
cytokines contribute to the pathophysiology of obesity. AT-derived
inflammatory adipocytokines are also secreted into systemic circulation
where they exert profound effects on the hypothalmic-pituritary-
adrenal axis by upregulating the expression of corticotropin-releasing

hormone (CRH) and increasing the production of glucocorticoids (GCs)
[15].

GCs have well-established effects on the metabolic regulation of AT
homeostasis [16,17], and are required for glucose and fatty acid
metabolism [11,18]. They also play an important role in inflammation
associated with obesity since the glucocorticoid biosynthetic pathway
enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), is
upregulated selectively in AT in obesity. While circulating GC levels
are normal in obesity [19], 11β-HSD1 converts inactive cortisone back
to active cortisol in AT [20], and increasing local cortisol levels are
implicated in the pathogenesis of the metabolic syndrome [21]. The
action of GCs on target cells is thought to be mediated by the
glucocorticoid receptor (GR), whose binding by GC agonists triggers
its translocation into the nucleus [22] where it dimerizes and binds
directly to glucocorticoid-responsive elements (GREs) to stimulate the
expression and regulation of different genes. GR can be regulated by
other factors, such as the recently discovered Gas5 component.

Long noncoding RNAs (lncRNAs) are a novel class of functional
RNAs that control gene regulation [23]. Many of them are associated
with differentiation and homeostasis of metabolic tissues, such as the
growth arrest-specific 5 (Gas5) lncRNA, which is induced under cellular
stress or starvation conditions [24]. This lncRNA is a transcript of Gas5,
a non-protein coding gene [25], which acts as a repressor of the GR
through binding of a decoy GRE to ligand-activated GR [26], thereby
suppressing the transcriptional activity of GC-responsive genes. Along
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this line, vitamin D deficiency is known to be related to obesity [27],
and vitamin D can influence adipocytokine production and inflamma-
tion in AT [28].

Several independent lines of evidence demonstrate the dysregulated
function of ASCs isolated from AT of obese patients [8,29]. We have
also demonstrated impaired differentiation [30], migration [31] and
metabolic properties [6,32] of ASCs isolated from obese individuals.
Here, we examined additional metabolic factors in this stem cell
population that may have utility for their functional characterization.

2. Materials and methods

2.1. Reagents

Dulbeco's modified Eagle's medium (DMEM) and fetal bovine serum
(FBS) was purchased from Sigma (St. Louis MO). Penicillin, streptomy-
cin, L-glutamine and Hepes was from Lonza (Basel, Switzerland). Kits
for molecular studies were purchased from Applied Biosystems, Life
Technologies (Paisley, UK). Unless otherwise stated, all other reagents
were purchased from Sigma-Aldrich.

2.2. Isolation, culture and adipogenesis of ASCs

Human adipose-derived stem cells (ASCs) from non-obese and obese
(body mass index< 22 kg/mg2 and> 30 kg/m2, respectively) patients
were isolated and characterized as described [30,33]. Subcutaneous
adipose tissue was obtained from patients after bariatric surgery (obese
patients) or normal surgery (non-obese patients) at the Hospital
Universitario de la Princesa, Madrid (females aged 35–45 years; 5
obese and 5 non-obese). Sample collection conformed to the principles
of the Declaration of Helsinki and the NIH Belmont Report. The ethics
committee of the Centro Nacional de Investigaciones Cardiovasculares
approved the use of human samples. Cells were isolated, sorted and
expanded as described [34], and cultured in DMEM supplemented with
10% FBS at 37 °C in a humidified 5% CO2/95% air atmosphere.
Adipogenic differentiation was performed using 2 × 104 cells plated
into 24-well plates in DMEM/FBS. After 24 h, the medium was ex-
changed for adipocyte growth medium (STEMPRO Adipogenesis Differ-
entiation Kit) supplemented with 1 μM dexamethasone and cells were
cultured for up to 7 d. Triglyceride accumulation was visualized by
staining paraformaldehyde (PFA)-fixed cells with Oil Red O, and images
were taken with an IX71 inverted microscope.

2.3. Flow cytometry analysis

ASCs were stained with the following antibodies against surface
markers: CD45-V450, CD34-PE, CD44-Alexa488, Sca1-PeCy7 and ckit-
APC, all at 1:100 (BD Biosciences, San Jose, CA, USA). After incubation
for 25 min at 4 °C, stained cells were analyzed by flow cytometry on an
LSRFortessa flow cytometer (BD Biosciences, San Jose, CA). Data were
analyzed with BD FACSDiva Software.

2.4. Quantitative real-time polymerase chain reaction

Total RNA was extracted from ASCs with TRI Reagent and reverse
transcribed using the High Capacity cDNA Reverse Transcription Kit.
Quantitative real-time polymerase chain reaction (qRT-PCR) was
performed using the primers shown in Table 1. Each cDNA sample
was amplified in triplicate using a SYBR Green PCR Master Mix. PCR
mixes were loaded in an AB 7900 Fast Real-Time PCR System and
quantified using SDS 2.0 software.

2.5. Vitamin D analysis

Cells and culture medium were separated by centrifugation at
5725 ×g for 5 min at 4 °C. Cell pellets containing equal numbers of

each cell line were subjected to three freeze-thaw cycles as described
[6] to obtain cellular extracts. Culture medium and cellular extracts
were prepared for liquid chromatography-mass spectrometry (LC-MS)
to quantify total vitamin D derivatives as described [32]. Samples for
each technique were prepared with replicates as quality control. Values
are expressed as the “percentage of change” between groups.

2.6. Data analysis

Statistical analysis was performed using the GraphPad Prism soft-
ware package (GraphPad, San Diego, CA). Comparison between groups
was performed by one-way or two-way analysis of variance as required
by the assay. Values were expressed as mean ± SEM or mean ± SD,
and data was considered significantly different at p < 0.05. Analysis of
LC-MS data was carried out by univariate (UVA) and multivariate
(MVA) analysis using MATLAB R2015 software (Mathworks, Inc.,
Natick, USA) and SIMCA P+ 12.0.1 software (Umetrics, Umea,
Sweden), respectively. For UVA, the non-parametric Mann-Whitney U
test with Benjamini-Hochberg post hoc correction (level q < 0.05) was
applied, and for MVA, log-transformed and Pareto-scaled data, or just
Pareto-scaled data, were used to create multivariate models.

3. Results

3.1. Adipose stem cell isolation and characterization

ASCs derived from subcutaneous depots from non-obese (cASC) and
obese (oASC) donors were isolated using an explant method [30,33].
Cells were characterized by flow cytometry and were positive for the
surface markers CD34, CD44, Sca1 and ckit and negative for CD45
(Fig. 1A). Comparable ASC populations were obtained from non-obese
and obese subjects as characterized by specific stem cell markers [34].

3.2. Gas5 expression is enhanced during adipogenesis

We examined Gas5 expression in ASCs grown under normal
conditions and after adipocyte differentiation. No differences in the
levels of Gas5 mRNA were found between cASC and oASC under basal
conditions (Fig. 1B). We induced adipocyte differentiation by culturing
cells in STEMPRO medium with dexamethasome. After 7 days, differ-
entiation was confirmed by the presence of accumulated triglycerides
evaluated with Oil red O (Fig. 1C), and Gas5 expression was measured.
Whereas adipogenesis increased Gas5 expression both in cASC and
oASC 4–5-fold, the increase was significantly lower in oASC (Fig. 1B).

3.3. Inflammatory and metabolic conditions

Obesity is associated with insufficiency of vitamin D [35], which
acts an antioxidant and has pleiotropic effects including an anti-
inflammatory action. Having shown that oASCs have an altered
metabolic profile [6,32], we assessed cellular and secreted vitamin D
levels in the two ASC groups. The level of cellular vitamin D was
significantly lower (60%) in oASC than in cASC, and this was paralleled

Table 1
Primer sequences for qRT-PCR.

Primer forward sequence (5′-3′) Primer reverse sequence (5′-3′)

β-Actin CACGATGGAGGGGCCGGACTCAT TAAAGACCTCTATGCCAACACAG
Gas5 AGCTGGAAGTTGAAATGG CAAGCCGACTCTCCATACC
IL-1 GGGCCTCAAGGAAAAGAATC TTCTGCTTGAGAGGTGCTGA
IL-6 TACCCCCAGGAGAAGATTCC TTTTCTGCCAGTGCCTCTTT
IL-8 GTGCAGTTTTGCCAAGGAGT CTCTGCACCCAGTTTTCCTT
IL-10 TGCCTTCAGCAGAGTGAAGA GGTCTTGGTTCTCAGCTTGG
MCP-1 CCCCAGTCACCTGCTGTTAT TGGAATCCTGAACCCACTTC
Icam-1 GGCTGGAGCTGTTTGAGAAC ACTGTGGGGTTCAACCTCTG
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Fig. 1. A. Analysis of cell surface markers by flow cytometry in adipose stem cells from control (cASCs) and obese (oASCs) subjects. Positively stained cells are expressed as a percentage
in the plot. Histograms show isotype-matched controls and fluorescence intensity of each cell surface marker and are representative of three independent experiments with similar results.
B. Representative image of Oil Red O staining in cASCs and oASCs differentiated for 7 days into adipocytes. Scale bar, 30 μm. C. Gas5 gene expression by cASCs and oASCs under basal
conditions (−diff) and at day 7 differentiation (+diff). ***p < 0.001 (Anova). D. Vitamin D quantification. Graph represents the percentage of change within the cells and in the
medium. + p < 0.05. E. Gene expression profile of different cytokines in cASCs and oASCs. *p < 0.05.
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by a significant decrease in secreted levels (30%) in oASC (Fig. 1D).
This result is line with the findings that individuals with obesity present
a reduction in vitamin D.

An inverse relationship between vitamin D levels and inflammation
markers has been described in obese patients [36]. To determine
whether obesity and vitamin D deficiency resulted in increased
cytokine production in ASCs, we measured the expression pattern of a
panel of cytokines and Icam-1. Expression of IL-6, IL-8, IL-10 and MCP-
1 was higher in oASC than in cASC, whereas no differences in
expression were detected for IL-1 and Icam-1. These results suggest
an increased inflammatory response in oASC due to obesity and vitamin
D reduction.

4. Discussion

While ASCs hold great promise for regenerative medicine applica-
tions [37], obesity leads to a reduction in the ASC pool [38,39] and we
have previously shown that AT from obese donors has a negative effect
on the ASC population, impacting their stemness and metabolic proper-
ties [6,30,31].

We show here that whereas oASC and cASC have similar Gas5
expression levels under basal conditions, expression is lower in oASC
than cASC during adipogenic differentiation. Gas5 levels are increased
during adipogenic differentiation due to the presence of dexamethasone
in the medium, but this synthetic glucocorticoid presents a reduced
action on oASCs.

Some studies have suggested an association between obesity and
vitamin D deficiency, as obese individuals tend to have low vitamin D
levels [35]. We found a decrease in vitamin D levels in oASC, both in
the medium and in cells, confirming this association. Additionally,

obesity results in a blood flow imbalance leading to inflammation, and
macrophage infiltration [40], and it has been demonstrated that
vitamin D metabolites influence adipcytokine production and the
inflammatory response in AT [28]. Accordingly, we detected a cytokine
profile imbalance between oASC and cASCs. Thus, obesity affects
vitamin D levels and promotes an altered cytokine profile that is
inflammatory. It remains to be tested whether vitamin D decreases
the release of the main pro-inflammatory molecules in AT.

Our findings allow us to propose the following model (Fig. 2).
Obesity provokes a marked inflammatory process within AT, princi-
pally in macrophages [41]. This inflammation is associated with
changes in the microenvironment (red arrow Fig. 2) characterized by
abnormal adipocytokine production and proinflammatory signaling
pathway activation [9]. In parallel, GC levels increase due to enhanced
levels of 11βHSD1 [11], which results in an altered metabolism due to
GC-regulated pathways such as glucose [42] and lipid [43] metabolism.
Furthermore, it has been reported that GCs act synergistically with
insulin, and can improve or impair their action [11]. GCs are regulated
by the noncoding RNA Gas5, which is an associated repressor of the GR
[44]. During dexamethasome-induced lipogenesis, Gas5 levels increase
to repress GC action [45], but Gas5 levels in oASC are lower than in
cASCs (Fig. 1C), hindering lipid metabolism. We have previously shown
that ASCs isolated from obese subjects have significantly enhanced
apoptosis and also a reduced proliferative capacity [6]. In this regard,
GCs regulate apoptosis and exert significant anti-proliferative effects
[46], and GC dysregulation supports our previous findings in relation to
apoptosis and proliferation.

Several in vitro studies have demonstrated that vitamin D inhibits
chronic inflammation in AT [47]; however, vitamin D levels are
decreased in obese subjects [35]. The present findings are in accordance

Fig. 2. Adipose tissue inflammation in obese conditions induces alterations in adipose stem cells. Cytokines are increased in obese conditions, triggering an enhanced glucocorticoid
production as an anti-inflammatory response. Dexamethasone and adipogenic components promote adipogenic differentiation and induce an altered response in different metabolic
pathways. Dex, Dexamethasone; Gas5, Growth arrest-specific 5; GC, Glucocorticoids; GR, Glucocorticoid receptor; GRE Glucocorticoid response element; Glc, Glucose; GLUT, Glucose
transporter; Ins, Insulin; IRS, Insulin receptor substrate; VitD, Vitamin D.
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with this and we hypothesize that low amounts of vitamin D may
increase the metabolic risk and contribute to the inflammatory process.
Furthermore, vitamin D enhances GC responsiveness by increasing its
anti-inflammatory activity [48], and we found a misbalance in those
components in oASCs. Concomitant with this, we detected increased
cytokine expression, and it has been described that chronic activation of
pro-inflammatory pathways within AT may impair metabolic control
[49]. Thus, the increased inflammatory state and GC release activate
anti-inflammatory pathways and GCs down-regulate the expression of
several inflammatory genes, including those encoding cytokines [50].

ASCs have been used in several studies and preclinical data indicate
that ASCs present high safety and efficacy, supporting their use in cell-
based regenerative medicine. The data in the present study confirm and
extend our previous findings showing that ASCs present different
biological properties due to the obese microenvironmental niche.
Obesity-derived signals, inflammatory and others, play a key role in
ASC impairment and our present findings can help us to understand the
mechanisms responsible for these metabolic alterations.
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