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Abstract
Purpose of Review  Inhaled environmental exposures cause over 12 million deaths per year worldwide. Despite localized 
efforts to reduce environmental exposures, tobacco smoking and air pollution remain the urgent public health challenges that 
are contributing to the growing prevalence of respiratory diseases. The purpose of this review is to describe the mechanisms 
through which inhaled environmental exposures accelerate lung aging and cause overt lung disease.
Recent Findings  Environmental exposures related to fossil fuel and tobacco combustion and occupational exposures related 
to silica and coal mining generate oxidative stress and inflammation in the lungs. Sustained oxidative stress causes DNA 
damage, epigenetic instability, mitochondrial dysfunction, and cell cycle arrest in key progenitor cells in the lung. As a result, 
critical repair mechanisms are impaired, leading to premature destruction of the lung parenchyma.
Summary  Inhaled environmental exposures accelerate lung aging by injuring the lungs and damaging the cells responsible 
for wound healing. Interventions that minimize exposure to noxious antigens are critical to improve lung health, and novel 
research is required to expand our knowledge of therapies that may slow or prevent premature lung aging.

Keywords  Environmental exposures · Air pollution · Smoking · Occupational exposures · Lung aging · Lung disease

Introduction

The human lung is continuously exposed to inhaled agents 
and pathogens from the external environment. A combina-
tion of individual genetics and environmental exposures 
influence lung aging, which manifests as structural remod-
eling of the respiratory tract that generates declining lung 
function over time [1]. During normal breathing, the tra-
chea conducts air through the bronchi, which divide into 

bronchioles and end in clusters of alveoli. The alveoli are 
lined by an epithelial layer and basement membrane that 
lay adjacent to a thin interstitial space, under which lies the 
pulmonary capillary network [2]. The interstitial space con-
tains lung extracellular matrix, which consists of elastic and 
collagen fibers that maintain the structural integrity of the 
lung [3]. Age-related weakening of the connective tissue in 
the lung generates progressive dilation of the airspaces and 
early collapse of the small airways [4]. The surface area 
of lung available for gas exchange thereby decreases with 
age, leading to reduced oxygenation and capacity for exer-
cise [5]. Structural changes are even more pronounced in 
age-related respiratory diseases including chronic obstruc-
tive pulmonary disease (COPD), which is characterized by 
mucus hypersecretion and alveolar wall destruction, [6] and 
idiopathic pulmonary fibrosis (IPF), which is defined by 
interstitial fibrosis [7].

Age-related structural alterations in the lung are driven in 
part by inhaled exposures that damage the lung epithelium 
and underlying tissue [8]. Efficient repair mechanisms are 
critical to maintain the structural integrity of the lung and 
prevent pathological remodeling. Specialized type II alveolar 
epithelial cells contribute to wound healing by generating 
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new type I epithelial cells after injury, which cover most of 
the alveolar surface [9]. Wound healing is also stimulated 
by multipotent mesenchymal stem cells that populate sub-
epithelial lung tissue and differentiate into epithelial cells, 
macrophages, and reparative fibroblasts [10, 11]. Pulmonary 
fibroblasts reside in the interstitial space and mend the lung 
extracellular matrix in order to re-establish and maintain 
alveolar architecture [3]. However, when lung progenitor 
cells and cellular repair mechanisms are inhibited, aberrant 
structural remodeling distorts the lung architecture and leads 
to premature lung function impairment [1].

Compromised cellular repair mechanisms are one of 
the hallmarks of lung aging (Figure 1). Inhaled exposures 
diminish the lung’s regenerative potential by generating 
oxidative stress, DNA damage, epigenetic instability, 
telomere attrition, mitochondrial injury, and abnormal 
protein homeostasis in key progenitor and structural cells 
[12••]. Accumulated damage in mesenchymal stem cells 
leads to apoptosis and stem cell depletion, while repeated 
insults in type II alveolar epithelial cells and lung fibro-
blasts lead to cellular senescence [13]. Cellular senescence 

is characterized by arrested growth and diminished cel-
lular function, and cell-specific senescence can generate 
different forms of lung degeneration [14]. For example, 
senescent alveolar epithelial cells are unable to induce 
re-epithelialization after lung injury, while senescent 
fibroblasts produce aberrant collagen in the lung extracel-
lular matrix [15, 16]. Cumulative inhalational exposures 
over the lifespan introduce accumulating inflammatory-
oxidative stress and act in concert to induce widespread 
pulmonary cellular senescence and premature lung aging 
[17, 18]. This review provides an overview of environ-
mental exposures that can impact lung health and details 
the mechanisms and biological pathways through which 
environmental exposures accelerate lung aging.

Fig. 1   Mechanisms of lung 
aging induced by environmental 
exposures141. Figure 1 enumer-
ates the biological pathways 
through which environmental 
exposures accelerate lung aging. 
Inhalation of noxious antigens 
induces oxidative stress, inflam-
mation, telomere shortening, 
DNA damage, mitochondrial 
dysfunction, epigenetic instabil-
ity, immune dysregulation, 
and impaired proteostasis in 
multiple cell lines in the lung. 
As a result, pulmonary stem 
cells are depleted, key progeni-
tor cells become senescent, and 
critical repair mechanisms are 
impaired, leading to premature 
lung aging
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Environmental Exposures and Biological 
Impact on the Lung

Tobacco Smoke

Tobacco smoking is a combustion process that leads to 
the aerosolization of thousands of toxic chemicals includ-
ing carbon monoxide, hydrogen cyanide, and polycyclic 
aromatic hydrocarbons [19]. Many of the components in 
tobacco smoke chemically react with oxygen to gener-
ate free radicals and inhibit protective antioxidants [20]. 
Through the combustion of noxious chemicals and genera-
tion of harmful reactive oxygen species (ROS), tobacco 
smoke induces widespread tissue damage in a manner that 
mimics biological aging (Table 1) [21].

At the molecular level, tobacco smoke alters DNA 
methylation levels in lung cells and circulating leukocytes 
[22, 23]. Smoking-related oxidative stress generates DNA 
demethylation, and nicotine downregulates DNA methyl-
transferase enzymes that transfer methyl groups to cyto-
sine-phosphate-guanine (CpG) sites [24, 25]. Accordingly, 
prior epidemiological studies have demonstrated marked 
differences in total DNA methylation among smokers com-
pared to never smokers [26]. Changes in DNA methyla-
tion in gene-coding sequences can alter gene expression 
and may link tobacco smoke exposure to smoking-related 
diseases [22]. For example, tobacco smoke has been 
shown in mouse models to increase methylation of the 
Bcl-2 promoter [27••]. Bcl-2 promoter methylation low-
ers Bcl-2 expression, which leads to apoptosis of cells in 
the alveolar walls and generates premature emphysema 
[27••]. Similarly, human studies have shown that smok-
ing reduces DNA methylation at the aryl hydrocarbon 
receptor repressor (AHRR) gene in blood and lung tissue 
[28–30]. Smoking-induced reductions in AHRR methyla-
tion inhibit expression of detoxifying enzymes that remove 
harmful environmental chemicals including hydrocarbons 
contained in tobacco smoke [31]. Thus, smoking-induced 
AHRR demethylation may represent a mechanism of pre-
mature lung disease in smokers [32].

Recent studies have shown that DNA methylation levels 
are also a robust biomarker of biological aging [33]. The 
“epigenetic clock” effectively predicts biological age in all 
tissues based upon DNA methylation levels at a collection 
of CpG sites [34]. The epigenetic clock also quantifies age 
acceleration, which is a metric of premature aging defined 
as the difference between the chronological age and the 
biological or DNA methylation age. Tobacco smoking has 
been shown in human studies to accelerate DNA methyla-
tion age in airway cells and lung tissue, likely by modulat-
ing expression of genes that regulate cellular senescence 
and cell survival [35–38] Accordingly, in two independent 
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population-based studies, accelerated epigenetic aging was 
associated with incident COPD, which is characterized by 
premature pulmonary senescence [39, 40]. Specifically, 
the odds of incident COPD increased by 1–2% per 5-year 
elevation in epigenetic aging, suggesting that accelerated 
epigenetic aging is an independent risk factor for age-
related lung diseases.

Closely tied to age- and smoking-related epigenetic 
changes are alterations in cellular protein homeostasis. In 
natural aging, abnormal proteostasis leads to the accumu-
lation of toxic misfolded protein aggregates [41]. In vitro 
studies have shown that tobacco smoking also precipitates 
impaired protein folding in the endoplasmic reticulum (ER) 
of human lung cells [42•]. The ER regulates protein fold-
ing and degradation and activates a stress response when 
misfolded proteins accumulate in the ER lumen. Smoking 
additionally inhibits lysosomal-mediated degradation of 
dysfunctional proteins, which allows abnormal proteins to 
accumulate in the perinuclear space [43]. Accumulation 
of dysfunctional proteins generates lung inflammation and 
dilation of the airways, which are principal components of 
premature emphysema [44].

In addition to stimulating inflammation in the lung, ani-
mal models have demonstrated that smoking-induced pro-
tein misfolding inhibits production of functional surfactant 
proteins [42•]. Pulmonary surfactant is a lipoprotein fluid 
secreted by type II alveolar cells that decreases surface ten-
sion in the alveoli and prevents lung collapse during normal 
breathing [45]. Smoking-induced inhibition of surfactant 
protein production induces apoptosis of airway epithelial 
cells [42]. While epithelial damage typically triggers air-
way repair mechanisms, tobacco smoke also disrupts airway 
progenitor cells, impeding alveolar re-epithelialization after 
injury [46]. Persistent epithelial damage generates alveolar 
wall destruction and pathological airway remodeling, which 
are integral components of premature lung aging [47].

Prior studies have shown that tobacco smoking induces 
premature cellular senescence in lung epithelial cells and 
basal progenitor cells [15, 48]. Smoking reduces telomere 
length in both cell populations in vitro, leading to cell cycle 
arrest and cellular dysfunction [49]. As a result, disordered 
cell differentiation and impaired epithelial remodeling limit 
effective cellular repair mechanisms. Tobacco smoke also 
induces cellular senescence in lung fibroblasts, which are 
critical for maintaining normal lung architecture [50]. Inhib-
ited wound healing generates architectural disturbances in 
the alveoli and airway epithelium, which precipitates pre-
mature lung disease.

In addition to inducing cellular senescence in airway 
fibroblasts and progenitor cells, tobacco smoking stimulates 
an airway epithelial-mesenchymal transition [51]. Human 
studies comparing smokers to non-smokers demonstrated 
that some airway epithelial cells undergo biochemical 

transformations and adopt a mesenchymal cell pheno-
type following smoking-induced epithelial damage [52]. 
Transformed mesenchymal cells secrete components of the 
extracellular matrix and contribute to lung regeneration and 
healing. However, in the setting of prolonged inflammation 
and recurrent smoking-related injury, the transformed cells 
produce a disorganized extracellular matrix and generate 
fibrosis [53]. Interstitial fibrosis can lead to IPF, which is an 
irreversible aging-associated lung disease [40].

While a subset of epithelial cells adopt a mesenchymal 
cell phenotype in response to tobacco smoke exposure, 
other epithelial cells transform into mucus-secreting cells 
[54••]. In vitro studies have shown that smoking-related 
inflammation alters energy production and protein transla-
tion in exposed epithelial cells, inducing widespread mucus 
cell metaplasia. The resulting increase in mucus production 
contributes to airflow obstruction and premature functional 
impairment and is a defining feature of many inflammatory 
lung diseases [55].

Mucus hypersecretion facilitates bacterial colonization 
of the airways, which leads to recurrent airway infections 
when coupled with the immunosuppressing effect of chronic 
smoke exposure [56]. Tobacco smoking suppresses mac-
rophage phagocytosis of bacteria in the lungs and impairs 
maturation of pulmonary dendritic cells, which are critical 
activators of the adaptive immune system [57, 58]. Tobacco 
smoke also inhibits B and T cell immune responses and is 
associated with decreased immunoglobulin production in 
animal models [59•]. Dysregulated immunity in the lung can 
lead to repeated and prolonged respiratory tract infections, 
which can induce structural changes in the lung and generate 
premature lung aging [60].

Particulate Matter

Particulate matter (PM) is a mixture of aerosolized micro-
scopic particles that can be inhaled into the lungs [61]. PM 
is primarily generated by emissions from motor vehicles 
and industrial facilities, and fine PM (diameter < 2.5 μm 
[PM2.5]) is small enough to traverse the tracheobronchial 
tree and deposit in the small airways [62]. PM2.5 contains 
transition metals and organic aerosols that generate ROS 
and inhibit antioxidant enzyme activity in the lung [63]. As 
a result, oxidative stress builds in the respiratory tract and 
accelerates lung aging through multiple pathways (Table 2) 
[64].

PM-induced oxidative stress modulates enzymes that 
regulate DNA methylation, leading to differential meth-
ylation at thousands of CpG sites in the lungs and cir-
culating leukocytes [65, 66]. DNA methylation regulates 
gene expression and may provide a link between par-
ticulate air pollution exposure and premature lung aging 
[67••]. For example, PM2.5 exposure has been shown in 
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population-based studies to alter DNA methylation in the 
interleukin-6 (IL-6) and tissue factor (F3) genes, suggest-
ing PM2.5-induced changes in DNA methylation upregu-
late expression of pro-inflammatory cytokines and acute 
phase reactants [68]. A corresponding mediation analysis 
suggested gene-specific methylation mediated the relation-
ship between air pollution and inflammatory biomarkers 
in plasma. Accordingly, in vitro studies have shown that 
PM2.5 exposure triggers increased epithelial cell pro-
duction of inflammatory cytokines (IL-6, IL-1β, tumor 
necrosis factor alpha [TNF-α]) and chemotactic molecules 
(IL-8, monocyte chemoattractant protein 1 [MCP1]). The 
resulting pro-inflammatory milieu triggers architectural 
changes that are characteristic of premature lung aging. 
PM2.5-induced upregulation of IL-1β stimulates mucus 
hypersecretion in the airway epithelial cells, which gener-
ates airflow obstruction [69]. Pro-inflammatory cytokines 
also stimulate infiltration of neutrophils and macrophages 
in the lung, which release proteases that degrade the air-
way epithelial barrier [70, 71]. PM2.5 exposure has also 
been independently associated with AHRR demethyla-
tion, [72] suggesting that PM and tobacco smoke may have 
shared mechanisms of DNA demethylation and may accel-
erate lung aging through similar biological pathways [73].

The airway epithelial barrier provides both physical and 
immunological protection against inhaled foreign antigens, 
and damage to the barrier drives pathogenesis of age-related 
lung diseases [74]. In addition to generating inflammatory 
injury to the epithelial barrier, PM2.5-induced ROS gener-
ate DNA strand breaks and suppress DNA repair enzymes 
in airway epithelial cells [75, 76]. DNA damage stimulates 
mitochondrial dysfunction, which can induce epithelial cell 
death [77]. In vitro studies have demonstrated that oxidative 
stress also damages the proteins that form the tight junctions 
in the epithelial cell barrier, thereby diminishing the barrier 
function of the airway epithelial layer [78, 79]. In response, 
alveolar progenitor cells are activated and recruited to repair 
the injured alveolar barrier [80]. However, when epithelial 
repair mechanisms are impaired, pathological airway remod-
eling ensues.

Prior in  vitro studies have shown that inhaled PM 
decreases the viability of epithelial progenitor cells. PM2.5 
exposure decreases expression of human telomerase reverse 
transcriptase in lung epithelial cells [81]. As a result, epithe-
lial cell telomeres are shortened and cell cycle arrest ensues 
[82••]. Cellular senescence in type II alveolar epithelial cells 
limits the regenerative capacity of the lung epithelium, lead-
ing to impaired wound healing and increased inflammation 
[83]. Unrepaired epithelial injury also induces proliferation 
of lung fibroblasts [84, 85]. Activated fibroblasts increase 
collagen deposition, and excessive production of extracellu-
lar matrix leads to aberrant alveolar remodeling and fibrosis 
[86]. Accordingly, epidemiological studies have shown that Ta
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PM exposure is a known risk factor for IPF, which is a pro-
gressive age-related lung disease [87].

Ground‑Level Ozone

Tropospheric ozone forms when emissions from industrial 
plants and motor vehicles chemically react in the presence 
of UV light [88]. Ozone is not filtered by the upper airways, 
which allows inhaled ozone to deposit in the lower respira-
tory tract [89]. When ozone comes into contact with lung 
epithelial cells in vitro, it alters expression of tight junction 
proteins in the epithelial barrier [90••]. Disintegration of 
tight junctions increases permeability of the epithelial bar-
rier, which stimulates release of inflammatory cytokines and 
ROS [91]. In turn, ozone-induced ROS generate mitochon-
drial dysfunction [92•]. Acute ozone exposure diminishes 
mitochondrial energy storage and decreases mitochondrial 
oxygen consumption in the lung, leading to release of mito-
chondrial ROS. Mitochondrial ROS activate the NLRP3 
inflammasome, which is a protein complex that induces 
inflammation-mediated cell death and generates alveolar 
wall destruction [93]. Accordingly, in prior epidemiologi-
cal studies, chronic ozone exposure was associated with 
lung function impairment and emphysema independent of 
smoking [94••]. Long-term ozone exposure was also associ-
ated with shortness of breath and impaired functional status 
resulting from respiratory symptoms, suggesting ambient air 
pollution may contribute significantly to respiratory symp-
toms that characterize premature lung aging.

Sulfur Dioxide

Fossil fuel combustion generates sulfur dioxide, which is a 
toxic gas that contributes heavily to air pollution in indus-
trialized countries [95]. Human studies have demonstrated 
that sulfur dioxide converts to sulfuric acid after inhalation 
and increases bronchial reactivity and bronchoconstriction, 
which are hallmarks of reactive airway disease and asthma 
[96]. Sulfur dioxide also decreases mucociliary clearance, 
which increases the viscosity of airway mucus and promotes 
pathogen colonization and reproduction [97]. Pathogen colo-
nization in the airways promotes infiltration by immune and 
inflammatory cells, which in turn promotes airway remod-
eling and premature lung aging [98].

Nitrogen Dioxide

Fossil fuel combustion generates nitrogen dioxide, which 
is a primary source of urban air pollution [99]. Nitrogen 
dioxide is a water-soluble gas that deposits in the small 
airways where it is converted to nitrous and nitric acids 
[100••]. Nitric acids directly damage airway epithelial 
cells, leading to a chemical pneumonitis that manifests as 

pulmonary edema [101]. Nitrogen dioxide exposure also 
suppresses alveolar macrophage-mediated production of 
inflammatory cytokines in response to bacterial infection, 
which dampens the immune response. The pollutant fur-
ther diminishes respiratory immunity by reducing muco-
ciliary clearance in the lower respiratory tract of animal 
models, leading to impaired clearance of respiratory path-
ogens [102]. Immune dysregulation in the lungs increases 
susceptibility to respiratory infections, which can lead to 
cellular and structural damage in the airways [103].

Silica Dust

Silica is a common mineral that is a large component of 
granite and sandstone rocks [104]. Silica exposure can 
occur after any activity that requires breaking ground 
or handling silica-containing stone. Inhaled crystalline 
silica particles deposit in the distal airways of the lungs 
and are phagocytosed by resident macrophages, which 
release ROS and inflammatory cytokines [105]. Animal 
models have demonstrated that silica-induced ROS dis-
rupt a telomere-binding protein complex that preserves 
telomere length in progenitor lung cells [106]. The result-
ing telomere attrition generates DNA damage in type II 
alveolar epithelial cells, leading to cellular senescence and 
apoptosis. Increased alveolar cell loss triggers aberrant 
healing mechanisms in lung fibroblasts, which proliferate 
and increase collagen production around silica particles 
[107]. The resulting interstitial fibrosis leads to decreased 
lung compliance and impaired gas exchange, which are 
hallmarks of premature lung aging.

Coal Dust

Coal mining, transport, and processing generate airborne 
respirable dust that can deposit in the small airways of the 
lungs [108]. Coal dust cannot be eliminated from the lungs 
but rather is engulfed by macrophages that reside in the 
alveolar space. Activated macrophages release TNF-α and 
IL-6 in vitro, which stimulate infiltration of neutrophils and 
lymphocytes in the lungs. Neutrophils secrete elastases that 
break down elastic fibers, leading to dilation and destruc-
tion of the alveolar walls [109]. Alveolar macrophages also 
secrete insulin-like growth factor-1 (IGF-1) and platelet-
derived growth factor (PDGF), which recruit fibroblasts to 
sites of coal dust deposition and stimulate fibroblast pro-
liferation [110] Activated fibroblasts upregulate collagen 
production, leading to collagen accumulation in pneumoco-
niotic lesions in the lungs. Areas of focal emphysema and 
pneumoconiotic nodules distort the lung architecture and 
generate premature lung function impairment.
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Asbestos

Asbestos fibers are durable minerals that were histori-
cally used in construction and insulation because of their 
resilience and affordability [111]. Deteriorating buildings 
and asbestos-containing products can generate airborne 
asbestos fibers that deposit in the distal airways [112]. 
Alveolar macrophages are too small to completely engulf 
larger asbestos fibers, and incomplete phagocytosis gen-
erates biomineralization and formation of iron-rich enve-
lopes around asbestos fibers [111]. Animal models have 
shown that asbestos-iron complexes trigger mitochondrial 
ROS production in alveolar epithelial cells, mesothelial 
cells, and macrophages [113]. Persistent oxidative stress 
induces mitochondrial DNA damage, triggering apoptosis 
of mesothelial cells and type II alveolar epithelial cells. 
Asbestos exposure also activates p53 expression in key 
progenitor cells, leading to cellular senescence in alveolar 
epithelial and mesothelial cells [114]. Cellular senescence 
in progenitor cells impairs physiologic repair mechanisms 
and triggers an exaggerated fibroblast response charac-
terized by pathological collagen deposition. Proliferating 
fibroblasts generate interstitial fibrosis, which is a hall-
mark of asbestosis and premature lung aging [115]. Nota-
bly, tobacco smoking hinders clearance of asbestos bodies 
from the human lung, leading to exaggerated pulmonary 
toxicity in smokers with asbestos exposures [116].

Bioaerosols

Indoor air contains ubiquitous biological contaminants 
including bacteria, viruses, and fungi [117]. Indoor dust 
also contains bacterial extracellular vesicles (EVs), which 
are membrane-bound nanoparticles produced from Gram-
negative bacteria that can reach and accumulate in the lung 
alveoli [118]. Inhalation of bacterial EVs activates the innate 
immune response and triggers production of inflammatory 
cytokines including TNF-α and IL-6 in vitro [119]. Cytokine 
release triggers an influx of neutrophils in the lung, which 
release protease and elastase enzymes that destroy structural 
components of the alveolar septa [109]. Repeated exposure 
to bacterial EVs alters the lung architecture by damaging 
alveolar walls and generating alveolar enlargement, as well 
as by increasing collagen deposition in the airways. The pro-
longed inflammation that follows EV exposure can gener-
ate mucus gland hyperplasia and emphysema and indicates 
that dust EVs may contribute significantly to premature lung 
aging [120••].

Strategies for Improving Environmental 
and Respiratory Health

Environmental exposures accelerate lung aging and contrib-
ute to the development of age-related respiratory diseases 
(Figure 2). Inhaled antigens generate oxidative stress and 
inflammation that lead to destruction and fibrosis of the 

Fig. 2   Environmental exposures 
and associated age-related 
changes in the lung142. Envi-
ronmental exposures impair 
cellular repair mechanisms in 
the lung, leading to structural 
alterations including emphy-
sema, mucus hypersecretion, 
and pulmonary fibrosis that 
generate functional impairment 
and characterize premature lung 
aging
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lung parenchyma, which are irreversible distortions of the 
lung architecture [121]. Thus, evaluation and minimization 
of noxious environmental exposures are critical to improve 
lung health and prevent age-related lung diseases.

Several strategies can help reduce exposure to ambient 
air pollution. Portable or centralized air filters reduce con-
centrations of indoor air pollutants, which reflect a combina-
tion of pollutants from cooking and organic dust as well as 
outdoor source pollutants that infiltrate indoors [122, 123]. 
Clinical trials have shown that high efficiency particulate air 
(HEPA) in-duct filtration systems reduce indoor particulate 
concentrations and improve microvascular health, which is a 
determinant of lung health [124, 125]. Similarly, individuals 
who commute via personal vehicles or public transportation 
can reduce in-vehicle particulate exposure through use of 
cabin filters and air conditioners to stimulate air recircula-
tion [126].

Avoiding rigorous outdoor activity when air pollut-
ant concentrations are high can also help minimize harm-
ful exposures. Air pollution monitoring networks such as 
the Environmental Protection Agency’s Air Quality Index 
measure concentrations of harmful air pollutants and fore-
cast air pollutant levels using mathematical models [127]. 
When air pollution levels are elevated, minimizing outdoor 
activity and reducing rigorous outdoor exercise can decrease 
inhalation of harmful pollutants [128, 129]. Reducing expo-
sure to high-pollution microenvironments can also reduce 
noxious exposures. For example, avoiding physical activity 
near high-traffic roads can help optimize respiratory health 
[130]. Similarly, smoking cessation and complete removal 
of secondhand smoke exposure are essential to preserve lung 
health among smokers and their family members. There are 
multiple proven interventions to aid with smoking cessation 
and removal of residual smoke pollution [131].

With regard to occupational exposures including silica 
dust, coal dust, and asbestos, minimizing dust exposure is 
the most effective prevention strategy. While engineering 
controls including dust extraction systems are the primary 
method for reducing exposures, individual prevention strate-
gies including wearing a mask and removing dust from skin 
and clothing can help reduce harmful exposures [132]. Sec-
ondary prevention strategies including monitoring for lung 
function impairment and early radiographic signs of dis-
ease in high-risk individuals can help prevent severe disease, 
as miners with radiographic evidence of lung disease are 
legally entitled to work with enhanced protections against 
dust exposure [133].

In addition to minimizing inhaled environmental expo-
sures, primary prevention strategies in the form of influenza, 
pneumococcal, and Covid-19 vaccinations can minimize risk 
of respiratory infections and promote lung health among 
individuals with high-risk environmental exposures [134]. 
Individuals over the age of 65, and particularly those with 

chronic medical conditions, are recommended to stay up to 
date on vaccinations in order to prevent severe respiratory 
infections.

Prior research has suggested that pharmacological and 
dietary interventions may reduce susceptibility to inhaled 
exposures. An epidemiological study showed that nonsteroi-
dal anti-inflammatory drugs (NSAIDs) partially attenuated 
lung function decline after PM exposure, [135] and a small 
trial demonstrated that NSAID use attenuated lung function 
decline in adults exposed to ozone [136]. Similarly, B vita-
min supplementation prevented PM2.5-induced alterations in 
DNA methylation levels in a small trial of adults, suggesting 
B vitamins can neutralize PM-related oxidative stress [137]. 
Dietary antioxidants including vitamin C also preserved lung 
function in a study of young adults exposed to ozone [138]. 
Finally, stem cell therapies are emerging as potential miti-
gators of environmental pollutants, and transplantation of 
adipose-derived stem cells attenuated PM2.5-induced lung 
inflammation in mice [139]. However, while preliminary 
studies are promising, further research is required before 
pharmaceutical, biological, and lifestyle interventions can 
be safely recommended to minimize or reverse damage from 
inhaled environmental exposures.

Conclusions

The lungs are one of few organs in the body that continu-
ously interface with the external environment. Environmen-
tal exposures trigger oxidative and inflammatory stress that 
damage the lung parenchyma, impair physiologic repair 
mechanisms, and induce accelerated lung aging. Prema-
ture lung aging manifests as lung function impairment and 
overt lung disease and causes significant global morbidity 
and mortality. While individual interventions that minimize 
noxious environmental exposures and reduce risk of respira-
tory infections can optimize lung health, cohesive national 
and international policies that minimize carbon emissions 
are required to decrease the global burden of inhaled envi-
ronmental exposures. In addition, novel research is required 
to expand our knowledge of therapeutic interventions that 
may slow or prevent premature lung aging. Future research 
in the following areas may expand available strategies to 
prevent age-related lung diseases:

•	 Human trials examining pharmacologic interventions 
(i.e., NSAIDs) are required to determine if medical inter-
ventions protect the lungs from environmental pollutants.

•	 Larger human trials are required to determine whether 
dietary interventions including antioxidant supplements 
(i.e., vitamins B, C, and E) can mitigate the impact of 
inhaled exposures on lung health.
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•	 While stem cell therapies represent an emerging and 
promising field, additional studies in animal models and 
eventually humans are required to validate the effective-
ness of stem cells in preserving lung health.
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