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Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools
is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper
proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used
Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each
attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed
models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the
used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Com-
parisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the
reviewed classification techniques.

1. Introduction

Breast cancer is a common cause of death and is the type of
cancer that is widespread among women worldwide [1].
Many imaging techniques and tools have been developed for
early detection and treatment of breast cancer and for re-
ducing the number of deaths as a result of it [2]. There have
been many breast cancer diagnosis methods that were used
to increase diagnostic accuracy [3, 4].

In the last few decades, several data mining and ma-
chine-learning techniques have been developed for breast
cancer detection and classification [5–7]. These approaches
can be divided into three main stages: preprocessing, feature
extraction, and classification.

In order to facilitate interpretation and benefit pursuit
analysis, preprocessing of mammography helps to im-
prove the visibility of peripheral areas and intensity
distribution. For this reason, several methods have been
reported [8, 9].

Feature extraction is an important step in breast cancer
detection, where the main features help in discriminating
benign tumors from the malignant ones. After this, several
image properties, such as smoothness, coarseness, depth,
and regularity, are extracted by means of segmentation [10].
Various transform-based texture analysis techniques are
applied to convert the image into a new form using the
spatial frequency properties of the pixel intensity variations.
The common techniques are wavelet transform [11], fast
Fourier transform (FFT) [12], Gabor transforms [13], and
singular value decomposition (SVD) [14]. To reduce the
dimensionality of the feature representation, principal
component analysis (PCA) [15] can be applied.

Many works have attempted to automate the diagnosis of
breast cancer based on machine-learning algorithms. Yap
et al. [16] used three different methods of deep learning to
detect the ultrasound of breast lesions: a patch-based LeNet,
a U-Net, and a transfer learning approach with a pretrained
FCN-AlexNet. Two different datasets are used. The first

Hindawi
BioMed Research International
Volume 2020, Article ID 4671349, 10 pages
https://doi.org/10.1155/2020/4671349

mailto:hdhahri@ksu.edu.sa
https://orcid.org/0000-0003-4668-7840
https://orcid.org/0000-0001-9086-5080
https://orcid.org/0000-0003-4163-7625
https://orcid.org/0000-0003-2436-0249
https://doi.org/10.1155/2020/4671349


dataset consists of 306 images (60 malignant and 246 be-
nign), and the second dataset consists of 163 images (53
malicious and 110 benign). The best F-measure results
obtained by Yab were 91% and 89%, respectively. Qiao et al.
[17] used the BI-RADS data system to improve diagnosis
accuracy through ultrasound. In this work, the authors
applied a genetic algorithm for the selection of features and
the AdaBoost classifier to distinguish between benign and
malignant tumors. Experiments were conducted on 138
tumors from the database using cross-checking of exit. The
obtained accuracy was 93.48%. Wang et al. [18] applied the
support vector machine (SVM) algorithm for breast cancer
diagnosis in order to minimize the variability and increase
diagnostic accuracy. In this work, receiver-operating char-
acteristic curve ensemble (WAUCE) was used as a perfor-
mance measure. The results of employing 12 different types
of SVM were 97.89% for variation and 33.34% for accuracy.
Amrane et al. [19] proposed two different classifiers (k-
nearest neighbors (KNN) and Näıve Bayes (NB)) to diagnose
breast cancer. The results showed that KNN achieved the
highest accuracy of 97.51%, and the lowest accuracy of NB
was 96.19%. Sun et al. [20] explored a multimodal deep
neural network model by integrating multidimensional data
(MDNNMD) to predict breast cancer. The obtained results
show that there are still some issues in predicting the survival
time of breast cancer with MDNNMD effectively. The
proposed algorithm achieved an accuracy of 79.4%. The
convolutional neural network improvement for breast
cancer classification (CNNI-BCC) was applied to extract the
relevant features from mammogram images [21]. The
classification of the given features with CNNI-BCC achieved
an accuracy of 90.50%.

Comparisons between neural networks and deep neural
network algorithms with and without dimensional reduction
techniques, and linear discrimination analysis were applied
in [22] to classify the Wisconsin Diagnostic Breast Cancer
(WDBC) dataset. The results showed that these algorithms
performed well in terms of disease diagnosis and classifi-
cation. The classification results proved the closeness of the
accuracy of both previous models. In [23], the authors
presented a comparison of three algorithms (Naı̈ve Bayes,
RBF network, and J48) on 683 breast cancer datasets with
10-fold cross-validation. The results showed that Näıve
Bayes had the best accuracy of 97.36%, while RBF network
and J48 achieved accuracies of 97.77% and 93.41%, re-
spectively. Mondal et al. [24] explored the entropy method
with four machine-learning algorithms to distinguish be-
tween normal tissues and breast cancer. The comparison of
SVM, NB, KNN, and random forest (RF) indicated that
SVM outperforms the others with an accuracy of 91.5%.
Zhou et al. [25] exploited shear-wave elastography (SWE)
data with a convolutional neural network (CNN) for breast
cancer diagnosis using a database with 540 images, where
315 were malignant and 222 benign. The study achieved an
accuracy of 95.8%, sensitivity of 96.2%, and specificity of
95.7%. In order to improve the accuracy of breast cancer
diagnosis, Tamilvanan [26] applied the dimensionality re-
duction technique to five classifiers: multilayer perceptron,
NB, radial basis function network, conjunctive rule, and

KNN. Besides precision, recall, F-measure, accuracy, and
ROC, new metrics were used, such as balanced classification
rate (BCR) and Matthews correlation coefficient (MCC). The
experiments revealed that the NB algorithm had the highest
accuracy of 82%. Tapak et al. [27] compared and analyzed
eight classifiers to predict breast cancer survival and me-
tastasis. The classifiers used were AdaBoost, Näıve Bayes
(NB), least-square SVM (LSSVM), random forest (RF),
SVM, linear discriminant analysis, Adabag, and logistic
regression (LR). The proposed models were applied to 550
patients. The deduced results demonstrate outperformance
of SVM over the other machine-learning methods. In [28],
the authors proposed the CRISP-DM methodology to an-
alyze the WDBC dataset. The achieved best accuracy was for
the SVM.

Tahmassebi et al. [29] applied magnetic resonance
methods for detecting breast cancer in women (average age:
46.5 years, range: 25–70 years). Eight classifiers were used to
categorize features, including linear SVM, linear discrimi-
nation analysis, logistic regression, decision tree, adaptive
enhancement, and enhanced gradient extreme (XGBoost).
To reduce the dimension, the authors applied various fea-
tures selection techniques: survival-free redundancy (RFS)
and survival of the disease (DSS). The rating accuracy was
assessed with the area under the receiver operating char-
acteristics curve (AUC). The best result was found with an
AUC of 92%.

The Gabor wavelet has been proposed to extract features
from mammography images in [30]. Several methods were
used to classify radiographic images: C5.0 tree, SVM, arti-
ficial neural networks, Tree Quest, and CHAID. The com-
parison of the previous classifiers models demonstrates that
SVM outperforms the other with an accuracy of 96%.
Another deep learning algorithm was applied by Arau et al.
[31] to recognize benign and malignant abnormalities. In
this work, the authors used the convolutional neural net-
works (CNNs) to extract features. The given model was
applied to a database with four classes (normal tissue, benign
lesion, in situ carcinoma, and invasive carcinoma) and two
classes (carcinoma and noncarcinoma). The sensitivity of
this method was 95.6%.

In [32], the authors explored the tissue morphology in
hematoxylin and eosin (H&E) stained breast cancer tissue
microarray (TMA) samples using a machine-learning al-
gorithm. The presented experiments showed that the
morphological patterns in breast cancer can be explored
using unsupervised machine learning.

Sharma et al. [7] applied three machine-learning algo-
rithms to predict breast cancer. The experimental results
gave an accuracy training ranging from 93% to 97%.

In order to ameliorate breast cancer histopathological
image classification accuracy, Wei et al. [33] applied a deep
CNN named BiCNN. The contribution of the authors was to
propose a new technique to extract the features from
mammography images. Radiya-Dixit et al. [34] developed a
combined model with active feature extraction (CAFE)
based on logistic regression (LR) techniques. In this work,
the authors compared the proposed model to five machine-
learning models. The best AUC was 91.8%.
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In [35], the authors proposed an assistant tool based on
deep learning to detect the breast cancer metastasis in lymph
nodes. The developed tool demonstrates its effectiveness to
identify micrometastases. Table 1 summarizes selected lit-
erature on breast cancer diagnosis. It highlights the type of
technique applied to select the features, the classifier model
to distinguish between malignant and benign, the accuracy
measure, and the database used to validate the proposed
mode.

While the higher accuracy of the various methods ap-
plied for the breast cancer diagnosis, the use of Tabu search
metaheuristic [43] to reduce the dimension features im-
proves the performance of the applied algorithms. The
present work compares five machine-learning techniques to
distinguish between malignant and benign breast cancer.
The techniques include KNN [44], Gaussian Näıve Bayes
(GNB) [45], logistic regression (LR) [46], the extremely
randomized tree (ET) [47], and adaptive boosting [48].

The remainder of this paper is organized as follows. In
Section 2, the material and methods are explained. Section 3
summarizes the experimental results, and Section 4 presents
the conclusions.

2. Materials and Methods

2.1. Datasets Used for Research. In this work, two databases
were used to validate the proposed algorithms. In fact, those
who work with models of medical field are aware that relying
on just one data source can be problematic. In addition two
different methods have been applied to extract the features
for each dataset; in BIDMC-MGH dataset, the feature ex-
traction is basically composed by nuclei segmentation and
nuclei computation; however, in WDBC dataset, the features
were extracted depending on nuclei computation. The
WDBC is frequently used in the comparison of BIDMC-
MGH.

The BIDMC-MGH dataset was created in collaboration
with the two centers, MGH and BIMDC. In addition to this,
the two partners proceeded based on standardized labora-
tory protocol and the same equipment in their study. The
BIDMC-MGH dataset [5] is composed of 392 features based
on shape, intensity, texture, and color. The dataset contains
116 breast biopsies from MGH and 51 breast biopsies from
BIDMC diagnosed as DCIS or UDH. The first 116 samples
are used for training and the other 51 samples for validation
of the proposed models. The features of BIDMC-MGH were
computed from the morphological and statistical features of
the selection nuclear regions. Based on shape and mea-
surement values, the morphological features were computed
including perimeter, area, bounding rectangle fit ellipse,
shape descriptors, and Feret’s diameter. The statistical fea-
tures computations depend on the intensity, the texture, and
eight chosen colors. Using the statistical analysis, the mean,
median, and standard deviation are computed for each
feature per patient. All images are extracted from the fol-
lowing website: http://earlybreast.becklab.org/.

The features of WDBC are subtracted from digitized
images of a fine needle aspirate of a breast mass (FNA),
which describes features of the nucleus of the current image.

The Wisconsin Diagnostic Breast Cancer (WDBC) database
is composed of 569 observations, where 357 are benign and
212 are malignant breast masses. The 30 descriptive features
produced from the three statistic values were computed
based on ten FNA geometric measurements for each cell
nucleus: radius, texture, perimeter, area, smoothness,
compactness, concavity, concave point, symmetry, and
fractal dimension of each mass.

2.2. Feature Selection. The feature selection is one of the
most important steps in designing the classifier model. The
main objective of feature selection operation is to get the best
representation of the data which finds a lower dimensional
representation of data. Usually high-dimensional repre-
sentation of the data leads to degeneration in the perfor-
mance of the used method. By considering that the
redundant data should be removed and only the relevant
feature will be used, the performance of the useful model can
be improved or can be maintained and can simplify the
complexity the applied model. In this context, the proposed
feature selection method was presented. In this work, the
Tabu search method based on rough set theory was intro-
duced. The selection of the appropriate features depends on
four stages: neighborhood search, diversification, shaking,
and elite reduct. This process selects the informative in-
formation in order to discriminate between the normal and
cancerous tissues; in addition, the large number of features
increases the computing complexity. So the classification
process will run slowly. Moreover, accurate diagnosis de-
pends strongly on appropriate features being selected.

2.2.1. Rough Set Theory Based Feature Reduction.
Recently, rough set theory has proved its effectiveness to
reduce the features of a given dataset [49]. Mainly, this
theory is based on discernibility and attribute dependency
[50] to evaluate the contribution of each attribute. In rough
set theory, all the attributes are called the decision system
which is composed of conditional attributes set C as input
and decision attributes set D as output.

Assume I � (U,A) an information system, where U is a
nonempty set of finite objects called universe of discourse
and A is a nonempty set of attributes such that, for every
a ∈ A, a: U⟶ Va, where Va is the value set of a.

With any subset P⊆A, there is an associated equivalence
relation called P-indiscernibility relation defined as follows:
INDI(P) � (x, y) ∈ U × U/∀a ∈ P, a(x) � a(y)􏼈 􏼉. In other
words, the objects x and y are indiscernible from each other
by attributes from P. The equivalence classes of the P-
indiscernibility relation are designated by [x]P.

LetX⊆U ; the set of object X can be approximated based
on P-lower and P-upper approximations denoted by PX
and PX, respectively, where PX � x/[x]P ⊆t X􏼈 􏼉 and
PX � x/[x]P ∩​ tXn � q∅􏼈 􏼉.

Assume P and Q are equivalence relations on U; the
positive region Q with respect to P is defined as
POSP(Q) � ∪X∈U/QPX. Based on positive region, the degree
of dependency of Q frm P is defined as
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cP(Q) �
POSP(Q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

|U|
, (1)

where |U| defines the cardinality of the set U.
The computing of the attribute reduction for a large

dataset is very expensive due to the existence of a set of
reduction attributions. As a result, an alternative tool is
necessary to overcome this concern.

2.2.2. Tabu Search Based on Feature Reduction. Tabu search
(TS) [43] is a heuristic method of local search used to solve
complex and many large optimization problems. It is
classified as a local search method with adaptive memory.

In fact, its main feature is to memorize solutions or
information search processes visited during the search to
explore the research space beyond local optimality. An
adaptive memory algorithm can effectively generate a
neighborhood solution from the current solution and ac-
cepts the best solution even if it does not improve the current
solution. The memory contains a list of recently visited
solutions and avoids cycling and falling back into perma-
nence in the local optimum. This simple process then allows
escape from the local optimum so other areas of the solution
space can be visited. To summarize, we can say that, at each

iteration, the process continues to explore the solution space
even though it does not improve the solution.

The TS-based attribute reduction [50] is mainly designed
using the four strategies.

Strategy 1: neighborhood search

The basic goal of this strategy is to explore the solution
around the current solution, besides it avoids gen-
erating a solution recently used in the Tabu List (TL).
Assume yi is the trial solution of the neighbors of x,
where I ∈ [1, m], and m is the number of trial solu-
tions. An example of binary representation of a trial
solution x is shown in Figure 1. The component of
each vector equals zero or one according to the
presence of each attribute in trial vector.
The extreme trial solutions are the vectors that contain
zero or one for all the positions. The updating of the trial
solutions is based on applying mutation multipoints,
where the number of positions is generated randomly.

Strategy 2: diversification

In order to explore the space solution widely, the
diversification will be applied. The diverse solution
can be composed of the attributes not invoked during

Table 1: Summary of machine-learning algorithms for breast cancer diagnosis.

Author Feature Algorithm Accuracy
(%) Dataset

Asri et al. [36] FNA SVM 97.13 UCI
Ivančáková et al. [28] FNA SVM 97.66 WDBC
Mondal et al. [24] Entropy SVM 91.5 Gene Expression Omnibus
Ghasemzadeh et al.
[30] Gabor wavelet SVM 96 Mammography (DDSM)

Ayoub Shaikh and Ali
[37] Wrapper subset eval SVM 97 Breast Cancer Digital Repository (BCDR)

Wang et al. [18] Full features SVM 33.34 SEER
Mengjie Yu [38] Concave points SVM 99.77 UCI
Wei et al. [33] BiCNN CNN 97 BreaKHis
Bejnordi et al. [39] Morphology CNN 92 WSIs
Arau et al. [31] Full features CNN 83 Histology Dataset

Yap et al. [16] FCN-alexnet CNN 98 B&K Medical Panther 2002 and B&K Medical Hawk
2102 US systems92

Ting et al. [21] Wise CNN 90.50 Digital Mammogram
Zhou et al. [25] CNN CNN 95.8 SWE data

Sun et al. [20] mRMR Deep neural
network 18.7 METABRIC/MDNNMD

Kaur et al. [40] CNN MLP 86 Mini-MIAS
Joshi et al. [22] Scaling NN 96.47 WDBC

Radiya-Dixit et al. [34] Computational
method LR 91.8 BIDMC-MGH

Tahmassebi et al. [29] Volume distribution LR 92 WDBC
Braman et al. [41] Heterogeneity LR 93 ISPY1-TRIAL
Maysanjaya et al. [42] Wrapper NB 99.27. UCI
Chaurasia et al. [23] FNA NB 97.36 WDBC

Tamilvanan [26] Dimensionality
reduction NB 82 WDBC

Qiao et al. [17] BI-RADS AdaBoost 93.48 138 pathologically proven breast tumors
Turkki et al. [32] Morphological KNN 95 FinProg
Amrane et al. [19] FNA KNN 97.51 WDBC
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the generation of trial solutions. The attributes with a
low appearance will be selected with a probability
inversely proportional to that appearing in the gen-
eration of the trial solutions.

Strategy 3: shaking

The purpose of this strategy is to optimize the current
best solution. This procedure begins by deleting the
contained attributes of the best solution one by one
without any reducing of the dependency degree of c_
(xbest).
In other words, the updating of xbest is approved only
if the value of its dependency degree increased or kept
the same value after removing an attribute that
composes the solution.

Strategy 4: elite reduct

This strategy aims to find the minimal set attributes.
Basically, this process depends on the previous
strategy. In other words, the set of attributes involved
in the minimal reduced vector is composed of the
intersection of the list of vectors formed by optimizing
the best solution. Figure 2 depicts the Tabu search
based feature selection.

2.3. Machine-Learning Techniques. Often, the selection of
classifier is one of the challenges in fielding of machine
learning for the real applications. The choice of the classifiers
algorithms depends on many factors. Some parameters are
the complexity, the accuracy, the types of features/labels, and
the suitability for certain sizes and dimensions of datasets.

The benefits of applying the Näıve Bayesian classifier are
that it is less sensitive to the outliers, performs with less
parameter, and also can outperform more alternative clas-
sifiers for small sample sizes.

The KNN is a supervised classifier that works well with
small-size dataset. It is robust to a noisy data and requires
one hyperparameter. Moreover, this technique can be used
for both classification and regression problems.

Logistic performs better on a dataset with a small size.
The effectiveness of the technique is to require few com-
putational resources and does not need any tuning.The
major strength of AdaBoost technique is its insusceptibility
to overfitting problem.

The Extremely Randomized Trees (ET) model is relative
to data with small number of samples and works with a
reduced computational complexity.

2.3.1. K-Nearest Neighbors Algorithm. KNN was proposed
by Cover and Hart and is considered one of the most
successful machine-learning models to solve both classifi-
cation and regression problems. The KNN technique is

based on feature similarity measures. The aim of this method
is to assign weights to the contributions of neighbors by
assigning nearer neighbors with more weight than the more
distant ones. The weight can be found based on the distance
between instances. In general, distance measures can be
standard Euclidean distance, Hamming distance, Manhattan
distance, and Minkowski distance.

2.3.2. Gaussian Naı̈ve Bayes. The Gaussian Näıve Bayes
(GNB) classifier is a probabilistic machine-learning model
and one of the most successful algorithms for classification
tasks in medical image analysis [51]. The key insight of the
classifier is conditional probability to classify data. The GNB
algorithm is an example of NB algorithm where the features
have continuous values and follow a Gaussian distribution.

2.3.3. Logistic Regression. LR, which is a statistics-based
machine-learning algorithm, is generally applied for binary
classification problems (problems with two class values). It is
an effective method of modeling a categorical outcome
(binomial/multinomial) with one or more independent
variables. Unlike linear regression, which is used to study
relationships between two continuous (quantitative) vari-
ables, LR is used to ascertain a probability value that can be
mapped to two or more discrete classes.

2.3.4. Extremely Randomized Trees Classifier (ET). The ET is
similar to RF, based on extreme randomization of the tree
construction algorithm and disabling pruning operator.
Ultimately, the main differences to RF are that it makes a
small number of randomly chosen split points and it uses the
whole learning sample. Besides better generalization abili-
ties, the main strength of the ETtechnique is the reduction of
the computational complexity.

2.3.5. AdaBoost Classifier (AB). Recently, the adaptive
boosting gets a great interest in machine-learning compe-
titions. It is proposed by Freund and Schapire in 1996. The
technique focuses on building a classifier composed of a
number of weak classifiers using the following equation:

F(x) � sign 􏽘
n

i�1
wifi(x)

⎛⎝ ⎞⎠, (2)

where wi is the weight of the weak classifiers fi.
This technique is based on the low correlation between

the classifiers which significantly improve the accuracy of
weak learning algorithms. At each step, the weights of the
training examples were computed for each used model. The
classifiers with low performances were kept and combined to
produce the final results.

2.4. Evaluation Parameters. Various metrics are used to
evaluate machine-learning algorithms. In this study, the
useful metrics are accuracy, sensitivity, precision, F-score,
and AUC.

x1 x2 x3 x4 …. xn-3 xn-2 xn-1 xn
1 0 0 1 … 0 1 1 0

Figure 1: Sample of trial solution.
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Accuracy is the measure of correct prediction of the
classifier and provides general information about how many
samples are misclassified. It is defined as

accuracy(%) �
TP + TN

TN + FP + TP + FN
× 100, (3)

where TP, FP, TN, and FN are the numbers of true positives,
false positives, true negatives, and false negatives, respec-
tively, when the classifier is predicted.

Sensitivity is the ratio of the number of correctly pre-
dicted benign tumors to the total number of benign tumors:

sensitivity(%) � TPR �
TP

TP + FN
× 100. (4)

Specificity is the proportion of actual malignant tumors
that are classified as malignant by the model:

precision(%) �
TP

TP + FP
× 100,

F1score(%) �
precision × sensitivity
precision + sensitivity

× 100.
(5)

In this study, besides the above metrics, the receiver-
operating characteristic (ROC) graph AUC was employed.

3. Results and Discussion

To provide more evaluations, the proposed classifiers for
breast cancer diagnosis were analyzed to study the effect of
the TS technique on accuracy and to also compare it to
techniques used in other works.

3.1. BIDMC-MGH Dataset. In this study, we compare the
performance of five machine-learning techniques for the
BIDMC-MGH database with 392 features and the WDBC
database with 32 features. Several metrics were used to
quantitatively evaluate the diagnostic performance of the
classifiers. For the metrics described above, a higher

percentage indicates a better classification accuracy. Note
that the AUC is a powerful metric for the classification of
performance.

From the BIDMC-MGH dataset, 116 samples from the
MGH hospital are used for training and 51 samples from the
BIDMC hospital are used for testing. The TS was used to
select features from all 392 features. Table 2 presents the
comparison of the five classifiers using all features and
without applying the TS feature selection. The best result to
discriminate between malignant and benign cancer was
related to using linear regression. As can be seen, all the
applied classifiers for the BIDMC-MGH dataset did not
exceed 83% in classification performance.

Table 3 lists the five metrics used for all classification
techniques. As can be seen from Table 3, the AdaBoost
presents the best models regarding accuracy, with an AUC
score equal to 95%. As is known, AUC values provide a more
accurate scoring measure than the other metrics based on
true/false ratio. Figure 3 illustrates the comparison of five
machine-learning algorithms for all the applied metrics.

Table 4 shows the comparison of the proposed machine-
learning classifiers to other models using the same database.
Performance evaluation is given by AUC ratio. The derived
results show performance superiority of the AdaBoost
classifier when compared to the models proposed in [5, 34].
Figure 4 shows the receiver-operating characteristic curves
of the applied machine-learning algorithms in this experi-
ment. The findings prove that Tabu feature selection can
improve the accuracy of the applied classifiers. The feature
selection process has an impact on most of the applied
classifiers method. Figure 5 shows the effect of Tabu feature
selection on the classifier accuracy. The TS technique re-
duces the number of features from 392 to 25. As a result, the
obtained data become more understandable and easier to
study.

3.2. WDBC Dataset. The proposed method was applied to
the WDBC dataset. The effect of Tabu feature selection on

Initial solution

Neighborhood search 

Update solution Shake the best solution

Elite reduct inspiration

Update solution

Termination? Shaking? Diversification?

Generate a diverse solution

Yes

No NoNo

Yes Yes

Figure 2: Feature selection strategy.
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accuracy is again analyzed in this section. The derived result
will be compared to a list of machine-learning classifiers
included in the review of the first section. The performance
evaluation is measured by the accuracy metric for the
comparison analysis because the methods presented in
Table 1 used this evaluation criterion.

Table 2: Classifier results on BIDMC-MGH without Tabu feature selection.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) AUC (%)
KNN 72.54 75 73 73 74
GNB 68.62 70 69 69 69
LR 82.35 83 82 83 83
ET 72.54 72 73 72 69
AB 78.43 79 78 79 77

Table 3: Classifier results on BIDMC-MGH with Tabu feature selection.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) AUC (%)
KNN 74.50 79 75 74 76
GNB 78 79 76 77 78
LR 82.35 82 82 82 82
ET 90.19 91 90 90 89
AB 96.07 96 96 96 95

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

k-Nearest neighbor classifier ROC
(area = 0.76)
AdaBoost classifier ROC
(area = 0.95)
Gaussian NB ROC
(area = 0.78)

Logistic regression ROC
(area = 0.82)
Extremely randomized tree classifier
ROC (area = 0.88)

Figure 3: Analyzing the obtained results via different classifiers on BIDMC-MGH.

Table 4: Comparison of proposed method and other methods on
BIDMC-MGH.

Model AUC (%)
L1-regularized LR [5] 85.8
L1-regularized LR with active feature [5] 89.7
LR with early stopping and active features [34] 88.4
CAFE model [34] 91.8
Proposed model 95

KNN GNB LR ET AB

Accuracy
Precision
Sensitivity

F1 score
AUC

Figure 4: The ROC curve of the applied machine-learning
algorithms.
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In this experiment, the proposed classifiers were first
applied to the WDBC dataset with all 32 features and then
applied to the obtained TS-based features.

Table 5 illustrates the performance of the used classifiers
before applying the TS method for feature selection, whereas
Table 6 presents the evaluations performance of the ma-
chine-learning classifiers with Tabu features.

Figure 6 presents the effect of feature selection on the
accuracy evaluation of the used classifiers. Table 7 shows the
comparison of the proposed method with other methods in
the literature. When we kept accuracy as the only criterion for
evaluating performance, KNN was the best classifier model
for classification of WDBC, whereas the linear regression
method was the best classifier using the AUC metric.

4. Conclusions

Throughout this work, we developed an automated ma-
chine-learning technique for breast cancer diagnosis. The
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Figure 5: The effect of feature selection on accuracy on BIDMC-MGH.
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Figure 6: Effect of feature selection on accuracy classifiers on
WDBC.

Table 5: Classifier results on WDBC without Tabu feature selection.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) AUC (%)
KNN 97.07 97 97 97 97
GNB 92.98 93 93 93 93
LR 96.49 97 96 97 97
ET 95.32 96 95 95 96
AB 95.90 96 96 96 96

Table 6: Classifier results on WDBC with Tabu feature selection.

Model Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) AUC (%)
KNN 98.24 98 98 98 97
GNB 95.32 95 95 95 95
LR 98 99 99 99 98
ET 97 97 97 97 97
AB 97.66 98 98 98 97

Table 7: Comparison of proposed method and other methods on
WDBC.

Model Accuracy (%)
NN [22] 96.47
KNN [19] 97.51
LR [29] 92
NB [23] 97.36
NB [26] 82
The proposed model 98.24

8 BioMed Research International



proposed method was based on TS for the feature selection
process, and five machine-learning algorithms were
implemented to discriminate between malignant and benign
cancer. The metrics for diagnosis of the BIDMC-MGH and
WDBC datasets were evaluated using five evaluation criteria.
Although the accuracy was used to evaluate the performance
of the implemented models for breast cancer diagnosis, the
AUC value along with the sensitivity, precision, and F1-
score can in turn examine the evaluation process. In many
cases, the derived conclusions based on accuracy metrics
were totally different to those when using the AUC measure.
We have shown via WDBC experiment comparisons that, in
terms of AUC, KNN is the best classifier. However, this
conclusion is not correct when considering accuracy.
Moreover, the proposed classifiers based on the TS method
demonstrate performance superiority over the other models.
Future work includes extending the proposed algorithm for
breast cancer to find the grade of malignant diagnosis and to
apply the statistical methods to others pathology fields.
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