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Abstract. The relationship between cancer and heart failure 
has been extensively studied in the last decade. These studies 
have focused on describing heart injury caused by certain 
cancer treatments, including radiotherapy, chemotherapy 
and targeted therapy. Previous studies have demonstrated 
a higher incidence of cancer in patients with heart failure. 
Heart failure enhances an over‑activation of the sympathetic 
nervous system and the renin‑angiotensin‑aldosterone system, 
and subsequently promotes cancer development. Other studies 
have found that heart failure and cancer both have a common 
pathological origin, flanked by chronic inflammation in 
certain organs. The present review aims to summarize and 
describe the recent discoveries, suggested mechanisms and 
relationships between heart failure and cancer. The current 
review provides more ideas on clinical prevention strategies 
according to the pathological mechanism involved.
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1. Introduction

Heart failure and cancer are two major diseases that affect 
human health, and they represent most causes of death and 
disability in humans (1,2), The incidence of heart failure 
and cancer in oldindividualshas increased quickly in the 

world (3,4). In previous studies, epidemiologists have revealed 
that cancer treatment makes patients more likely to suffer from 
heart failure; this cardio‑oncology research focused on the 
prevention and treatment of cardiac damage caused by cancer 
treatment. Also, the cardiac damage caused by cancer treat‑
ment and treatment of cancer patients with heart disease are 
discussed in the present review (Table I) (3,5‑12). A number 
of studies have suggested that patients with heart failure are 
more likely to have cancer (Table II) (13‑25); however, the 
mechanisms and relationships between heart failure and 
cancer remain unclear. Certain studies have even confirmed 
the presence of a precancerous lesion before carcinogenesis 
in heart failure (26,27), and suggested that both heart failure 
and cancer are chronic low‑level inflammatory diseases (26). 
The pathogenesis of heart failure caused by cancer treatment 
and the mechanism of cancer occurrence in patients with heart 
failure is currently unclear. The present review outlines the 
relationship between heart failure and cancer, and provides 
clinical strategies towards prevention according to the patho‑
logical mechanism.

2. Mechanism of heart failure in patients with cancer

Cancer has a high risk of associated cardiac toxicity, and treat‑
ments such as radiation, chemotherapy or immunosuppressive 
therapy can also severely affect the heart. At present, the 
mechanisms behind cardiac toxicity and treatment‑associated 
effects are described in Fig. 1 and the following text (28,29).

Cardiotoxicity of chemotherapy and radiotherapy. 
Anthracyclines are commonly used as chemotherapeutic drugs 
for solid and hematological cancer types. Anthracyclines 
produce a large number of reactive oxygen free radicals, which 
consequently cause myocardial injuries (30). Anthracycline 
effects induce acute or chronic cardiotoxicity depending on 
the dosage of the drug, ranging from 5% (cumulative dose of 
400 mg/m2) to 26% (cumulative dose of 550 mg/m2) cardio‑
toxicity (5,9). However, a study has reported that patients with 
hematological diseases treated with low doses of anthracy‑
clines still have cardiac malfunction (31). This class of drug 
has the advantage that after its injection, it is intercalated 
into the DNA and blocks the activity of topoisomerase 2, 
which subsequently inhibits the proliferation of cancerous 
cells (32). It has been demonstrated that cardiac topoisomerase 
is a key mediator of doxorubicin‑induced cardiotoxicity, 
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which may reduce the efficacy of treatment (33,34). In fact, 
doxorubicin induces apoptosis and DNA damage in a topoi‑
somerase‑dependent manner; it also ultimately affects 
oxidative phosphorylation and mitochondrial biogenesis (34). 
Dexrazoxane, a topoisomerase inhibitor, is currently used 
as an effective drug for preventing and treating heart injury 
caused by radiotherapy and chemotherapy (35,36). Other 
studies previously revealed that angiotensin‑converting 
enzyme inhibitors (ACEIs) prevented heart injury, and that, 
phosphoinositide 3‑kinase γ removed damaged mitochondria 
in a heart failure model induced by Adriamycin, suggesting 
possible treatments to prevent anthracycline‑induced cardio‑
toxicity (37,38). Radiotherapy is the most common treatment 
for breast cancer. Usually, patients who have received total 
radiation exposure of >30 Gy, with daily radiation exposure 
of >2 Gy, have radiation exposure to the left or front of the 
chest; without radiation protection, the heart can easily 
manifest symptoms of cardiac damage, including left main 
coronary disease and pericarditis (39,40). One study revealed 
that radiation therapy can directly cause myocardial damage 
through reactive oxygen species (ROS)‑induced activation of 
Ca2+/calmodulin‑dependent protein kinase II (41). Radiation 
therapy can also cause vascular endothelial cell damage, 
which may contribute to coronary heart disease (6).

Targeted anticancer drug treatment causes heart failure. 
Trastuzumab, a monoclonal antibody against HER2, is an 
effective first‑line drug for breast cancer (7). By binding to 
HER2, the trastuzumab molecule blocks the binding of 
human epidermal growth factor to HER2, thereby inhibiting 
the growth of cancerous cells (7). The cardiotoxicity of 
trastuzumab mostly results from symptomatic heart failure 
or subclinical left ventricular dysfunction (42). However, the 
effect of trastuzumab on the heart is reversible (43) through 
the activities of vascular endothelial growth factor (VEGF), 
which is an important regulator of angiogenesis (44). When 
cancer metastasizes, VEGF promotes neovascularization to 
provide nutrition to the cancer (44). The VEGF gene family 
consists of five members, which can activate downstream 
signaling pathways after binding to the corresponding 
VEGF receptor (VEGFR) (44,45); this phenomenon occurs 
by blocking the VEGF signaling pathway and includes 
the use of anti‑VEGF/VEGFR monoclonal antibodies and 
VEGFR‑tyrosine kinase inhibitor (TKIs). Drugs targeting 
VEGF signaling, including humanized anti‑VEGF mono‑
clonal antibody, humanized bevacizumab, TKIs and sorafenib, 
have certain cardiovascular side effects such as hypertension, 
thromboembolism and cardiomyopathy (44,46). It has been 
reported that the administration of bevacizumab combined 
with anthracyclines increases the incidence of heart failure 
from 4 to 14% (47). Meanwhile, VEGF can increase the release 
of nitric oxide, facilitate prostacyclin synthesis and decrease 
the expression of pro‑inflammatory genes such as cyclo‑
oxygenase‑2 and E‑selectin. This suggests that anti‑VEGF 
antibodies might cause hypertension and thromboembolic 
diseases (48,49). Certain studies have demonstrated that 
inhibitors of VEGF can damage endothelial cells and increase 
their microparticle production, while the microparticles 
can stimulate endothelial cells to generate certain reactions 
capable of causing further damage to the endothelial cells; 

among those reactions, massive production of endothelin‑1, 
excessive oxidative stress and inflammatory activation are 
the most commonly observed (46,50‑52). In order to improve 
the safety of TKI drugs, the need for further studies and an 
improved understanding of the mechanism of cardiac injury 
appears crucial. Finally, cardiotoxicity is also related to protea‑
some inhibitors, which are useful for the treatment of multiple 
myeloma and other hematological malignancies. According to 
a meta‑analysis, the second‑generation proteasome inhibitor 
carfilzomib was associated with higher cardiotoxicity, with 
an 18% incidence of cardiovascular adverse events (53,54). 
Furthermore, in pigs, inhibition of the ubiquitin‑proteasome 
system of cardiomyocytes led to decreased cardiac function 
and the generation of possible cardiac damage (55).

The human ether‑à‑go‑go‑related (HERG) gene belongs 
to the voltage‑activated outwardly‑rectifying EAG family 
of K+ channels and is expressed in multiple tissue types, 
including cardiac, neural and smooth muscle tissues. HERG 
loss of function leads to long QT syndrome (56) and has 
been demonstrated to contribute to the occurrence of cancer. 
Furthermore, transfection of HERG can induce the malignant 
transformation of murine fibroblasts, while HERG blocker 
(dofetilide) can reverse this process (57). In previous, HERG 
channel antagonists have emerged as new target drugs for 
cancer treatment. However, the cardiotoxicity of HERG 
antagonists remains the major problem for this method of 
cancer treatment. HERG antagonists block the HERG channel, 
inhibit the proliferation and migration of cancerous cells, and 
inhibit the potassium channel of myocardial cells, resulting 
in severe arrhythmia (58,59). The most common arrhythmias 
are long QT syndrome and ventricular tachycardia; therefore, 
designing a drug that can be administered safely at a reason‑
able dosage is emerging as the main preventive strategy for 
HERG antagonist‑related toxicity (60).

Cancer itself can cause heart failure. Cancer can cause 
cardiomyopathy, light chain amyloidosis and carcinoid heart 
disease. Amyloidosis is a disease that affects multiple organs, 
including the myocardium and heart valves in restrictive 
cardiomyopathy (61,62). Heart failure caused by light‑chain 
amyloidosis is severe and might be related to the direct 
damage of light‑chain amyloidosis in myocardial cells (8). 
Studies have also shown that oxidative stress may cause 
damage in myocardial cells (63,64). Currently, the treatment 
of events caused by cardiac light‑chain amyloidosis is limited 
to the treatment of heart failure and related malignant cancer 
types, and there is no available treatment for light chain 
protein deposition (61). Carcinoid heart disease is caused 
by the release of vasoactive mediators, such as serotonin, 
bradykinin and histamine. Neuroendocrine tumors (NETs) are 
a rare type of cancer found in the gastrointestinal or respira‑
tory tracts. Mediators released by NETs are inactivated in the 
liver and pulmonary blood vessels; therefore, carcinoid heart 
disease also occurs in the liver with cancer metastases in 
the stomach and intestines, which mainly damages the right 
ventricle, with bronchial carcinoids as an outcome (65,66). 
Carcinoid heart diseases are characterized by the formation 
of fibrotic plaques in the myocardium, which eventually leads 
to right‑sided heart failure. In addition, fibrotic remodeling of 
the tricuspid valve results in regurgitation by the valve, leading 
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to decompensation of the right ventricle. Medical treatment 
of carcinoid syndrome is limited to somatostatin analogs, 
but this treatment is not effective for the heart muscle itself 
or valvular disease (67). Clinically, although amyloidosis and 
carcinoid heart disease are the only forms of heart failure 
caused by cancer, it has been demonstrated in other studies 
that certain cancer types may affect cardiac function by 
releasing cardiac toxic cancer‑related metabolites (68,69). In 
rats, this mutation stimulates the accumulation and release of 
D‑2‑hydroxyglutarate, which impairs Krebs cycle activity in 
the heart and inhibits contractile function (70).

3. Mechanism of cancer in patients with heart failure

In the last decade, epidemiology studies have reported a high 
incidence of cancer in patients with heart failure (71,72). However, 
these studies only indicate the relationship between cancer and 
heart failure; meanwhile, its related mechanism is still unclear. 
Possible mechanisms that interfere in such relationships (73) are 
shown in Fig. 1 and described in the following text.

Hypothesis from circulation factors. As an endocrine organ, 
during heart failure, the heart can secrete a number of circu‑
lating factors, including B‑type natriuretic peptide, which 
can be used for the diagnosis/risk stratification and prognosis 
of heart failure (1,74). However, various cancer‑generated 
circulating factors influence surrounding organs (75,76). In 

heart failure combined with cancer, increased secretion of 
important factors, including tumor necrosis factor, interleukin 
(IL)‑6, IL‑1 and VEGF, occurs. Numerous studies have shown 
that heart failure stimulates cancer growth. For example, 
Meijers et al (27) demonstrated that heart failure enhanced 
cancer growth in adenomatous polyposis coli mice. Compared 
with that in sham‑operated mice, the number and size of the 
tumors in mice with heart failure increased by three‑fold. The 
occurrence and development of cancer is related to cardiac 
remodeling markers such as left ventricular ejection fraction 
(LVEF) and myocardial fibrosis. In order to further verify 
these findings, Meijers et al (27) established a hemodynamic 
injury‑free model and found that heart failure accelerated 
cancer growth. This suggested that heart failure stimulating 
cancer growth is not related to the myocardial infarction 
model, while some circulating factors secreted by the heart 
itself during heart failure may stimulate cancer growth (27). 
Certain proteomics studies discovered that several circulating 
protein factors were secreted into the blood during the occur‑
rence of heart failure (77,78); those protein factors might 
have various effects on colon tissue in vitro. Among them, 
α‑1‑antichymotrypsin (SerpinA3) promotes cancer growth by 
phosphorylating Akt and ribosomal protein s6 in vitro (27). A 
community cohort study with a total of 8,592 subjects showed 
that over a follow‑up time of 12 years, 1,132 subjects (13.1%) 
were diagnosed with cancer, and among these, 132 (11.7%) 
were diagnosed with colorectal cancer (27). The N‑terminal 

Table I. High risk of heart failure observed in different cancers and certain cancer treatments that can damage the heart.

  Anticancer   
First author, year Cancer therapy/drugs Target Heart failure (Refs.)

Armenian et al, 2016 Multiple myeloma,  A variety of A variety of Compared with healthy (3)
 lung cancer,  anticancer anticancer individuals, the
 non‑Hodgkin's therapies therapies incidence of heart
 lymphoma, breast   failure in patients
 cancer   with cancer is higher
Swain et al, 2003 Breast cancer and  Doxorubicin Topoisomerase 2 Incidence rate: 26% (5)
 lung cancer
Saiki et al, 2017 Breast cancer  Radiation Coronary artery  Incidence rate: 18% (6)
   endothelial cells
Slamon et al, 2001 Breast cancer  Recombinant  Anti‑HER2 Incidence rate: 27% (7)
  monoclonal
  antibody
Quarta et al, 2014 Immunoglobulin  Different Cardiac Ventricular wall (8)
 amyloid light‑chain therapies amyloidosis thickening
 disease
van Nimwegen et al,  Hodgkin's Anthracyclines DNA Incidence rate: 11% (9)
2015 lymphoma
Laufer‑Perl et al,  Breast cancer Recombinant Anti‑HER2 Incidence rate: 5% (10)
2020  monoclonal
  antibody
Tian et al, 2020 Soft‑tissue sarcoma Doxorubicin Topoisomerase 2 Incidence rate: 4.17% (11)
Degens et al, 2020 Non‑small cell  Radiation Coronary artery Incidence rate: 7.6% (12)
 lung cancer  endothelial cells
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pro‑B‑type natriuretic peptide is an independent risk factor 
for colorectal cancer in patients with heart failure, and the 
risk of cancer increases with increasing concentration of the 
peptide (27,79). Together, these studies indicate that the secre‑
tion of certain biomarkers produced by the heart is not only 
a signal of myocardial injury, but also affects the growth of 
distant cancer, possibly through cardiac exocrine effects. In 
addition, Bertero et al (26) conducted a study focusing on 
underlying mechanisms such as inflammation and neurohor‑
mones, which provided some preliminary evidence that heart 
failure could result from the adaptation of the body's environ‑
ment to the onset or development of cancer.

Neurohormone activation. Activation of the renin‑angio‑
tensin‑aldosterone system (RAAS) is one of the central 
compensatory homeostatic responses in patients with heart 
failure. RAAS activation functions to maintain blood pres‑
sure and cardiac output; however, chronic activation of RAAS 
can have deleterious effects on the heart, kidneys and blood 
vessels (80). In addition to systemic RAAS, most organ systems 
such as that of the heart, blood vessels and kidneys, and even 
cancerous cells, have local RAAS. The RAAS has different 
functions, hormones and receptors depending on its locality (81); 
for example, increased expression of angiotensin II receptor 
type 1 (AT1R) in cancerous cells suggests strong cancer aggres‑
siveness and a poor prognosis (82). The regulation of RAAS 
may also affect the tumor size, although the results are incon‑
sistent: Specifically, the angiotensin II (AngII)/AT1R axis is 
hypothesized to enhance tumor growth, while the AngII/AT2R 
signal serves the opposite role (83,84). RAAS inhibitors such as 
ACEIs or angiotensin II receptor blockers (ARBs) represent the 
cornerstone of heart failure treatment (85).

Oxidative stress. The ROS family is the key element for oxida‑
tive stress in eukaryotic cells. The heart inputs and outputs a 
consistent amount of energy and mainly relies on oxidative 
phosphorylation of mitochondria. ROS serve an important 
role in heart failure and cancer (86,87); however, oxidative 

phosphorylation of mitochondria also serves an important role 
in cancer development (88). Studies have found that dietary 
fiber supplementation has positive effects on heart oxidative 
stress responses (89,90). In addition, glycolysis increases the 
probability of heart failure and glucose oxidation leads to lactic 
acid production. Also, in response to rapid cancer growth, 
pyruvate dehydrogenase (PDH) and PDH kinase (PDK) play a 
major role in mitochondrial oxidative metabolism, which leads 
to increased glycolysis. PDH inhibits glucose oxidation and 
converts pyruvate to acetyl‑CoA (91). PDK can phosphorylate 
and inhibit PDH. During heart failure, PDK is upregulated, 
but PDH is inhibited (91). Similar mechanisms for PDK 
upregulation and PDH inhibition are also present in cancerous 
cells (92). Dichloro‑acetate, a PDK inhibitor, enhances PDH 
activity during heart failure, decreases ischemic damage 
and improves cardiac function; these changes consequently 
decrease the incidence/development of cancer (92).

Inflammation. Inflammation is closely related to heart 
failure. Heart failure increases inflammatory factor secretion, 
which supports the premise that inflammation leads to heart 
failure (93). Increased secretion of inflammatory factors during 
heart failure can cause bone marrow dysfunction. However, 
there is no direct evidence that proinflammatory cytokines 
released by cardiac cells affect cancer cells. Furthermore, 
Meijers et al (27) found that certain inflammatory factors, 
such as high‑sensitivity C‑reactive protein and central adreno‑
medullin precursors, are predictors or warning signs of cancers. 
The IL‑1 inhibitor canakinumab decreased major cardiovas‑
cular events by 25% [hazard ratio (HR), 0.75; 95% confidence 
interval (CI), 0.66‑0.85] in patients with myocardial infarc‑
tion (94). Canakinumab also significantly decreased the 
incidence and mortality rate of lung cancer [highest dose 
(300 mg): HR, 0.33; 95% CI, 0.18‑0.59; P<0.0001; and HR, 
0.23; 95% CI, 0.10‑0.54; P=0.0002, respectively] (95).

Immune system. Immune system dysfunction is closely 
related to the occurrence and development of cancer and 

Table II. Patients with heart failure have a high risk of developing cancer.

  Non‑cardiovascular deaths
First author, year Follow‑up, years attributable to cancer, % (Refs.)

Kjekshus et al, 2007 2.7 19.9 (13)
Linde et al, 2008 1 16.7 (14)
Moss et al, 2009 4 31.1 (15)
Ruschitzka et al, 2013 1.6 21.7 (16)
McMurray et al, 2014 2.3 27.8 (17)
Doval et al, 1994 1.1 25.0 (18)
Bigger, 1997 2.7 37.1 (19)
Kadish et al, 2004 2.4 66.7 (20)
Granger et al, 2003 2.8 47.8 (21)
McMurray et al, 2003 3.4 38.6 (22)
Roy et al, 2008 3.1 38.6 (23)
Tavazzi et al, 2008 3.9 44.5 (24)
Velazquez et al, 2011 4.7 31.5 (25)
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heart failure (96,97). In the early stage of body damage, a 
large number of immune cells are beneficial; such cells are 
able to decrease and repair the area damaged by injury, 
but chronic immune activation will generate severe side 
effects in the body, such as severe or even fatal allergic 
reactions (98). A complete overview of immune system 
dysfunction and heart failure has recently been published by 
the Working Group on Myocardial Function of the European 
Society of Cardiology (99). It is important to note that the 
pathogenesis of heart failure is particular. As well as the 
differing pathophysiological mechanisms of heart disease, 
the immune activation methods of heart disease also vary. 
For example, during the first stage of myocardial infarction (a 
few hours), neutrophils invade the heart and start the inflam‑
matory response immediately; furthermore, the infiltration 
of macrophages breaks down necrotic tissue and promotes 
scar formation. In the next stage of remodeling, the inflam‑
matory response is weakened; the secreted cytokines will 
regulate the invasion of inflammatory cells after myocardial 
infarction (100‑102). Heart failure with a normal ejection 
fraction is mostly due to obesity, hypertension, diabetes and 
metabolic syndrome (103). Recent studies have revealed that 
the immune system may also play a certain role in heart 
failure with a normal ejection system, in this case, cardiac 
hypertrophy and fibrosis often occur. In heart failure with 
ejection fraction retention, macrophages are involved in 
the process of cardiomyocyte apoptosis and cardiomyocyte 
fibrosis, but a decrease in macrophages can reduce myocar‑
dial hypertrophy. Immune system dysfunction is related to 
the development of cancer, as cancers can spread to different 
organs by weakening the immune system (104).

Cardiovascular drugs may cause cancer. To date, the impact 
of cardiovascular drugs on cancer is still unclear. A number 
ofmeta‑analyses on all types of antihypertensive drugs showed 
that the use of ARB, ACEIs, β‑receptor blockers, diuretics 
and calcium channel blockers has relatively increased the 
incidence of cancer and the risk associated with cancer death 
by 5.0‑10.0% (105,106). However, some meta‑analyses have 
confirmed that antihypertensive drugs are not associated 
with carcinogenesis and development (107,108). Studies on 
patients with type 2 diabetes showed a negative correlation 
between losartan and cancer risk; however, overall, candes‑
artan and telmisartan resulted in an increased rate of cancer 
incidence (109). Another drug that affects cancer is aspirin. 
A study has found that the use of a low dose of aspirin results 
in the acceleration of the progression of cancer in older indi‑
viduals (≥70 years old), potentially because aspirin inhibits 
antitumor inflammatory or immune responses, which regulate 
later stage growth and metastasis (110).

Gene‑related hypothesis. Myocardial fibrosis leads to cardiac 
remodeling, promoting heart failure. It has been indicated 
that the delta like non‑canonical notch ligand 1 (DLK1) gene 
is a key factor during the differentiation of fibroblasts into 
myoblasts (111). The knockdown of the DLK1 gene leads to 
the downregulation of microRNA‑370 (miR‑370), activates 
the TGF‑β/Smad3 pathway and promotes myocardial cell 
fibrosis (112). Excessive deposition of extracellular matrix infil‑
trated by myofibroblasts can cause cardiac dysfunction (112). 
However, DLK1 is a type of imprinted gene that participates 
in the regulation of the differentiation of a variety of cells; its 
expression is increased in a number of cancer types, such as liver, 

Figure 1. Mechanisms underlying the bidirectional relationship between heart failure and cancer. Myocardial and endothelial damage in coronary artery 
cause heart failure, which releases different inflammatory factors, activates RAAS and results in an imbalanced immune system. These pathophysiological 
changes lead to or promote cancer development. In turn, different treatments for cancer cause myocardial and endothelial damage in the coronary artery. 
AT1‑R, angiotensin II receptor type 1; AngII, angiotensin II; PDH, pyruvate dehydrogenase; PDK, PDH kinase; ROS, reactive oxygen species; ARB, 
angiotensin II receptor blockers; DLK1, delta like non‑canonical notch ligand 1; MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; HERG, 
human ether‑à‑go‑go‑related. 
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pancreatic and colorectal cancer. Therefore, this gene plays an 
important role in carcinogenesis and cancer development (113). 
Sialyl‑Lewis X (sLex) is the smallest recognition motif of the 
P‑selectin ligand, which plays an important role in the adhe‑
sion and migration of cancerous cells. A study has found that 
miR‑370 can specifically inhibit sLex expression and inhibit cell 
adhesion in colo‑320 cells (114), justifying the fact that, inhibi‑
tion of the DLK1 gene and downregulation of miR‑370 lead to 
myocardial fibrosis/heart failure and cancer metastasis. Thus, 
some common targets might exist for heart failure and cancer. 
The metastasis‑associated lung adenocarcinoma transcript 1 
(MALAT1) gene has previously been shown to be involved in the 
proliferation, metastasis and function of cancerous cells and the 
reproduction of endothelial and smooth muscle cells (115,116). 
Studies have found that MALAT1 is the key regulatory factor 
of mouse atherosclerosis, where its knockout can significantly 
increase coronary plaques and affected area (117). Also, a 
decrease in MALAT1 expression in patients with coronary 
plaques is associated with a poor prognosis (including heart 
failure, arrhythmia and sudden death) (118). At present, there is 
no study to determine which genes are directly related to heart 
failure and cancer, thus identification and characterization of 
genes involved in both cancer and heart failure is required to 
improve cancer therapeutic methods in the future.

4. Prevention strategies

Strategies for preventing heart failure in patients with cancer. 
From the perspective of pathogenesis, the main cause of heart 
failure in patients with cancer appears to be cardiac toxicity 
caused by cancer‑related treatment. At present, the protective 
measures for such injury mainly include two schemes: The use 
of cardioprotective agents and standardized rehabilitation exer‑
cise (Fig. 2). The cardioprotective agents mainly include the use 
of traditional drugs, such as ACEI, to inhibit myocardial remod‑
eling and topoisomerase inhibitors. In a recent meta‑analysis, 
15 patients within randomized controlled trials were selected 
to analyze the protective effect of myocardial remodeling drugs 
on preventing cardiac toxicity induced by cancer treatment. The 
study found that aldosterone antagonists, ACEIs, statins and 
β‑blockers could substantially improve left ventricular systolic 
function, while ARBs displayed no cardioprotective effect and 
failed to improve the left ventricular systolic function (measured 
as LVEF) (119). However, another study proposed that ARBs 
are effective in the prevention of heart failure. The study found 
that patients administered acetyl‑based chemotherapy had a 
moderate yet significant benefit in terms of LVEF following 
use of β‑blockers or ACEIs/ARBs. The β‑blocker analysis 
included 769 patients with cancer, and the ACEI/ARB analysis 
included a total of 581 patients with cancer. The mean LVEF 
difference between ACEIs and ARBs groups was 4.71% (120). 
Topoisomerase is a new target to prevent cancer treatment‑related 
cardiotoxicity, and dexamethasone and other topoisomerase 
inhibitors inhibit topoisomerase II (121). It has been reported 
that dapagliflozin protects against doxorubicin‑induced cardio‑
toxicity in patients with breast cancer and diabetes. Moreover, 
dapagliflozin inhibits doxorubicin‑induced myocardial fibrosis 
and greatly improves cardiac function by inhibiting the apoptosis 
of cardiomyocytes and the generation of ROS (122). Therefore, 
topoisomerase inhibitors and dapagliflozin can protect the heart 

from the toxicity of chemotherapy drugs by inhibiting myocar‑
dial remodeling.

Exercise therapy is a new treatment for cancer‑related 
heart failure. Cardiorespiratory fitness (CRF) is closely 
related to the prognosis of patients with heart failure. CRF 
decreases with age, and short‑term (12‑ to 26‑week) anticancer 
therapy can reduce CRF by 26% (123). The maximum oxygen 
consumption rate represents the extent of CRF, which can be 
improved by exercise therapy in patients with cancer‑related 
heart failure. MacVicar et al (124) formulated an intermittent 
aerobic exercise prescription for 45 patients with breast cancer 
who received different chemotherapy regimens. This treat‑
ment recommended exercise three times a week at 60‑80% 
of the normal maximum heart rate, for 10 weeks. The VO2 
peak average of patients receiving this exercise prescription 
was increased by 40% compared with that of the non‑exercise 
group. In another randomized controlled study, 20 patients 
with advanced breast cancer were randomly divided into two 
groups: The chemotherapy group and the chemotherapy + 
aerobic exercise group. After 12 weeks, the VO2 peak of the 
chemotherapy group decreased by 9%, while the VO2 peak of 
the chemotherapy + exercise group increased by 13% (125).

In addition to findings in breast cancer studies, another study 
found that exercise therapy was also effective for prostate cancer 
and Hodgkin's lymphoma, among others (126). Non‑linear 
aerobic exercise could maintain the VO2 peak in patients with 
prostate cancer, while it could increase the VO2 peak in patients 
with Hodgkin's lymphoma from 5 to 17% (126). However, the 
impact of exercise therapy on the prognosis of cancer‑related 
heart failure patients is controversial. In the follow‑up period of 
35 months, one study revealed that the all‑cause mortality and 
readmission rate increased in the exercise group compared with 
that in the non‑exercise group, and the VO2 peak showed no 
significant difference between the two groups (127). However, 
this result needs to be further confirmed due to the lack of a 
long‑term exercise therapy group as a control. Other studies 
have previously shown that exercise therapy can improve 
the VO2 peak and the short‑term prognosis in patients with 

Figure 2. Prevention strategy for heart failure and tumors. Both 
cardioprotective agents and exercise therapy reduce heart failure and cancer 
development. The targeting of aging‑related protein may be a strategy for 
heart failure and cancer in the future. ACEI, angiotensin‑converting enzyme 
inhibitor. 
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cancer‑related heart failure (128,129). Therefore, non‑linear 
aerobic exercise is the recommended exercise for patients with 
cancer‑related heart failure. It was advised that the patients keep 
non‑linear aerobic exercise three times a week for 10‑12 weeks 
and the exercise intensity was 60‑85% of the normal maximum 
heart rate (128,129).

Strategies for the prevention of cancer in patients with heart 
failure. There are currently no drugs or treatments that can prevent 
cancer in patients with heart failure. As the mechanism by which 
patients with heart failure are more likely to develop cancer is 
known, the inhibition of excessive inflammation during myocar‑
dial remodeling can be a good asset (Fig. 2). Both heart failure 
and cancer are aging‑related diseases. Rochette et al (130) found 
that the anti‑aging protein humanin (HN), which is a 24‑amino 
acid, endogenous, mitochondrial‑derived peptide, can inhibit 
myocardial remodeling and inflammation. Studies have found 
that HN can protect cardiomyocytes through anti‑oxidative 
stress (131,132); furthermore, Qin et al (133) demonstrated that 
the exogenous injection of HN analogs could inhibit age‑related 
myocardial fibrosis, while HN was able to inhibit cancer metas‑
tasis. In fact, it has been revealed that HN was able to inhibit 
the lung metastasis of mouse melanoma cancer cells (134). 
However, whether HN can prevent cancer in patients with 
chronic heart failure is currently debated. Large‑scale clinical 
randomized controlled trials and animal studies are needed to 
prove its effectiveness in the future.

5. Conclusion

With the increase in anticancer drugs discoveries and 
prescriptions, the incidence of cancer‑related heart disease 
has recently increased. Heart failure affects the development 
of cancer through a variety of mechanisms. Therefore, cancer 
and heart failure are related and interact with each other, 
by sharing some usual risks, such as hypertension, diabetes 
mellitus and obesity, and even pathogenic genes. The patho‑
physiological mechanism of heart failure and cancer remains 
to be explored in depth. Currently, preventive strategies are 
limited to heart failure in patients with cancer. Further clinical 
trials are required to determine how to prevent patients with 
heart failure from suffering from cancer.
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