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Abstract

Background: Constraint-based analysis has become a widely used method to study metabolic networks. While
some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands
of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called
NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of
biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer
linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement.

Results: Here we present an MILP approach for computing minimum subnetworks with the given properties. The
minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the
method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10
times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones.
This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative
pathways.

Conclusions: Applying complex analysis methods to genome-scale metabolic networks is often not possible in
practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We
propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows
computing not only one, but even all minimum subnetworks satisfying the required properties.

Keywords: Constraint-based modeling, Model reduction, Stoichiometric models, Mixed-integer linear programming,
Metabolic networks

Background
In computational systems biology, genome-scale metabolic
network reconstructions are used to build in silicomodels
of cellularmetabolism [1]. To analyze thesemodels, a large
variety of constraint-based methods has been developed
over the years [2].
Typically, the metabolic network is assumed to be in

steady-state, i.e., the production and consumption of the
internal metabolites has to be balanced. This leads to a
flux space of the form C = {v ∈ R

Rxn | Sv = 0, l ≤
v ≤ u}. Here S ∈ R

Met×Rxn denotes the stoichiometric
matrix, given a set of (internal) metabolites Met and a
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set of reactions Rxn. The vectors v ∈ C are called (fea-
sible) flux vectors and can be interpreted as steady-state
flux distributions of the metabolic network. The vectors
l,u ∈ R

Rxn±∞ define lower and upper bounds on the fluxes,
where R±∞ := R ∪ {±∞}. By Irrev ⊆ Rxn we denote
the set of irreversible reactions, which can carry flux in
only one direction, i.e., vi ≥ 0, for all i ∈ Irrev. For sim-
plicity, we assume li ≥ 0, for all i ∈ Irrev. Reactions in
Rev = Rxn \ Irrev are called reversible.
Some constraint-based analysis methods can be applied

to genome-scale network reconstructions with several
thousands of reactions. Others are limited to small or
medium-sized models, like the computation of elemen-
tary flux modes [3] or minimal cut sets [4]. In such
situations, a natural question is whether it is possible to
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reduce the given large network to a meaningful smaller
one of practical size.
In 2015, Erdrich et al. [5] introduced a method called

NetworkReducer, which reduces large metabolic net-
works to smaller subnetworks, while preserving relevant
biological properties of interest. The algorithm in [5] is
divided into two parts: network pruning and network
compressing. In the compressing step, reactions belonging
to the same enzyme subset [6] are lumped together. In the
pruning step removable and non-removable reactions are
identified such that the reduced network consisting of the
non-removable reactions fulfills four requirements, which
can be specified by the user:

1. Set of protected metabolites PMet: all metabolites in
PMet must be retained in the reduced network.

2. Set of protected reactions PRxns: all reactions in PRxns
must be retained in the reduced network.

3. Set F of protected functionalities (or phenotypes) for
the reduced network. We assume that any protected
functionality f ∈ F can be described by a
corresponding system of linear inequalities:Df v ≤ df .

4. Minimum degrees of freedom: dof ≥ dofmin. Here,
the degrees of freedom dof correspond to the
dimension of the null space of the stoichiometric
matrix S, i.e., dof = |Rxn| − rank(S).

The overall goal of NetworkReducer is to find a
smaller subnetwork such that all requirements (1) – (4)
can be satisfied by a suitable flux vector. An example is
given in Fig. 1.
The method of Erdrich et al. [5] searches for a suit-

able subnetwork by iterating over the reactions. In every

iteration, the flux rate through one particular reaction is
set to zero and a linear program (LP) is solved to check
if the remaining reactions still form a feasible subnet-
work. Feasibility means that there exists non-zero flux
vectors satisfying the steady-state condition and the other
requirements. To identify the reaction to be eliminated a
flux variability analysis (FVA) [7] is done and a reaction
with smallest overall flux range is selected. Thus in every
iteration, an LP is solved and an FVA is performed. Each
FVA involves solving up to 2n LPs, where n is the number
of reactions.
An important aspect of the method in [5] is that it

does not necessarily compute a minimum subnetwork
(with respect to the number of active reactions), see
Fig. 2 for an example. The method that we develop here
will always find a feasible subnetwork with a minimum
number of active reactions. A subnetwork satisfying the
requirements (1) – (3) can be obtained by solving only
one mixed-integer linear program (MILP). If this subnet-
work does not fulfill the dof -requirement (4), we exclude
this subnetwork and compute a new subnetwork by solv-
ing the MILP again. This method turns out to be much
faster than the algorithm introduced in [5]. More impor-
tantly, we are guaranteed to obtain a minimum subnet-
work regarding the number of active reactions, which is
not the case for NetworkReducer. However, due to
the minimality condition, our method cannot preserve
flux variability in the same way as NetworkReducer
does.
A second related work is the FASTCORE algorithm of N.

Vlassis et al. [8]. This method is also based on solving sev-
eral LPs but without performing an FVA in between. Thus

Fig. 1 Solid arcs correspond to active reactions, dotted arcs to inactive reactions. In a, the flux vector satisfies the functionality of carrying flux
through the biomass reaction while having oxygen uptake. In b, the functionality is carrying flux through the biomass reaction while there is no
oxygen uptake. Combining the two flux vectors leads to the network in c, which contains 7 active reactions. A minimum subnetwork enabling both
functionalities with only 6 reactions is given in (d). The corresponding binary variables for 1d would have the following values:
a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 0, a7 = 0, a8 = 1, where ai corresponds to reaction ri
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Fig. 2 If in the first step of the pruning procedure the flux through reaction 1 is set to zero, reaction 1 is removable and reactions 2 and 3 are
non-removable. If in the first step reaction 2 or 3 is set to zero, both of them would be removable and reaction 1 would be non-removable. The
resulting subnetwork is then smaller than the first one

it is a very fast approach. However, the resulting subnet-
works are not minimum and only protected reactions can
be specified, but no protectedmetabolites, functionalities,
or degrees of freedom.
An early approach for network reduction was intro-

duced by Burgard et al. [9] already in 2001 and later
improved in 2014 by Jonnalagadda and Srinivasan [10].
This method also allows computing minimum subnet-
works using an MILP approach. However, only one func-
tionality can be formulated and not several ones like in
NetworkReducer. Other related work can be found in
[11–18].
Altogether, our method can be seen as a network

reduction algorithm that merges features from
NetworkReducer and the method in [9], such that we
can specify biological requirements like in [5] and com-
pute all minimum subnetworks using an MILP, similar
to [9].
The organization of this paper is as follows. In the

Methods section we develop the underlying MILP meth-
ods. We start with the basic algorithm and then describe
several improvements. In the Results and discussion
section we compare our MILP approach with the existing
methods NetworkReducer and FASTCORE. Further-
more, we apply it to a collection of genome-scale network
reconstructions and discuss the results. The last section is
Conclusion.
A software tool implementing the algorithms described

in this paper is available at https://sourceforge.net/
projects/minimalnetwork/.

Methods
Basic MILP to compute a minimum subnetwork
We always assume that our network is in steady-state, i.e.,
Sv = 0, with bounds on the reaction rates l ≤ v ≤ u.
Each functionality f ∈ F is described by a system of
linear inequalities:Df v ≤ df . For example, we may require
that the biomass reaction has to carry at least 99% of its
maximal rate: vBio ≥ 0.99 · max(vBio).

We will use binary variables ai ∈ {0, 1} to indicate
whether or not reaction i carries flux in the subnetwork.
Thus we need the relationship ai = 0 if and only if vi = 0.
For an irreversible reaction i ∈ Irrev, this can be achieved
using constraints of the form

δ ai ≤ vi ≤ Mai. (1)

For reversible reactions, we use another binary variable
āi and the constraints

δ ai − M āi ≤ vi ≤ Mai − δ āi, ai + āi ≤ 1. (2)

This type of constraints is called a big M constraint,
where M � 0 is a sufficiently large constant, e.g. some
upper bound on the flux rates. With δ > 0 we denote
a threshold indicating above which flux rate a reaction
is considered to be active. Practically δ will be chosen
between 1e−06 and 1e−04.
To force protected irreversible reactions to carry flux,

we use the constraints ai = 1 for all i ∈ PIrr = PRxns ∩
Irrev. Enforcing flux through a protected reversible reac-
tion can be realized in a similar way with the constraints
ai + āi = 1, for all i ∈ PRev = PRxns ∩ Rev.
For any protected metabolite m ∈ PMet, let Rxnm be

the set of reactions involving m. By Revm we denote the
set of reversible reactions in Rxnm. If Rxnm contains at
least one protected reaction r, metabolite m will be pro-
tected by reaction r. However, if Rxnm ∩PRxn = ∅, further
constraints are needed to protectm:

∑

i∈Rxnm
ai +

∑

i∈Revm
āi ≥ 1, ∀m ∈ pMet

0 , (3)

where pMet
0 = {

m ∈ PMet | Rxnm ∩ PRxns = ∅}
.

In [5], an additional requirement is to specify a mini-
mum number of active reactions. Here we do not include
this restriction for the following reasons. First, we will
search for the minimum number of active reactions such
that all the other requirements are fulfilled. Second, in [5]
theminimum number of active reactions is always set to 1.

https://sourceforge.net/projects/minimalnetwork/
https://sourceforge.net/projects/minimalnetwork/
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Since there exist reactions which are forced to carry flux,
this constraint is redundant.
To find a subnetwork which contains the minimum

number of active reactions, we minimize over the sum of
the binary variables ai, which indicate whether a reaction
carries flux. The resulting MILP is the following:

(MinNW − 0) min
∑

i∈Rxn
ai +

∑

k∈Rev
āk

Sv = 0, l ≤ v ≤ u
Df v ≤ df ∀f ∈ F
δ ai ≤ vi ≤ Mai ∀i ∈ Irrev
δ ai − M āi ≤ vi ≤ Mai − δ āi ∀i ∈ Rev
ai + āi ≤ 1 ∀i ∈ Rev

ai = 1, ak + āk = 1 ∀i ∈ PIrr, ∀k ∈ PRev
∑

i∈Rxnm
ai +

∑

i∈Revm
āi ≥ 1, ∀m ∈ pMet

0

vi ∈ R, ai ∈ {0, 1} ∀i ∈ Rxn
āk ∈ {0, 1} ∀k ∈ Rev

Conflicting functionalities
In the case study considered in [5], the resulting subnet-
work should keep two desired functionalities: under both
aerobic and anaerobic conditions at least 99.9% of the
maximal growth rate should be maintained. These two
requirements cannot be realized with the same flux vector
v because they imply two opposite states of the reaction
ro2 that transports O2 into the network. We would need a
vector v with vo2 ≥ δ and vo2 = 0 at the same time, which
is not possible.
MinNW-0 computes one feasible flux vector v of the

network. But, to get a subnetwork which fulfills the two
functionalities we need one flux vector which fulfills the
aerobic condition and another one for the anaerobic con-
dition, see Fig. 1. To realize this with a single MILP we
have tomodify MinNW-0. First, we search for a flux vector
v0 which contains the protected metabolites and pro-
tected reactions. Additionally, for each functionality j ∈ F
we search for a flux vector vj satisfying Djvj ≤ dj and
corresponding binary variables. For example, in Fig. 1, we
would have a1 = 1 in case 1a) and a1 = 0 in case 1b). Due
to (1) and (2), this would imply a1 = 1 and a1 = 0 at the
same time, which is not possible. Thus we have to use dif-
ferent binary variables aji for v

j
i. With this, the Eqs. (1) and

(2) become

δ aji ≤ vji ≤ Maji ∀j ∈ {0, . . . , |F |},∀i ∈ Irrev, (4)

δ aji − M āji ≤ vji ≤ Maji − δ āji, ∀j ∈ {0, . . . , |F |},∀i ∈ Rev, (5)

aji + āji ≤ 1 ∀j ∈ {0, . . . , |F |}, ∀i ∈ Rev. (6)

Using the new variables a0i , we reformulate the con-
straints regarding the protected reactions: a0i = 1, for all
i ∈ PIrr and a0i + ā0i = 1, for all i ∈ PRev. Finally, the
constraints regarding the protected metabolites become

∑

i∈Rxnm
a0i +

∑

i∈Revm
ā0i ≥ 1, ∀m ∈ pMet

0 . (7)

To obtain a minimum subnetwork, we have to minimize
the total number of active reactions. Thus, we need binary
variables ai with the property

ai = 0 if and only if aji
= 0 for all j ∈ {0, . . . , |F |}, or equivalently

ai = 1 if and only if aji = 1 for some j ∈ {0, . . . , |F |}.
For irreversible reactions, this can be encoded by the
constraints

ai ≤
|F |∑

j=0
aji ≤ (1 + |F |) · ai, ∀i ∈ Irrev, (8)

and for reversible reactions we get

ai ≤
|F |∑

j=0

(
aji + āji

)
≤ (2 + 2|F |) · ai, ∀i ∈ Rev. (9)

The resulting MILP is the following:

(minNW) min
∑

i∈Rxn
ai

Svj = 0, l ≤ vj ≤ u ∀j ∈ {0, . . . , |F |}
Djvj ≤ dj ∀j ∈ {1, . . . , |F |}
δ aji ≤ vji ≤ Maji ∀j ∈ {0, . . . , |F |},∀i ∈ Irrev

δ aji − M āji ≤ vji ≤ Maji − δ āji ∀j ∈ {0, . . . , |F |},∀i ∈ Rev

aji + āji ≤ 1 ∀j ∈ {0, . . . , |F |},∀i ∈ Rev

a0i = 1, a0k + ā0k = 1 ∀i ∈ PIrr,∀k ∈ PRev
∑

i∈Rxnm
a0i +

∑

i∈Revm
ā0i ≥ 1, ∀m ∈ pMet

0

ai ≤
|F |∑

j=0
aji ≤ (1 + |F |) · ai, ∀i ∈ Irrev

ai ≤
|F |∑

j=0

(
aji + āji

)
≤ (2 + 2|F |) · ai, ∀i ∈ Rev

vji ∈ R, aji, ai ∈ {0, 1}, ∀j ∈ {0, . . . , |F |},∀i ∈ Rxn

ājk ∈ {0, 1} ∀j ∈ {0, . . . , |F |},∀k ∈ Rev

minNW computes a subnetwork with a minimum number
of active reactions while satisfying all the requirements.

Example forminNW
The network in Fig. 1a fulfills the functionality regard-
ing the aerobic condition, while the network in Fig. 1b
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fulfills the anaerobic condition. The combination of the
minimum subnetworks corresponding to each function-
ality does not lead to a minimum subnetwork for both,
see Fig. 1c. The minimum subnetwork for this example is
given in Fig. 1d.

Computing all minimum subnetworks
There are scenarios where we have to compute more than
one subnetwork. For instance, consider the case where
the minimum dof (requirement (4)) is larger than 1. If
the subnetwork computed with minNW does not have the
required dof , we have to compute a different subnetwork.
Furthermore, the computed minimum subnetwork need
not be unique. Thus there may exist different subnetworks
which all fulfill the requirements and have the same num-
ber of active reactions. So we may be interested in finding
all minimum subnetworks. To compute different subnet-
works we can use the MILP minNW in an iterative way.
Whenever a minimum subnetwork is found, we formulate
a constraint which excludes this subnetwork as a feasi-
ble solution and solve the (extended) MILP again. For that
purpose we formulate the following constraints:

∑

i∈Rxn

(
1 − Zk

i

)
ai+

∑

i∈Rxn
Zk
i (1−ai) ≥ 1, k = 1, 2, . . . (10)

where Zk
i = 1 if reaction i carries flux in the subnetwork

which was computed in the k-th step, otherwise Zk
i = 0.

Thus (10) guarantees that at least one inactive reaction
will become active, or at least one active reaction will
become inactive in the new solution.
Solving minNW iteratively and adding the constraints

(10) in each step, we are now able to enumerate all mini-
mum subnetworks.

Reducing the number of binary variables
To further improve efficiency, we will make use of flux
coupling information [19–22]. We first recall some basic
definitions from flux coupling analysis (FCA).
A reaction r ∈ Rxn is called blocked if vr = 0 for all

v ∈ C0 = {
v ∈ R

Rxn | Sv = 0, vi ≥ 0,∀i ∈ Irrev
}
. In a pre-

processing step, blocked reactions will be removed from
the network, which is also done in [5]. Thus we assume
from now on that the network contains only unblocked
reactions.
Given two unblocked reactions r, s ∈ Rxn, we say r is

partially coupled to s, and write r ↔ s, if vr = 0 ⇔
vs = 0, for all v ∈ C0. The relation r ↔ s is reflex-
ive, transitive and symmetric and therefore defines an
equivalence relation on Rxn. This means that the set of
reactions Rxn can be partitioned into equivalence classes
[r]= {s ∈ Rxn | r ↔ s }. It follows Rxn = ⋃

[r]∈Rxn [r],
where Rxn denotes the set of all equivalence classes. An

equivalence class can be represented by any of its ele-
ments. We say that r is a representative of [r] or that [r]
is the coupling class of r. Note that [r]=[s] iff r ↔ s. Bio-
logically, coupling classes can be interpreted as subsets of
reactions that are always active together at steady-state,
similarly to the notion of enzyme subsets in [6].
The main advantage of introducing coupling classes is

that, if one reaction in a class is not carrying flux, no other
reaction in the class does, and vice versa. Therefore, in
every approach where binary variables are used to indi-
cate if a reaction appears or not, it suffices to consider one
reaction from every coupling class instead of considering
all of them. Depending on the number of reactions and
associated coupling classes, this may significantly reduce
the number of required variables.
Based on the equivalence relation r ↔ s, we now use

binary variables corresponding to the coupling classes [ r]
instead of having binary variables for each individual reac-
tion. Thus we can rewrite the algorithm minNW in the
following way:

(minNW)rep min
∑

[r]∈Rxn
|[r]| a[r]

Svj = 0, l ≤ vj ≤ u ∀j ∈ {0, . . . , |F |}
Djvj ≤ dj ∀j ∈ {1, . . . , |F |}
δ aj[r] ≤ vjs ≤ Maj[r] ∀j ∈ {0, . . . , |F |}, [r]∈ Irrev, s ∈[r]
δ aj[r]− M āj[r]≤ vjs≤ Maj[r]−δ āj[r] ∀j ∈{0, . . . , |F |}, [r]∈Rev, s ∈[r]
aj[r] + āj[r] ≤ 1 ∀j ∈ {0, . . . , |F |}, [ r] ∈ Rev

a0[r] = 1, a0[r′] + ā0[r′] = 1 ∀[ r] ∈ PIrrev, [ r′] ∈ PRev
∑

[r]∈Rxnm
a0[r] +

∑

[r]∈Revm
ā0[r] ≥ 1, ∀m ∈ pMet

0

a[r] ≤
|F |∑

j=0
aj[r] ≤ (|F | + 1) · a[r] ∀[ r] ∈ Irrev

a[r] ≤
|F |∑

j=0

(
aj[r] + āj[r]

)
≤ (2 + 2|F |) · a[r] ∀[ r] ∈ Rev

aj[r], a[r] ∈ {0, 1}, vjs ∈ R ∀j ∈ {0, . . . , |F |},∀[r]∈ Rxn, s ∈ Rxn

āj[r′] ∈ {0, 1} ∀j ∈ {0, . . . , |F |},∀[ r′]∈ Rev

Here, |[r] | denotes the cardinality of the coupling class
[r]. Thus, we compute the smallest subnetwork with
respect to the number of active reactions and not with
respect to to the number of active representatives. Irrev
denotes the representatives of the irreversible reactions,
and Rev those of the reversible reactions. Similarly, PIrr
resp. PRev is the set of representatives of protected irre-
versible resp. protected reversible reactions. With pMet

0
we denote the representatives which include a protected
metabolite.
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To exclude previously enumerated subnetworks the
constraints (10) can be adapted in the following way:

∑

[r]∈Rxn

(
1−Zk

[r]

)
a[r]+

∑

[r]∈Rxn
Zk
[r]

(
1−a[r]

) ≥ 1, k = 1, 2, . . . (11)

Using representatives we need only |Rxn| instead of
|Rxn| binary variables. For many genome-wide networks,
this reduces the number of 0-1 variables by about 1/2, see
the examples in Table 1.

Results and discussion
We implemented our MILPs in MATLAB and used CPLEX
[23] as a solver like in [5]. For NetworkReducer resp.
FASTCORE we used the implementation provided by the
authors of [5] resp. [8]. All computations were done on a
desktop machine with two processors Intel(R) Core(TM)
i5-2400S, CPU 2.50GHZ, each 1 thread. For algorithm
minNWrep, we computed the coupling classes for partially
coupled reactions using the software F2C2 [20].

Indicator variables
We implemented two versions of our algorithms. In one
version we used the big M constraints from the original
MILP formulation in the Methods section. We observed
that the solutions are highly dependent on the given toler-
ances in the MILP solver. To increase numerical stability,
we implemented a second version using indicator vari-
ables and some other features of CPLEX [23]. The use of
indicator variables is straightforward. For example, the big

Table 1 Number of representatives for different genome-wide
metabolic networks (computed with F2FC [20])

Model Reactions Unblocked Coupling classes

Musmusculus 3726 2436 1489

E. coli iJO1366 2583 2369 1399

S. Typhimurium LT2 2545 1620 1047

S. boydii CDC 3083-94 2592 1546 1016

K. pneumoniaeMGH 78578 2262 1223 804

Y. pestis CO92 1961 1065 639

S. cerevisiae S288c 1577 885 558

G. metallireducens GS-15 1285 845 330

M. tuberculosis iNJ661 1025 800 412

B. subtilis 168 1250 658 342

P. putida KT2440 1056 652 282

C. ljungdahlii DSM 13528 785 526 215

H. pylori iIT341 554 501 209

M. barkeri str. Fusaro 690 484 174

S. aureus iSB619 743 465 224

T. maritimaMSB8 652 385 148

M constraint δa ≤ v ≤ Ma is replaced by a = 0 ⇒ v =
0, a = 1 ⇒ v ≥ δ, where a ∈ {0, 1} is the indicator vari-
able. MILP solvers using indicator variables handle them
in two different ways. They may reformulate the given
indicator constraints into big M constraints or branch on
the indicator variables. CPLEX chooses one of these two
methods depending on M. If M is small, it will formu-
late big M constraints, otherwise it will use branching.
For the results and the running time we only applied
the version where indicator variables were used, due to
numerical instability of the bigM formulation.While indi-
cator variables drastically increase the running time, we
still outperform the algorithm in [5].

Comparison with NetworkReducer
In a first experiment, we ran our implementations on the
two metabolic network reconstructions and functionali-
ties considered in [5]. Table 2 shows the running time for
calculating a subnetwork with the desired properties.
For Synechocystis sp. PCC 6803, the subnetwork com-

puted by NetworkReducer [5] contains 462 reactions
and thus 9 reactions more than the minimum sub-
network with 453 reactions obtained by our method.
The two subnetworks have 413 reactions in common.
49 reactions in the larger subnetwork cannot be found
in the minimum subnetwork, while 40 reactions in
the minimum subnetwork do not appear in the larger
one.
Regarding E. coli iAF1260 we get similar results. The

subnetwork computed by NetworkReducer contains 39
reactions more than the minimum subnetwork obtained
by our method. Both networks have 424 reactions in com-
mon. There are 51 reactions that can only be found in the
subnetwork computed with NetworkReducer, while
there are 12 reactions which appear only in the minimum
subnetwork.

Comparison with FASTCORE
FASTCORE [8] is a heuristic algorithm which is much
faster than our method. However, the computed subnet-
works are not minimum as can be seen from Table 3. The
subnetwork computed with our method is not contained
in the subnetwork computed with FASTCORE.
For H. pylori 26695 there are 22 reactions that appear

only in the FASTCORE subnetwork and 9 reactions which

Table 2 Time (in seconds) needed to compute a subnetwork
with given requirements resp. constraints

Algorithm Synechocystis sp. PCC 6803 E. coli iAF1260
Time reactions Time reactions

NetworkReducer 324 462 21987 455

minNW 31 453 4074 416

NetworkReducer: The algorithm introduced in [5]. minNW: The MILP introduced
here, using indicator variables
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Table 3 rxns: number of unblocked reactions in the original
network

rxns time rxns time
Models rxns FASTCORE FASTCORE minNW minNW

M. tuberculosis
iNJ661

1025 134 0.12 62 8727

H. pylori 501 319 0.6 306 123
26695

rxns FASTCORE: number of the reactions in the subnetwork computed with
FASTCORE. time FASTCORE: running time in seconds of FASTCORE. rxns minNW:
number of the reactions in the subnetwork computed with minNW. time minNW:
running time in seconds for the algorithm minNW using indicator variables

can be found only in the minimum subnetwork. Simi-
larly, forM. tuberculosis iNJ661, there are 78 reactions that
appear only in the FASTCORE subnetwork and 6 reac-
tions which can be found only in our subnetwork. The
names of the reactions for both examples are given in the
(Additional file 1).

Network reduction for genome-scale metabolic networks
As a proof of concept we applied our methods to compute
minimum subnetworks for 16 metabolic network recon-
structions taken from BiGG Models [24] under different
scenarios. For each type of organism in BiGG we consid-
ered one model (except for human recon because there is
no biomass reaction). An overview of the results is given
in Table 4. In some cases we had only one minimum sub-
network, while for some models and scenarios we found
different ones. For example, in the case ofH. pylori 26695,
we get 16 distinct minimum subnetworks, which will be
discussed in the section Case study: Helicobacter pylori
26695.
Following [4], we call a reaction essential if after remov-

ing this reaction it is no longer possible to achieve at least
p% of the maximal biomass production rate. Like in [4],
we choose p = 20. A minimum subnetwork where it is
possible to achieve a maximal biomass rate constitutes a
subnetwork where all essential reactions must be active
and so all essential reactions have to be included in the
subnetwork.We will present the number of essential reac-
tions for the different models to give an idea how many
reactions are additionally needed to have a functional
minimum subnetwork including all essential reactions.
The scenarios for the different networks and some con-

clusions are given next, full details can be found in the
(Additional file 1). The bounds on the flux rates are those
from BiGGModels.
For the networks Mus musculus, E. coli iJO1366, S.

Typhimurium LT2, S. boydii CDC 3083-94, and K. pneu-
moniae MGH 78578 the requirements are that at least
99.9% of the maximal biomass rates for the aerobic and
anaerobic case can be realized by the subnetwork. For
Y. pestis CO92 the requirements are that at least 99.9% of

themaximal growth rate with glycine uptake and themax-
imal growth rate without glycine uptake can be realized
by the subnetwork. For S. cerevisiae S288c the maximal
biomass rate with and without ethanol exchange has to
be realized by the reduced subnetwork. For G. metallire-
ducensGS-15,C. ljungdahlii DSM 13528, and T. maritima
MSB8 the maximal biomass rate with H2O uptake and
without H2O exchange has to be realized by the reduced
subnetwork. For M. tuberculosis iNJ661 one requirement
is that at least 99.9% of the maximal growth rate can
be achieved. Additionally we defined 36 protected reac-
tions. For B. subtilis 168 the requirements are that at least
99.9% of the maximal growth rate with hydrogen uptake
and the maximal growth rate without hydrogen uptake
can be realized by the subnetwork. For P. putida KT2440
one requirement is that at least 99.9% of the maximal
growth rate can be achieved. Additionally we defined pro-
tected reactions to keep the TCA cycle. For H. pylori
26695 one requirement is that at least 99.9% of the maxi-
mal growth rate can be achieved. Additionally we defined
28 protected reactions. A detailed discussion of this test
case will be given in the next subsection. For M. bark-
eri str. Fusaro the requirements are that at least 99.9%
of the maximal growth rate with ammonia uptake and
the maximal growth rate without ammonia uptake can be
realized by the subnetwork. For S. aureus N315 at least
99.9% of the maximal biomass rate with glucose uptake
and without glucose uptake has to be realized by the
subnetwork.

Case study: Helicobacter pylori 26695
In this section we discuss the results for computing sev-
eral minimum subnetworks for the metabolic network
H. pylori 26695 using indicator variables. The require-
ments are the following:

1. There are 28 protected reactions.
2. The maximal biomass yield is 20.2606, and the

subnetworks should be able to produce at least 99.9%
of this yield.

In total we computed 16 subnetworks each contain-
ing 321 reactions, which is the minimum number needed
to fulfill the requirements. The time needed to compute
all these minimum subnetworks was 127 seconds with
minNW and 33 seconds with minNWrep. Altogether the
16 minimum subnetworks use 329 different reactions,
which can be found in the (Additional file 1). 311 reac-
tions are present in every subnetwork, among them all the
265 essential reactions of H. pylori. Only 18 reactions are
not present in every subnetwork: CCP, G3PD1, D-Amino
acid dehydrogenase, FUMt3, Glycerol-3-phosphate dehy-
drogenase (NADP), SUCFUMt, L-alanine dehydrogenase,
Anthranilate synthase, Formate-tetrahydrofolate ligase,
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Table 4 Computational results using indicator variables

ess rxns mets reps time time
Models rxns mets rxns in SNW in SNW in SNW minNW minNWrep SNWs

Mus 2436 1665 247 351 351 241 49085 2949 1
musculus

E. coli 2369 1159 363 562 601 262 704 587 1
iJO1366

S. Typhimurium 1620 1098 305 458 455 277 1565 1507 1
LT2

S. boydii CDC 1546 1019 441 445 450 209 15898 463 1
3083-94

K. pneumoniae 1223 830 203 338 340 188 299 194 1
MGH 78578

Y. pestis 1065 761 279 339 339 171 7544 5970 1
CO92

S. cerevisiae 885 639 262 290 289 195 1225 720 2
S288c

G. metallireducens 845 710 544 557 567 153 257 49 1
GS-15

M. tuberculosis 800 580 314 427 425 168 4065 811 1
iNJ661

B. subtilis 658 500 270 296 300 134 16854 10027 1
168

P. putida 652 539 300 344 348 116 3784 827 7
KT2440

C. ljungdahlii 526 448 369 383 389 118 26 7.6 44
DSM 13528

H. pylori 501 381 265 321 323 89 9.8 9.8 16
26695

M. barkeri str. 484 417 289 364 369 90 25.38 24.3 20
Fusaro

S. aureus 465 387 71 122 127 75 28 27 1
iSB619

T. maritima 385 331 267 282 280 87 14 5.59 28
MSB8

rxns: number of unblocked reactions in the original network. mets: number of metabolites in the original network after removing dead-end-metabolites. ess rxns: number of
essential reactions in the original network. rxns in SNW: number of reactions in the subnetwork. mets in SNW: number of metabolites in the subnetwork. reps in SNW: number
of representatives remaining in the subnetwork. time minNW: running time in seconds for the algorithm minNW. time minNWrep: running time in seconds for the algorithm
minNWrep. SNWs: number of minimum subnetworks which exist and fulfill all the requirements. For detecting the running time, only one subnetwork was computed

D-Alanine exchange, D-alanine transport via proton sym-
port, L alanine reversible transport via proton symport, L-
Alanine exchange, ANS2, GAR transformylase-T, NO3t2,
NO3t3, Catalase. Figure 3 shows the distributions of these
reactions in the 16 subnetworks.
Additional insight can be obtained by analyzing co-

occurrence patterns of the 18 non-essential reactions.
Some of these reactions are mutually exclusive regarding
the minimum subnetworks. For example, all subnetworks
that contain reaction CCP do not contain CAT and vice
versa. The same holds for the pair FTHFLi and GART,
and the pair ANS and ANS2. Regarding the functionalities
of these reaction pairs, one can easily check that the two
reactions in each pair do basically the same. Therefore, it

is sufficient if only one of them is present. In opposite to
this, we can see that DALAt2r and EX_ala__D(e) form a
cycle since they always appear in the same subnetworks.
The same holds for ALAt2r and EX_ala__L(e). Both cycles
also seem to be mutually exclusive, thus only one of them
is present in the subnetworks. Similar observations can be
made for the cycle formed by NO3t2 and NO3t3, which is
mutually exclusive to the cycle formed by SUCFUMt and
FUMt3.
One may ask whether the reactions that never appear

together in the same subnetwork are also mutually
exclusive regarding elementary flux modes (EFMs), i.e.,
whether or not there exists an EFM involving both reac-
tions [25]. While this holds for the reaction pair FTHFLi
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Fig. 3 The two illustrations show the distribution of the reactions which are not present in all subnetworks. In Fig. 3a each reaction (x-axis) has a bar.
The bar indicates in how many subnetworks the reaction can be found. For example, reaction CCP can be found in every subnetwork except 1
(there are in total 16 subnetworks) and reaction CAT can be found in only one subnetwork. Fig. 3b illustrates where the reactions are found. Again
the x-axis corresponds to the reactions. Thus a dot at (1, CCP) means that CCP appears in subnetwork 1. CCP can be found in every subnetwork
except in the second one, whereas CAT can be found only in the second one

and GART and the pair CCP and CAT, it is not true for
the other reactions.

Conclusion
We developed an MILP approach to compute for a given
large metabolic network one or more minimum sub-
networks preserving biological requirements that can be
specified by the user. Compared to previous work [5, 8, 9],
our method guarantees minimality of the subnetwork
regarding the number of active reactions while preserv-
ing all the given requirements. In case there exist several
minimum solutions, we are able to enumerate all of them.
This may give additional insight how the network is func-
tioning and which reactions are really needed to satisfy
the requirements. We applied our algorithms to several
genome-scale metabolic networks and we always found all
the minimum subnetworks in reasonable time.
Once these subnetworks have been computed, further

analysis becomes possible by using methods that are not
applicable to the original network. For example, one may
compute elementary flux modes and minimal cut sets.
In addition, one can take a closer look to the reactions
involved in one or all minimum subnetworks in order to
get a better understanding of their role in the network.

Additional file

Additional file 1: Comparison with NetworkReducer, FASTCORE
and new experiments. Detailed description of the requirements on the
networks and the bounds on the flux rates. (PDF 120 kb)

Abbreviations
EFM: Elementary flux mode; FVA: Flux variability analysis; FCA: Flux coupling
analysis; LP: Linear program/programming; MILP: Mixed integer linear
program/programming

Acknowledgments
We would like to thank Alexandra Reimers and Yaron Goldstein for
constructive discussions.

Funding
Not applicable.

Availability of data andmaterials
The dataset supporting the conclusions of this article is available in the
minimal network repository, Project name: minimal network, Project home
page: https://sourceforge.net/projects/minimalnetwork/, Archived version:
2016-07-27, Operating system(s): Platform independent, Programming
language: MATLAB, Other requirements: no, License: GNU GPL, Any restrictions
to use by non-academics: no.

Authors’ contributions
AR developed the theoretical part, implemented the algorithms and drafted
the manuscript. AB supervised the study and participated in writing the
document. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 4 August 2016 Accepted: 7 December 2016

References
1. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict

biological capabilities. Cell. 2015;161(5):971–87.
2. Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic

genotype-phenotype relationship using a phylogeny of in silico methods.
Nat Rev Microbiol. 2012;10(4):291–305.

3. Schuster S, Hilgetag C. On elementary flux modes in biochemical
reaction systems at steady state. J Biol Syst. 1994;2(2):165–82.

4. Klamt S, Gilles ED. Minimal cut sets in biochemical reaction networks.
Bioinformatics. 2004;20(2):226–34.

5. Erdrich P, Steuer R, Klamt S. An algorithm for the reduction of
genome-scale metabolic network models to meaningful core models.
BMC Syst Biol. 2015;9(1):48.

http://dx.doi.org/10.1186/s12859-016-1412-z
https://sourceforge.net/projects/minimalnetwork/


Röhl and Bockmayr BMC Bioinformatics  (2017) 18:2 Page 10 of 10

6. Pfeiffer T, Sanchez-Valdenebro I, Nu J, Montero F, Schuster S. METATOOL:
for studying metabolic networks. Bioinformatics. 1999;15(3):251–7.

7. Mahadevan R, Schilling CH. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab Eng. 2003;5(4):
264–76.

8. Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact
context-specific metabolic network models. PLoS Comput Biol.
2014;10(1):e1003424.

9. Burgard AP, Vaidyaraman S, Maranas CD. Minimal reaction sets for
Escherichia coli metabolism under different growth requirements and
uptake environments. Biotechnol Prog. 2001;17(5):791–7.

10. Jonnalagadda S, Srinivasan R. An efficient graph theory based method to
identify every minimal reaction set in a metabolic network. BMC Syst Biol.
2014;8(28):1.

11. Edwards JS, Palsson BO. Robustness analysis of the Escherichia coli
metabolic network. Biotechnol Prog. 2000;16(6):927–39.

12. Segre D, Vitkup D, Church GM. Analysis of optimality in natural and
perturbed metabolic networks. Proc Natl Acad Sci USA. 2002;99(23):
15112–7.

13. Wilhelm T, Behre J, Schuster S. Analysis of structural robustness of
metabolic networks. Syst Biol. 2004;1(1):114–20.

14. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S. Structural
robustness of metabolic networks with respect to multiple knockouts.
J Theor Biol. 2008;252(3):433–41.

15. Acuna V, Chierichetti F, Lacroix V, Marchetti-Spaccamela A, Sagot MF,
Stougie L. Modes and cuts in metabolic networks: complexity and
algorithms. Biosystems. 2009;95(1):51–60.

16. Burgard AP, Pharkya P, Maranas CD. Optknock: A bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng. 2003;84(6):647–57.

17. Haus UU, Klamt S, Stephen T. Computing knock-out strategies in
metabolic networks. J Comput Biol. 2008;15(3):259–68.

18. Tamura T, Takemoto K, Akutsu T. Finding minimum reaction cuts of
metabolic networks under a Boolean model using integer programming
and feedback vertex sets. Comput Knowl Disco Bioinformatics Res.
2012;1:240–258.

19. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. Flux coupling
analysis of genome-scale metabolic network reconstructions. Genome
Res. 2004;14(2):301–12.

20. Larhlimi A, David L, Selbig J, Bockmayr A. F2C2: a fast tool for the
computation of flux coupling in genome-scale metabolic networks. BMC
Bioinforma. 2012;13(1):57.

21. Goldstein Y, Bockmayr A. Double and multiple knockout simulations for
genome-scale metabolic network reconstructions. Algorithm Mol Biol.
2015;10:1.

22. Röhl A, Goldstein Y, Bockmayr A. EFM-Recorder - faster elementary mode
enumeration via reaction coupling order. In: Strasbourg Spring School on
Advances in Systems and Synthetic Biology; 2015. p. 91–100.

23. CPLEX. http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.

24. BiGG Models. http://bigg.ucsd.edu/.
25. Marashi SA, Bockmayr A. Flux coupling analysis of metabolic networks is

sensitive to missing reactions. BioSystems. 2011;103:57–66.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://bigg.ucsd.edu/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Basic MILP to compute a minimum subnetwork
	Conflicting functionalities
	Example for minNW

	Computing all minimum subnetworks
	Reducing the number of binary variables

	Results and discussion
	Indicator variables
	Comparison with NetworkReducer
	Comparison with FASTCORE
	Network reduction for genome-scale metabolic networks
	Case study: Helicobacter pylori 26695

	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

