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Abstract: The microbiome is the collection of all microbial genes and can be investigated by se-
quencing highly variable regions of 16S ribosomal RNA (rRNA) genes. Evidence suggests that
environmental factors and host genetics may interact to impact human microbiome composition.
Identifying host genetic variants associated with human microbiome composition not only provides
clues for characterizing microbiome variation but also helps to elucidate biological mechanisms
of genetic associations, prioritize genetic variants, and improve genetic risk prediction. Since a
microbiota functions as a community, it is best characterized by β diversity; that is, a pairwise
distance matrix. We develop a statistical framework and a computationally efficient software package,
microbiomeGWAS, for identifying host genetic variants associated with microbiome β diversity
with or without interacting with an environmental factor. We show that the score statistics have
positive skewness and kurtosis due to the dependent nature of the pairwise data, which makes
p-value approximations based on asymptotic distributions unacceptably liberal. By correcting for
skewness and kurtosis, we develop accurate p-value approximations, whose accuracy was verified
by extensive simulations. We exemplify our methods by analyzing a set of 147 genotyped subjects
with 16S rRNA microbiome profiles from non-malignant lung tissues. Correcting for skewness and
kurtosis eliminated the dramatic deviation in the quantile–quantile plots. We provided preliminary
evidence that six established lung cancer risk SNPs were collectively associated with microbiome
composition for both unweighted (p = 0.0032) and weighted (p = 0.011) UniFrac distance matrices. In
summary, our methods will facilitate analyzing large-scale genome-wide association studies of the
human microbiome.

Keywords: microbiome; genome-wide association study; gene–environment interaction; host genet-
ics; tail probabilities; skewness and kurtosis

1. Introduction

The human body is colonized by bacteria, viruses, and other microbes that exceed the
number of human cells by at least 10-fold and that exceed the number of human genes by
at least 100-fold. The relationship between a person and his or her microbial population,
termed the microbiota, is generally mutualistic. The microbiota may promote human
health by inhibiting infection by pathogens, conditioning the immune system, synthesizing
and digesting nutrients, and maintaining overall homeostasis. The microbiome, which is
the collection of all microbial genes, can be investigated through massively parallel, next-
generation DNA sequencing technologies. By amplifying and sequencing highly variable
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regions of 16S ribosomal RNA genes that are present in all eubacteria, cost-effective and
informative microbiome profiles down to the genus level are obtained.

The human microbiome has been associated with diseases, including obesity [1], in-
flammatory bowel disease (IBD) [2], colorectal cancer [3], and breast cancer [4]. Thus,
identifying factors that have a sustained impact on the microbiome is fundamental for
elucidating its role in health conditions and for developing treatment strategies. Increasing
evidence suggests that microbiome composition at a specific site of the human body is im-
pacted by environmental factors [5,6], host genetics [7,8], and possibly by their interactions.
In the mouse, quantitative trait loci (QTL) studies have identified loci contributing to the
variation in the gut microbiome using linkage analysis [9,10]. Recently, Goodrich et al. [11]
systematically investigated the heritability of the human gut microbiome by comparing
monozygotic twins to dizygotic twins and found substantial heritability in different micro-
biome metrics, suggesting the important role of host genetics on gut microbiome diversity.
Associations between individual host genetic variants and microbiome taxa abundances
have also begun to emerge in other human samples [7,8,12]. These studies suggest that
genome-wide association studies (GWAS) have great potential to identify host genetic
variants associated with microbiome diversity.

GWAS of complex human diseases have identified many risk SNPs; however, the
biological mechanisms are largely unknown for the majority of the risk SNPs. QTL studies
of intermediate traits, e.g., gene expression [13,14], DNA methylation [15,16], chromatin
structure [17,18], and metabolite production [19,20], have provided useful insights into the
biological mechanisms of the GWAS findings. The human microbiome at a specific body
site is another important and informative intermediate trait for interpreting GWAS signals.
Knights et al. [8] reported that a risk SNP for IBD located in NOD2 was associated with the
relative abundance of Enterobacteriaceae in the human gut microbiome. Tong et al. [7] show
that a loss-of-function allele in FUT2 that increases the risk of developing Crohn’s Disease
(CD) may modulate the energy metabolism of the gut microbiome. In both examples, the
microbiome is a potential intermediate for explaining the association between risk SNPs
and disease risks, although a formal mediation analysis is required based on samples
with genotype, microbiome, and disease status data. Moreover, identifying microbiome-
associated host genetic variants has the potential to prioritize SNPs for discovery and to
improve the performance of polygenetic risk prediction.

Three types of microbiome metrics can be derived as phenotypes for GWAS analysis.
First, for each taxon at a specified taxonomic level (phylum, class, order, family, genus, and
species), we calculate the relative abundance (RA) of the taxon as the ratio of the number of
sequencing reads assigned to the taxon to the total number of sequencing reads. In 16S ribo-
somal RNA sequence profiles, approximately 100–200 taxa with average RAs ≥ 0.1% (from
the phylum level to the genus level) across samples are abundant enough for QTL analysis.
One can perform a Poisson regression to examine the association between the RA of each
taxon and each SNP. Significant associations are identified using Bonferroni correction
(p < 5 × 10−8/200 = 2.5 × 10−10) or by controlling FDR at an appropriate level. Second,
multiple α-diversity metrics [21] can be calculated to reflect the richness (e.g., number
of unique taxa) and evenness of each microbiome community after a procedure called
rarefication, which eliminates the dependence between the estimated α diversity and the
variable total number of sequence reads across subjects. Once the α-diversity metrics
are derived, one may perform standard GWAS with α diversity as the phenotype using
linear regression.

Because a microbiota functions as a community, the most important analysis for a
microbiome GWAS may be by assessing the complete structure of the community by
using a pairwise microbiome distance matrix (or β diversity) of the microbial commu-
nity. Microbiome distances can be defined in different ways, based on using phylogenetic
tree information or each taxon’s abundance information. Bray–Curtis dissimilarity [22]
quantifies the difference between two microbiome communities using the abundance in-
formation of specific taxa. UniFrac [23–25] is another widely used distance metric. Unlike
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the Bray–Curtis dissimilarity metric, UniFrac compares microbiome communities by using
information on the relative relatedness of each taxon, specifically by phylogenetic dis-
tance (branch lengths on a phylogenetic tree). UniFrac has two variants: the weighted
UniFrac [24], which accounts for the taxa abundance information, and the unweighted
UniFrac [23], which only models the information of presence or absence. Recently, a
generalized UniFrac distance metric [26] was developed to automatically appreciate the
advantages of weighted and unweighted UniFrac metrics and was shown to provide better
statistical power to detect associations between human health conditions and microbiome
communities. GWAS based on a microbiome distance matrix aims to identify the host
SNPs associated with microbiome composition. This has been done frequently by fit-
ting non-parametric multivariate models [27]. This approach requires permutations to
assess significance [28], which is computationally prohibitive, particularly when evaluating
p-values less than 5 × 10−8—the standard GWAS p-value threshold—or even lower when
testing multiple-diversity matrices. In a recent microbiome GWAS, the computation is
prohibitive even using a moment matching method based on the F-statistic.

Intuitively, the microbiome distances tend to be smaller for pairs of subjects with
similar genotypic values at the associated SNP. In addition, it is also of great interest
to identify host SNPs that interact with an environmental factor to affect microbiome
composition. Importantly, β diversity is temporally more stable compared with RA of
taxa and α-diversity metrics based on the data from the Human Microbiome Project [29],
suggesting a smaller power loss for a GWAS due to temporal variability. To our knowledge,
no statistical methods or software packages have been designed to efficiently analyze
microbiome GWAS data using distance matrices as phenotypes.

In this paper, we develop a statistical framework and a computationally efficient
package, microbiomeGWAS, for analyzing microbiome GWAS data. Our package allows
the detection of host SNPs with the main effect or interaction with an environment factor;
i.e., host SNPs interacting with an environment factor to affect the microbiome compo-
sition. We calculate the variance of the score statistics by appropriately considering the
dependence of the pairwise distances. Importantly, we show that the score statistics have
positive skewness and kurtosis due to the dependence in pairwise distances, which makes
the approximation of small p-values based on the asymptotic distribution too liberal, which
easily yields false positive associations. Resampling methods, e.g., bootstrap or permu-
tation, are computationally prohibitive for accurately approximating small p-values. We
propose to improve the tail probability approximation by correcting for skewness and
kurtosis of the score statistics. Numerical investigations demonstrate that our method pro-
vides a very accurate approximation, even for p = 5 × 10−8. MicrobiomeGWAS runs very
efficiently, taking 36 min for analyzing main effects and 69 min for analyzing both main
and interaction effects for a study with 2000 subjects and 500,000 SNPs, using a single core.
MicrobiomeGWAS is available at https://github.com/lsncibb/microbiomeGWAS [30],
accessed on 30 May 2022.

We illustrate our methods by applying microbiomeGWAS to non-malignant lung tissue
samples (N = 147) in the Environment And Genetics in Lung cancer Etiology (EAGLE)
study [31,32]. Because smoking may alter microbiome composition, we tested both the
main effect and gene–smoking interaction effect. When p-values were calculated based
on asymptotic distributions, the quantile–quantile (QQ) plots strongly deviated from
the uniform distribution. Nine loci also achieved genome-wide significance based on
asymptotic approximations. Correcting for skewness and kurtosis eliminated the inflation
and also the genome-wide significance of these loci. However, we provide evidence that
the established lung cancer risk SNPs are associated with lung microbiome composition.

2. Material and Methods
2.1. A Score Statistic for Testing Main Effect

Suppose that we have a set of N subjects genotyped with SNP arrays. For notational
simplicity, we consider only one SNP with a minor allele frequency (MAF) denoted as f .

https://github.com/lsncibb/microbiomeGWAS
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Our interest centers on testing whether the genotype of the SNP is associated with micro-
biome composition. Let gn = 0, 1, 2 represent the number of the minor alleles for subject
n. We assume that the 16S rRNA gene of microbiota from a target site (e.g., gut) has been
sequenced for these samples. Let dij be the microbiome distance between subject i and
subject j and D be the distance matrix.

Intuitively, if the SNP is associated with the microbiome composition, the microbiome
distances tend to be smaller for subject pairs with similar genotypic values, as is illustrated
in Figure 1. For N subjects, N(N − 1)/2 pairs can be divided into three groups with genetic
distance 0, 1, and 2. For example, a pair of subjects with genotype (AA, AA) or (BB, BB)
has genetic distance 0; a pair of subjects with genotype (AA, BB) or (BB, AA) has genetic
distance 2; all other pairs have genetic distance 1. Apparently, we expect the microbiome
distance to be positively correlated with genetic distance for subject pairs.
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Figure 1. Microbiome distances are positively correlated with genetic distances at an associated 
SNP. 
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We define Gij =
∣∣gi − gj

∣∣ as the genetic distance for a pair of subjects (i, j). We assume
dij = α + βMGij + εij. A score statistic for testing H0 : βM = 0 (main effect) vs. βM > 0 is
derived as:

SM = ∑i<j d′ijGij with d′ij = dij −
2

N(N − 1) ∑k<l dkl . (1)

The variance Var0(SM|D) under H0 : βM = 0 is calculated by considering the
dependence in

(
Gij, Gkl

)
and conditioning on the distance matrix D. Briefly, we have

Var0(SM|D) = ∑i<j,k<l d′ijd
′
klCov

(
Gij, Gkl

)
. When (i, j, k, l) are distinct, Gij and Gkl are in-

dependent; i.e., Cov
(
Gij, Gkl

)
= 0. Some algebra leads to

Var0(SM|D) =
N(N − 1)

2
Var

(
Gij
)
µ2 + N(N − 1)(N − 2)Cov

(
Gij, Gik

)
µ3 (2)
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where
µ2 =

2
N(N − 1) ∑

i<j

(
d′ij
)2

(3)

and

µ3 =
2

N(N − 1)(N − 2) ∑
i<j<k

(
d′ijd

′
ik + d′ijd

′
jk + d′ikd′jk

)
. (4)

The details for calculating Var
(
Gij
)

and Cov
(
Gij, Gik

)
are in Appendix A. The normal-

ized statistic ZM = SM/
√

Var0(SM|D) ∼ N(0, 1) under H0 asymptotically.
In analyses of real data, we typically have to adjust for covariates, including de-

mographic variables and principal component analysis (PCA) scores derived based on
genotypes, to eliminate potential population stratification. Given a distance matrix D and v
covariates (xi1, · · · , xiv), we perform distance-based redundancy analyses using function
capscale in the vegan package [33]. The residual matrix D′, extracted using the residuals
function in the vegan package [33], is now adjusted for these potential confounding factors
and can be used for genetic analysis.

2.2. A Score Statistic for Testing Gene–Environment Interaction

Let Ei denote an environmental variable. Define ∆ij =
∣∣giEi − gjEj

∣∣. We extend
the statistical framework to detect the SNP–environment interaction by assuming dij =
α + βMGij + βE

∣∣Ei − Ej
∣∣+ β I∆ij + εij, where βM denotes the main genetic effect, β I denote

the additive gene–environment effect, and βE denotes the main effect of the environmental
factor. We consider testing the null hypothesis that the SNP is not associated with micro-
biome composition either directly or by interacting with E, i.e. H0 : βM = β I = 0. The
alternative hypothesis is H1 : βM > 0 or β I > 0.

We estimate βE and α under H0 and calculate d′ij = dij− α̂− β̂E
∣∣Ei − Ej

∣∣. Let D′ =
(

d′ij
)

be the residual matrix. The scores evaluated under H0 are SM = ∑i<j d′ijGij for βM and
SI = ∑i<j d′ij∆ij for β I . Similar to (2), we derive the variance Var0(SI |D′) by accounting for
the dependence in

(
∆ij, ∆kl

)
:

Var0
(
SI
∣∣D′) = N(N − 1)

2
Var

(
∆ij
)
µ2 + N(N − 1)(N − 2)Cov

(
∆ij, ∆ik

)
µ3. (5)

Let ZM = SM/
√

Var0(SM|D′) and ZI = SI/
√

Var0(SI |D′) . Asymptotically, ZM ∼
N(0, 1) and ZI ∼ N(0, 1) under H0. In Appendix B, we derive

Cov0
(
SM, SI

∣∣D′) = N(N − 1)
2

Cov
(
Gij, ∆ij

)
µ2 + N(N − 1)(N − 2)Cov

(
Gij, ∆ik

)
µ3 (6)

Let ρ = Cor0(ZM, ZI |D′) be the correlation between the two statistics. Asymptotically,

(ZM, ZI) follows a bivariate normal distribution with a correlation matrix Ω =

(
1 ρ
ρ 1

)
. In

Appendix C, we derive a statistic for jointly testing H0 : βM = β I = 0 vs. H1 : βM > 0 or β I > 0.
Briefly, the 2D plane is partitioned to four parts (Figure 2). The joint statistic is derived as

Q =


(ZM, ZI)Ω

−1(ZM, ZI)
T (ZM, ZI) ∈ A1

(w1ZM + w2ZI)
2 (ZM, ZI) ∈ A2

(w2ZM + w1ZI)
2 (ZM, ZI) ∈ A3

0 (ZM, ZI) ∈ A4

(7)

where w1 = (θ − 1/θ )/2, w2 = (θ + 1/θ )/2 and θ =
√
(1− ρ)/(1 + ρ). The asymptotic

p-value is calculated as

P
(

Q > b2
)
= q1P

(
χ2

2 > b2
)
+ q2P(N(0, 1) > b) + q3P(N(0, 1) > b), (8)
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where qi = P((ZM, ZI) ∈ Ai).
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Figure 2. Define the joint test for testing H0 : βM = β I = 0 vs. βM > 0 or β I > 0. We assume that
ZM ∼ N(0, 1), ZI ∼ N(0, 1) and cor(ZM, ZI) = ρ under H0. Details are in Appendix C.

2.3. Improved p-Value Approximations by Correcting for Skewness and Kurtosis

Theoretic investigation suggests that the score statistics ZM and ZI have a positive
skewness, which makes the tail probability approximations based on the asymptotic dis-
tribution N(0, 1) unacceptably liberal (Figure 3A,B). In a numeric example with skewness
γ = 0.2, P(Z > 5) =2.9 × 10−7 based on N(0, 1), which is approximately two orders of
magnitude more significant than p = 3.9 × 10−5 based on 108 permutations. The signif-
icance inflation becomes worse for smaller p-values and larger skewness γ. Similar but
more tedious calculations suggest that both statistics have positive kurtosis, making the
approximation based on N(0, 1) even worse. One possible solution is to approximate tail
probabilities using permutations or bootstrap. However, these resampling methods are
computationally prohibitive for testing millions of common SNPs in a large-scale study.
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Figure 3. Correcting tail probabilities for skewness and kurtosis. (A) The standard normal distribution
N(0, 1) and an approximately normal distribution with positive skewness. The skewness has big
impact when calculating the tail probability P(Z > b) for a large value of b. (B) Numerical evaluation
of tail probability approximation for ZM. We used the unweighted UniFrac distance matrix of
500 samples from the American Gut Project (AGP). For each value of b(> 0), we calculated p-values
P(ZM > b) based on N(0, 1), skewness correction, both skewness and kurtosis correction, and
108 simulations. (C) Skewness depends on minor allele frequency (MAF) of SNPs and the sample
size of the study, calculated based on the weighted UniFrac distance matrix in AGP data. (D) Kurtosis
depends on MAF of SNPs and the sample size, calculated based on the weighted UniFrac distance
matrix in the AGP data.

To address this problem, we calculated the skewness γ and kurtosis κ of the score
statistics under H0 (Appendix D). We propose to improve the tail probability approximation
P0(Z > b) by correcting for the skewness and kurtosis, following the skewness correction
in linkage analysis [34,35]. Technical details are provided in Appendix E. Correcting for
both skewness and kurtosis leads to an approximation

P0(Z > b) ≈ e−bξ1+(1+σ2
1 )ξ

2
1/2+γξ3

1/6+κξ4
1/24 Φ(−σ1ξ1) (9)

where ξ1 satisfies ξ + γξ2/2 + κξ3/6 = b, σ2
1 = 1 + γξ1 + κξ2

1/2 and Φ(·) is the cumula-
tive distribution function of N(0, 1). Correcting for skewness but ignoring kurtosis (i.e.,
assuming κ = 0) leads to an approximation

P0(Z > b) ≈ e−bξ2+(1+σ2
2 )ξ

2
2/2+γξ3

2/6 Φ(−σ2ξ2) (10)
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where ξ2 =
(√

1 + 2γb− 1
)

/γ, σ2
2 = 1 + γξ2. Numerical results presented in Figure 3B

demonstrate that (9) works very well.
Given the distance matrix D, γM ∝ 1/N1/2, γI ∝ 1/N1/2 , κM ∝ 1/N and κI ∝ 1/N

(Appendix D). Thus, skewness decays much more slowly with sample size N than kurtosis
(Figure 3C,D). Thus, even for a large study with thousands of samples, correcting for
skewness is necessary for accurately evaluating the tail probabilities. Importantly, both
skewness and kurtosis highly depend on the MAF, suggesting that the impact of skewness
and kurtosis is different across SNPs with a different MAF. Numerical studies (Figure 3C,D)
show that skewness and kurtosis are minimized when MAF = 0.5 and maximized when
MAF ≈ 0.2–0.3.

Finally, we discuss how to approximate the tail probability of Q in (7) for testing
H0 : βM = β I = 0 by correcting for non-normality in ZM and ZI . When (ZM, ZI) ∈ A2 (or
A3), we calculate the skewness E(w1ZM + w2ZI)

3 and the kurtosis E(w1ZM + w2ZI)
4 − 3

and use (9) to approximate P(w1ZM + w2ZI > b). When (ZM, ZI) ∈ A1, we first approxi-
mate their marginal p-values as pM and pI by (9), and then calculate the normal quantile
zM = Φ(1− pM) and zI = Φ(1− pI). Because the correction primarily impacts the tails
of the distributions, the correlation between the two statistics will remain roughly un-
changed; i.e., cor0(ZM, ZI) ≈ cor0(zM, zI). Thus, when (ZM, ZI) ∈ A1, the tail probability
is approximated as P(χ2

2 > (zM, zI)Ω−1(zM, zI)
′).

3. Results
3.1. Simulation Results

The main purpose of simulations was to investigate the type-I error of ZM (for testing
the main genetic effect), ZI (for detecting SNP–environment interactions), and Q (for
detecting either the main genetic effect or SNP–environment effect or both). Simulations
were performed under different combinations of sample size, MAF, and microbiome
distance matrices. To make the simulations realistic, we used an unweighted distance
matrix of the fecal microbiome samples with the 16S rRNA V4 region sequences from the
American Gut Project (AGP) [36]. The OTU table, rarefied to 10,000 sequence reads per
sample, as well as the metadata were downloaded from the AGP website. Samples with
less than 10,000 sequence reads were excluded from the analysis. The weighted and the
unweighted UniFrac distance matrices were generated in the Quantitative Insights Into
Microbial Ecology [21] (QIIME) pipeline. Because antibiotics may substantially change
the microbiome composition to generate outliers that may distort the null distribution, we
excluded samples with self-reported history of antibiotic usage within one month. After
quality control, 1879 subjects remained for analysis. In the simulations, we randomly
selected N samples for a given sample size N.

For each setting, the type-I error rates were evaluated based on 108 simulations under
H0. For the interaction test and the joint test, the binary environment factor had a frequency
of 50% and was simulated independent of the SNP. The type-I error rates are summarized in
Table 1 for the weighted UniFrac distance matrix. The skewness and kurtosis are reported
in Figure 3C,D. The statistics adjusted for skewness and kurtosis have accurate type-I error
rates while the statistics without adjustment have unacceptably high type-I error rates. As
the sample size increases, the impact of skewness and kurtosis decreases. However, even
for a study with N = 1000, the type-I error rates are still seriously inflated. The results for
the unweighted UniFrac distance matrix and for MAF = 0.5 are reported in Table S1.
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Table 1. Type-I error rates estimated based on 108 simulations. Minor allele frequency = 20%.
Simulations were based on the weighted UniFrac distance matrix of the gut microbiome data from the
American Gut Project. Reported are the type-I error inflation factor. A value greater than 1 indicates
an inflated type-I error.

ZM ZI Q

N α = 10−3 10−5 10−7 10−3 10−5 10−7 10−3 10−5 10−7

Asymptotic
approximation

100 5.5 51.6 610.0 4.7 36.1 342.8 7.3 80.9 1148.0
200 3.7 23.0 187.3 3.1 15.8 105.5 4.6 33.0 316.7
500 2.4 9.4 45.2 2.1 6.7 25.5 2.8 11.9 64.1

1000 2.0 5.7 21.3 1.8 4.4 14.0 2.2 6.9 28.5

Adjusted for
skewness and

kurtosis

100 1.0 1.2 0.7 1.0 1.1 0.6 1.0 1.5 2.0
200 1.0 1.1 1.0 1.0 1.1 0.7 0.9 1.3 1.8
500 1.0 1.1 1.3 1.0 1.0 0.9 0.9 1.0 1.7

1000 1.0 1.0 1.2 1.0 1.0 0.8 0.9 1.0 1.1

3.2. Software Implementation, Memory Requirement, and Computational Complexity

We implemented our algorithms in a software package, microbiomeGWAS, which
is freely available at https://github.com/lsncibb/microbiomeGWAS [30], accessed on
30 May 2022. MicrobiomeGWAS requires three sets of files: a microbiome distance matrix
file, a set of PLINK binary files for GWAS genotypes, and a set of covariates. MicrobiomeG-
WAS processes one SNP at a time and does not load all genotype data into memory; thus, it
requires only memory for storing the distance matrix. Variance, skewness, and kurtosis
can be partitioned into two parts related with the microbiome distance matrix and the
MAF of the SNP separately; thus, we can quickly calculate these quantities for a predefined
grid of MAFs. The overall computational complexity is about O(N2M), where N is the
sample size and M is the number of SNPs. Figure 4 reports the computation time on a
Linux server using a single core. For a study with 10,000 subjects, it takes approximately
15 h for analyzing the main effect and approximately 30 h for analyzing both the main
and interaction effects for 0.5 million variants. As a comparison, in a recent microbiome
GWAS [37], to analyze 7 × 10−6 variants for the main effect and n = 3382 subjects in the
SHIP-TREND cohort [37], it would take 61 years using one CPU and 94 days using one
graph-processing unit for parallel computation. Moreover, their analytic pipeline could
not jointly analyze all 8956 subjects from five cohorts because of the computational burden;
instead, they performed a stepwise search that may cause power loss.
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3.3. GWAS of Microbiome Diversity in Adjacent Normal Lung Tissues

We applied our methods to a set of lung cancer patients of Italian ancestry in the
EAGLE [31] study. All subjects have germline genome-wide SNPs [32] and 16S rRNA
microbiome data (V3-V4 region, Illumina MiSeq, 300 paired-end) in histologically normal
lung tissues from these patients. Here, the histologically normal lung tissues were 1~5 cm
from the tumor tissue. We performed a series of quality control steps to filter out low-quality
sequence reads: average quality score <20 over 30 bp windows, less than 60% similarity to
the Greengenes [38] reference, or identified as chimera reads using UCHIME [39]. Sequence
reads were then processed by QIIME [21] to produce the relative abundances (RA) of taxa,
two α-diversity metrics (observed number of species and Shannon’s index), and β diversity
metrics (unweighted and weighted UniFrac distances) rarified to 1000 reads. We included
147 subjects with at least 1000 high-quality sequence reads for genetic association analysis.

Out of the 147 subjects, 78 are current smokers, 8 never smoked, and 61 are former
smokers. Because of the small number of never smokers, we merged never and former
smokers as non-current smokers. All of the genetic association analyses were adjusted for
sex, age, smoking status, and the top three PCA scores derived based on genome-wide
SNPs. Here, the top three PCA scores were selected for controlling population stratification
because the other PCA scores were unassociated with the distance matrices. We included
383,263 common SNPs with MAF ≥ 10% because rarer SNPs were expected to have no
statistical power given the current sample size. We first performed GWAS analysis using
PLINK [40] to identify the SNPs associated with taxa with an average RA greater than 0.1%
or two α-diversity metrics. We did not detect genome-wide significant associations with
either the main effects or gene–smoking interactions.

Next, we performed GWAS analysis using unweighted and weighted UniFrac distance
matrices as a representation of eubacteria β diversity. The results for testing the main effects
are reported in Figure 5. Results for testing the joint effects (main effect and SNP by smoking
status interaction) are reported in Figure S1. Because of the small sample size, we observed
large values of skewness and kurtosis, with the magnitude varying with the MAF of the
SNPs (Figure 5A). The score statistics based on the weighted UniFrac distance matrix had a
much larger skewness and kurtosis than did the unweighted UniFrac matrix. Figure 5B,C
report the quantile–quantile (QQ) plot of the logarithm of the association p-values for
the unweighted and weighted UniFrac distance matrices, respectively. For each distance
matrix, we produced QQ plots for p-values based on the asymptotic approximation and
for p-values adjusted for skewness and kurtosis. For both distance matrices, the QQ
plots before adjustment strongly deviated from the expected uniform distribution. Our
adjustment eliminated the deviation. In addition, consistent with the observation that the
skewness and kurtosis were larger for the weighted UniFrac distance matrix, the QQ plot
deviated more for the analysis based on the weighted UniFrac distance. Note that the
skewness and kurtosis only affect the tail probabilities; thus, the inflation of the QQ plot
is not reflected by the genomic control lambda value [41], calculated as the median of the
p-values. In fact, lambda ≈ 1 for all four QQ plots.

Without correcting for skewness and kurtosis, we identified three and six loci achiev-
ing genome-wide significance (p < 5× 10−8) for the unweighted and weighted UniFrac
distance matrices, respectively (Figure 5D). After correcting for skewness and kurtosis,
no locus remained genome-wide significant (Figure 5D), which was verified by 108 per-
mutations. Importantly, skewness and kurtosis had a dramatic effect on tail probabilities.
Here, we use SNP rs12785513 as an example, which was identified as the top SNP in
both analyses. In the unweighted UniFrac analysis, p = 4.4 × 10−9 without adjustment
and p = 1.6 × 10−6 after adjustment, a 364-fold inflation. The inflation was even larger
for weighted UniFrac analysis because of larger skewness and kurtosis (Figure 5A). In
fact, p = 3.4 × 10−10 without adjustment and p = 3.5 × 10−6 after adjustment, a 1000-fold
inflation. Although these SNPs were not significant genome-wide, they were the top SNPs
from the current study. Thus, we report box-plots for each of these nine SNPs (Figure 5E).
As expected, in all box plots, microbiome distances tend to be larger in subject pairs with
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greater genetic distance at these SNPs. These associations remain to be replicated in studies
with larger sample sizes.
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the EAGLE study. (A) Skewness and kurtosis for the main effect test using the unweighted and the
weighted UniFrac distance matrices. (B) Quantile–quantile (QQ) plot for association p-values using
the unweighted UniFrac distance matrix. “Adjusted”: p-values were corrected for skewness and
kurtosis. “Unadjusted”: p-values were approximated based on the asymptotic distribution N(0, 1).
(C) Quantile–quantile (QQ) plot for association p-values using the weighted UniFrac distance matrix.
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plots for the top nine loci in microbiome GWAS analysis. Subject pairs are classified into three groups
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∣∣∣ at the SNP. The y-coordinate is the microbiome distance.

Finally, we concentrated on the six common SNPs in four genomic regions reported
to be associated with lung cancer risk in GWAS of European subjects: rs2036534 and
rs1051730 at 15q25.1 [42–45] (CHRNA5–CHRNA3–CHRNB4), rs2736100 and rs401681 at
locus 5p15.33 [31,46] (TERT/CLPTM1L), rs6489769 [47] at 12p13.3 (RAD52), and rs1333040
at 9p21.3 [48] (CDKN2A/CDKN2B). The SNPs at 15q25.1 and 5p15.33 have the largest
effect sizes for lung cancer risk based on the meta-analysis from the Transdisciplinary Re-
search in Cancer of the Lung (TRICL) consortium [48]: OR = 1.32 for rs1051730, OR = 1.26
for rs2036534, OR = 1.13 for rs2736100, and OR = 1.14 for rs401681. Rs3131379 at locus
6p21.33 [46] (BAT3/MSH5) was excluded because the MAF = 7.5%. No SNPs were signifi-
cantly associated with taxa RAs or α-diversity metrics after correcting for multiple testing.
However, association analysis based on the UniFrac distance matrices provided evidence
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that these SNPs may be associated with the lung microbiota (Table 2). These SNPs were
independent except that rs2036534 and rs1051730 at 15q25.1 were weakly correlated with
R2 = 0.15. A test combining six z-scores (ZM) and adjusting for the weak correlation yielded
overall p-values of 0.0033 and 0.011 for the unweighted and the weighted UniFrac distance
matrices, respectively. These results suggest that lung cancer risk SNPs were enriched for
genetic association with the composition of the lung microbiome. The results for testing
interactions and joint effects are reported in Table S2.

Table 2. Association p-values between lung cancer risk SNPs and microbiome composition in the
EAGLE data.

SNP Chr Annotated Genes Unweighted UniFrac Weighted UniFrac

rs2036534 15q25.1 CHRNA3/4/5 0.425 0.167
rs1051730 15q25.1 CHRNA3/4/5 0.020 0.401
rs2736100 5p15.33 TERT 0.089 0.267
rs401681 5p15.33 CLPTM1L 0.056 0.005

rs6489769 12p13.3 RAD52 0.197 0.329
rs1333040 9p21.3 CDKN2A/B 0.249 0.224

Overall test 0.0032 0.011

4. Discussion

We developed a software package, microbiomeGWAS, for identifying host genetic
variants associated with microbiome composition. MicrobiomeGWAS can test both the
main effect and SNP–environment interactions. Importantly, we found that the score
statistics had positive skewness and kurtosis and that the tail probabilities evaluated based
on asymptotic approximations were very liberal. We addressed this problem by explicitly
adjusting for skewness and kurtosis. MicrobiomeGWAS runs very efficiently and takes
only 36 min for testing main effects and 69 min for testing joint effects in a GWAS with
2000 subjects and 500,000 markers. Other statistical methods exist for testing the association
of microbiome distance matrices. PERMANOVA [27] is an extension of multivariate
analysis of variance to a matrix of pairwise distances and relies on permutations to evaluate
significance. MiRKAT [49], a recently proposed method based on kernel regression, takes
hours for evaluating one association for 2000 subjects. Neither is computationally feasible
for analyzing a large-scale GWAS of a microbiome. Recently, an asymptotic distribution
was proposed to approximate the p-value for the PERMANOVA pseudo-F statistic [50];
however, whether it is sufficiently accurate for very small p-values (p < 5× 10−8, for GWAS)
remains to be investigated.

Interactions of host genetic susceptibility with the microbiome have been postulated
for many conditions, including inflammatory bowel diseases [51,52], autoimmune and
rheumatic diseases [53–56], diabetes [57], and cancer, especially of the colon [58]. All models
of these host–microbiome interactions also note the critical role of environmental factors,
including diet, smoking, drugs, and antibiotics and other medications [59]. Although
based on a very small initial sample set, the suggestive associations that we found between
the six known lung cancer risk SNPs and the microbiome of adjacent normal lung tissue
samples, including effects of cigarette smoking, provide preliminary evidence that our
microbiomeGWAS method is likely to be a useful tool for generating data that will unravel
host–microbiome interactions with high confidence.

We are working on two extensions for microbiomeGWAS: (1) jointly testing additive
and dominant effects; and (2) testing genetic associations using many microbiome distance
matrices. We have assumed an additive effect model (Figure 1); however, several top SNPs
in the EAGLE data suggest a dominant effect (e.g., rs8083714 in Figure 5E). Thus, a statistic
for jointly testing the additive and dominant effects might be powerful for this scenario. The
second extension is motivated by the fact that that the power to detect associations depends
heavily on the choice of distance matrix. The recently developed generalized UniFrac [26]
(gUniFrac) defines a series of distance matrices to reflect the different emphases of using
taxa relative abundance information. gUniFrac has been shown to have a robust power
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for association studies [26]. Extending microbiomeGWAS to gUniFrac, however, requires
solving two problems. First, the computational complexity is proportional to the number of
distance matrices analyzed for associations, which can be addressed by implementing the
algorithms using multithreading technology. Second, we need to derive accurate analytic
approximations to the association p-values by correcting for the multiple testing introduced
by many distance matrices. MiRKAT [49] has an option for using gUniFrac; however,
intensive permutations are required to evaluate p-values.

In summary, GWAS of the microbiome of each body site has the potential to help
one understand microbiome variation, to elucidate the biological mechanisms of genetic
associations, to improve the power of identifying novel disease-associated genetic variants,
and to improve the performance of genetic risk prediction. We expect our methods and
software to be useful for large-scale GWAS of the human microbiome.
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Figure S3: Calculations related with genetic dependence.

Author Contributions: Conceptualization, X.H. and J.S.; methodology, X.H. and J.S.; software, X.H.,
L.S. and J.S.; data analysis, X.H., L.S. and J.S.; investigation, all authors; EAGLE data resource, M.T.L.;
writing-original draft preparation, X.H. and J.S.; writing—review and editing, all authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the NIH Intramural Research Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects in the study.

Data Availability Statement: The genetic data for the EAGLE study can be accessed from dbGap
with accession number phs000093.v2.p2. The American Gut Project data used for simulations can be
obtained from https://github.com/biocore/American-Gut (accessed on 25 May 2022).

Acknowledgments: This study utilized the high-performance computational capabilities of the
Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD. (http://biowulf.nih.gov
(accessed on 25 May 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calculating Calculating Var
(
Gij
)
, Cov

(
Gij, Gik

)
, Var

(
∆ij
)

and
Cov

(
∆ij, ∆ik

)
We first calculate E

(
Gij
)
, Var

(
Gij
)
, and Cov

(
Gij, Gik

)
. Let pt = P(gi = t) with

p0, p1, p2 ≥ 0 and p0 + p1 + p2 = 1. We can also assume the Hardy–Weinberg equilibrium
and characterize the probabilities as the allele frequency: p0 = (1− f )2, p1 = 2 f (1− f )
and p2 = f 2. Some algebra leads to

E
(
Gij
)
= E

∣∣gi − gj
∣∣ = ∑m,n∈{0, 1, 2} pm pn|m− n| = 2p0 p1 + 2p1 p2 + 4p0 p2 (A1)

Var
(
Gij
)
= E

(
G2

ij

)
− E

(
Gij
)2

= (2p0 p1 + 2p1 p2 + 8p0 p2)− (2p0 p1 + 2p1 p2 + 4p0 p2)
2 (A2)

Cov
(
Gij, Gik

)
= p1(1− p1) + 4p0 p2(1 + p1)− (2p0 p1 + 2p1 p2 + 4p0 p2)

2 (A3)

Now consider ∆ij =
∣∣giEi − gjEj

∣∣. When Ei is binary, giEi = 0, 1 or 2. Let p′t = P(giEi = t).
Then, E

(
∆ij
)
, Var

(
∆ij
)
, and Cov

(
∆ij, ∆ik

)
can be calculated similarly using (A1)–(A3).

https://www.mdpi.com/article/10.3390/genes13071224/s1
https://www.mdpi.com/article/10.3390/genes13071224/s1
https://github.com/biocore/American-Gut
http://biowulf.nih.gov
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Appendix B. Calculating ρ = Cor0(ZM , ZI |D′)

Let G′ij = Gij − EGij and ∆′ij = ∆ij − E∆ij. We first calculate covariance under H0:

Cov0
(
SM, SI

∣∣D′) = Cov0

(
∑i<j d′ijG

′
ij, ∑m<n d′mn∆′mn

)
= ∑i<j,m<n d′ijd

′
mnCov

(
Gij, ∆mn

)
.

When (i, j, m, n) are distinct, Cov
(
Gij, ∆mn

)
= 0. Some algebra leads to

Cov0
(
SM, SI

∣∣D′) = (N
2

)
Cov

(
Gij, ∆ij

)
µ2 + 6

(
N
3

)
Cov

(
Gij, ∆ik

)
µ3 (A4)

with µ2 and µ3 specified in (3) and (4). Combining (2), (5) and (A4), we have

ρ =
Cov0(SM, SI |D′)√

Var0(SM|D′)Var0(SI |D′)
N→∞→

Cov
(
Gij, ∆ik

)√
Cov

(
Gij, Gik

)
Cov

(
∆ij, ∆ik

) (A5)

Equation (A5) suggests that the correlation is asymptotically independent of the
microbiome distance matrix. In the real-data analyses, we found that (A5) was very accurate
when sample size N ≥ 50. The details of calculating Cov

(
Gij, ∆ij

)
and Cov

(
Gij, ∆ik

)
are

provided in Supplemental Data.

Appendix C. A Statistic for Testing H0 : βM = βI = 0 vs. H1 : βM > 0 or βI > 0

Denote Z = (ZM, ZI)
T. Under H0, Z ∼ N(0, Σ)with Σ =

(
1 ρ
ρ 1

)
. Let ξM = E1ZM ≥ 0

and ξ I = E1ZI ≥ 0 be the non-centrality parameter of the two score statistics. Ap-
parently, the original testing problem is equivalent for testing H0 : ξM = ξ I = 0 vs.
H1 : ξM > 0 or ξ I > 0. Given the observed values (ZM, ZI), the likelihood ratio statistic is
simplified as

Q = ZTΣ−1Z− (Z− ξ)TΣ−1(Z− ξ) (A6)

where ξ = (ξM, ξ I)
T = arginfξM≥0,ξ I≥0Q (Figure S2A).

To simplify the optimization problem in (A6), we perform a linear transformation:
YT = ZTΣ−

1
2 and vT = ξTΣ−

1
2 , where

Σ−
1
2 =

1√
2

(
1 1
−1 1

)(
1/
√

1− ρ 0
0 1/

√
1 + ρ

)
(A7)

Under this transformation, Q = YTY− (Y− v)T(Y− v) and can be interpreted as
the difference of the square of two distances (Figure S2B). The original parameter space
{(ξM, ξ I) : ξM ≥ 0, ξ I ≥ 0} is now transformed to {(ν1, ν2) : ν2 ≥ θν1, ν2 ≥ −θν1}with θ =√
(1− ρ)/(1 + ρ). Thus, the new parameter space is bounded by two lines represented by

ν2 ≥ θν1 and ν2 ≥ −θν1. We partition the 2D plane into four parts (see Figure S2B), identify
v = arginfv∈A1

(Y− v)T(Y− v) and calculate Q:

Q =


Y1

2 + Y2
2 (Y1, Y2) ∈ A1

(Y2 −Y1/θ)2/
(
1 + θ−2) (Y1, Y2) ∈ A2

(Y2 + Y1/θ)2/
(
1 + θ−2) (Y1, Y2) ∈ A3

0 (Y1, Y2) ∈ A4

(A8)

We now perform an inverse transformation using matrix

Σ
1
2 =

[
1√
2

(√
1− ρ 0
0

√
1 + ρ

)(
1 −1
1 1

)]
(A9)
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to return to the original parameter space. The four areas {A1, A2, A3, A4} under the original
space are in Figure 2 and Figure S2C.

Tedious calculations show that (Y2 + Y1/θ)2/
(
1 + θ−2) = (w2ZM + w1ZI)

2 with
w1 = (θ − 1/θ)/2 and w2 = (θ + 1/θ)/2. Similarly, (Y2−Y1/θ)2/

(
1+ θ−2) = (w1ZM +w2ZI)

2.
This proves (7). In addition, w1ZM + w2ZI ≥ 0 and w2

1 + 2ρw1w2 + w2
2 = 1; thus,

P
{
(w1ZM + w2ZI)

2 > b2
}

= P{w1ZM + w2ZI > b} = P{N(0, 1) > b}. This proves (8).
The probabilities in (8) could also be calculated from Figure S2B: q1 = 1/2− (arctanθ)/π ,
q2 = q3 = 1/4.

Appendix D. Calculating Skewness and Kurtosis under H0

By definition, γ = E0
(
S3

M

∣∣D′)/Var3/2
0 (SM|D′) and κ = E0

(
S4

M
∣∣D′)/Var2

0 (SM|D′)− 3.
We first calculate E0

(
S3

M

∣∣D′). Let G′ij = Gij − EGij. We have

E0

(
S3

M

∣∣∣D′) = E0

(
∑i<j d′ijG

′
ij

)3
= ∑i<j, m<n,s<t d′ijd

′
mnd′stEG′ijG

′
mnG′st.

Figure S3A lists all combinations of (i, j, m, n, s, t) with EG′ijG
′
mnG′st 6= 0; then

E0

(
S3

M

∣∣∣D′) =

(
N
2

)
µ4EG′4ij +

(
N
3

)(
µ5EG′2ij G′ik + µ6EG′ijG

′
jkG′ik

)
+

(
N
4

)(
µ7EG′ijG

′
jkG′kl + µ8EG′ijG

′
ikG′il

)
,

where (µ4, µ5, µ6, µ7, µ8) are provided in Supplemental Data. Similarly,

E0

(
S4

M

∣∣∣D′) = E0

(
∑i<j d′ijG

′
ij

)4
= ∑i<j, m<n,s<t,x<y d′ijd

′
mnd′std

′
xyEG′ijG

′
mnG′stG

′
xy.

Figure S3B lists combinations of (i, j, m, n, s, t, x, y) with EG′ijG
′
mnG′stG

′
xy 6= 0. Thus,

E0
(

S4
M
∣∣D) = (N

2

)
µ9EG′4ij +

(
N
3

)(
µ10EG′3ij G′ik + µ11EG′2ij G′2ik + µ12EG′2ij G′jkG′ik

)
+

(
N
4

)(
µ13EG′2ij G′jkG′kl+

µ14EG′ijG
′2
jk G′kl + µ15EG′2ij G′ikG′il + µ16EG′ijG

′
jkG′ikG′il + µ17EG′ijG

′
jkG′klG

′
il + µ18EG′2ij G′2kl

)
+(

N
5

)(
µ19EG′ijG

′
jkG′klG

′
lm + µ20EG′ijG

′
ikG′ilG

′
im + µ21EG′ijG

′
ikG′ilG

′
lm + µ22EG′ijG

′
ikG′2lm

)
+

(
N
6

)
µ23EG′ijG

′
ikG′lmG′ln

The constants (µ9, · · · , µ23) are dependent on D and are provided in Supplemental
Data. Note that Var0(SM|D′) ∼ O

(
N3), E0

(
S3

M

∣∣D′) ∼ O
(

N4); thus, γ ∼ O
(

1/
√

N
)

.
Similarly, we can prove κ ∼ O(1/N).

Appendix E. Improve p-Value Approximations by Adjusting for Skewness
and Kurtosis

We assume that E0Z = 0, Var0Z = 1, γ = E0Z3 and κ = E0Z4 − 3 under the original
probability measure P0. The tail probability P0(Z > b) for a large value of b is sensitive to
the non-normality of Z, characterized by γ and κ. We define a new probability measure by
embedding to the exponential probability density

dPξ = exp(ξZ− φ(ξ))dP0 (A10)

where φ(ξ) = log E0 exp(ξZ) is the log moment generating function. Note that γ = φ′′′ (0)
and κ = φ′′′′ (0). Because E0(Z) = 0 and Var0(Z) = 1, Taylor’s expansion leads to
φ(ξ) ≈ ξ2/2 + γξ3/6 + κξ4/24. Under Pξ , we have

Eξ Z =
∫

ZdPξ = φ′(ξ) ≈ ξ +
γ

2
ξ2 +

κ

6
ξ3 (A11)
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and
Varξ Z = φ′′ (ξ) ≈ 1 + γξ +

κ

2
ξ2 (A12)

We choose ξ such that Eξ Z ≈ b by numerically solving an equation

ξ +
γ

2
ξ2 +

κ

6
ξ3 = b (A13)

Under the probability measure Pξ , Z ∼ N
(
b, σ2) approximately with σ2 = 1 + γξ + kξ2/2

in (A12). By the likelihood ratio identity and (A10), we have

P0(Z > b) = E0 IZ>b = Eξ
dP0

dPξ
IZ>b = Eξeφ(ξ)−ξZ IZ>b = eφ(ξ)Eξ e−ξZ IZ>b (A14)

Note that e−ξZ decays very fast when Z increases. Thus, the integral Eξ e−ξZ IZ>b does
not heavily depend on the tail distribution of Z. Assuming Z ∼ N

(
b, σ2) under Pξ , we can

verify that

Eξe−ξZ IZ>b = e−bξ+ σ2ξ2
2 Φ(−σξ) (A15)

Combining (A14) and (A15) gives P0(Z > b) ≈ exp
(
φ(ξ)− bξ + σ2ξ2/2

)
Φ(−σξ),

which is further approximated as

P0(Z > b) ≈ exp
(
−bξ +

1 + σ2

2
ξ2 +

γ

6
ξ3 +

κ

24
ξ4
)

Φ(−σξ),

because φ(ξ) ≈ ξ2/2 + γξ3/6 + κξ4/24 based on the Taylor expansion. This proves (9). If
we correct skewness but assume kurtosis κ = 0, then φ(ξ) ≈ ξ2/2 + γξ3/6. We recalculate
ξ by setting κ = 0 in (A13) to derive ξ =

(√
1 + 2γb− 1

)
/γ. This proves (10).
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