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ABSTRACT
Castanopsis sieboldii (Makino) Hatus is an evergreen tree that distributes in Eastern Asia including
Islands of Korea and Japan. The chloroplast genome of C. sieboldii was successfully sequenced. Its
length is 160,705bp long (GC ratio is 36.8%) and has four subregions: 90,821bp of large single copy
(34.6%) and 19,014bp of small single copy (30.8%) regions are separated by 25,075bp of inverted
repeat (42.8%) regions including 134 genes (89 protein-coding genes, eight rRNAs, and 37 tRNAs).
Interspecific variations of Castanopsis are at a moderate level in comparison to those of the other gen-
era. Phylogenetic trees show that C. sieboldii chloroplast genome was clustered with the other two
Castanopsis species.

ARTICLE HISTORY
Received 30 May 2021
Accepted 5 August 2021

KEYWORDS
Chloroplast genome;
Castanopsis sieboldii;
interspecific variation;
phylogenetic ana-
lysis; Fagaceae

Castanopsis sieboldii (Makino) Hatus, belonging to Fagaceae,
is a species of an evergreen tree that distributes in subtrop-
ical Eastern Asia, including Islands in Western and Southern
Korea (Park, An, et al. 2020) and Honshu, Shikoku, and
Kyushu Islands in Japan (Yamazaki 1987). This species is con-
sidered as a climax species in an evergreen forest (Yamanaka
1966). The genetic diversity of C. sieboldii in Japan is rela-
tively high (Aoki et al. 2014): one of the major reasons is that
they have been isolated in islands. It is one of hot topics to
understand the origin of the island species based on chloro-
plast genomes, such as founder effects (Del Valle et al. 2019),
multiple introductions in the islands (Nock et al. 2019), or the
origin of endemic species in the islands (Yang et al. 2018;
Park, Bae, et al. 2021). To understand its genetic diversity of
C. sieboldii in Korea, as the first step, we completed the first
chloroplast genome of C. sibboldii from the sample isolated
in one of the islands in Korea, Oenalodo Island.

Total DNA of C. sieboldii collected at Singeum-gil,
Bongnae-myeon, Goheung-gun, Jeollanam-do, Republic of
Korea (34�28’18.580’N, 127�28’04.410’E) was extracted from
fresh fruits with a DNeasy Plant Mini Kit (QIAGEN, Hilden,
Germany). The voucher was deposited in the InfoBoss Cyber
Herbarium (IN; http://herbarium.infoboss.co.kr/; Voucher num-
ber: IB-01087; Contact: Suhyeon Park; shpark817@infoboss.co.
kr). Genome sequencing was conducted using NovaSeq6000
at Macrogen Inc., Korea, and de novo assembly and sequence
confirmation were done by Velvet v1.2.10 (Zerbino and
Birney 2008), GapCloser v1.12 (Zhao et al. 2011), BWA v0.7.17
(Li 2013), and SAMtools v1.9 (Li et al. 2009) in the Genome

Information System (GeIS; http://geis.infoboss.co.kr/) which
has been utilized in the previous organelle genomic studies
(Park, Kim, Xi, Nho, et al. 2019; Park, Park, Kim, et al. 2019;
Park, Yun, Oh, et al. 2019; Park, Lee, et al. 2021; Park, Min, et
al. 2021; Joo et al. 2020; Park and Oh 2020; Kim et al. 2021).
Geneious PrimeVR v2020.2.4 (Biomatters Ltd., Auckland, New
Zealand) was used for chloroplast genome annotation based
on Castanopsis fargesii chloroplast (NC_047230; Ye et
al. 2019).

The chloroplast genome of C. sieboldii (MZ028444) is
160,705 bp (GC ratio is 36.8%) and has four subregions:
90,821 bp of large single copy (34.6%) and 19,014 bp of small
single copy (SSC; 30.8%) regions are separated by 25,705 bp
of the inverted repeat (IR; 42.8%). It contains 134 genes (89
protein-coding genes, eight rRNAs, and 37 tRNAs); 20 genes
(nine protein-coding genes, four rRNAs, and seven tRNAs) are
duplicated in the IR regions.

Based on pair-wise alignments against chloroplast
genomes of C. fargesii and C. concinna, distributed in
Southern China (Sun et al. 2014; Daniel Hinsinger and Sergej
Strijk 2017), 520 single nucleotide polymorphisms (SNPs) and
144 insertion and deletion (INDEL) regions covering 709 bp
and 220 SNPs and 125 INDEL regions covering 533 bp were
identified, respectively. Numbers of these interspecific varia-
tions are fewer in number than those of the four species of
Viburnum, displaying 944 to 1295 SNPs and 1697-bp to 3080-
bp INDELs (Park, Xi, et al. 2020), and Potentilla micrantha and
Potentilla centigrana (1570 SNPs and 3,451-bp INDELs;
Ferrarini et al. 2013; Park et al. 2019), and Potentilla freyniana
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and Potentilla chinensis (1236 SNPs and 2295-bp INDELs; Park
et al. 2019; Dang et al. 2020). Moreover, they are similar or
higher than the numbers of intraspecific variations identified
from the samples between Korea and China (Heo et al. 2019;
Oh et al. 2019a, 2019b; Park, Kim, Xi, Oh, et al. 2019; Park,
Suh, et al. 2020; Heo et al. 2020; Oh and Park 2020). These
results indicate that the numbers of interspecific variations
identified from the three Castanopsis species are at a moder-
ate level.

Thirteen Fagaceae chloroplast genomes including one out-
group species, Betula platyphylla, were used for constructing
bootstrapped Maximum-Likelihood (ML), Neighbor-joining
(NJ), and Bayesian Inference (BI) phylogenic trees using
MEGA X (Kumar et al. 2018) and MrBayes v3.2.6 (Ronquist et
al. 2012), respectively, after aligning whole chloroplast
genomes by MAFFT v7.450 (Katoh and Standley 2013). A
heuristic search was used with nearest-neighbor interchange
branch swapping, the Tamura-Nei model, and uniform rates
among sites to construct ML and NJ phylogenetic trees with
default values for other options using MEGA X. Bootstrap
analyses with 1000 and 10,000 pseudoreplicates were con-
ducted for ML and NJ trees, respectively. The GTR model
with gamma rates was used as a molecular model and
Markov-chain Monte Carlo algorithm was employed for
1,100,000 generations, sampling trees every 200 generations,
with four chains running simultaneously for BI tree. Three
phylogenetic trees display that three Castanopsis species are
clustered in one clade and are congruent to each other with
high supportive values of ML, NJ, and BI (Figure 1). In add-
ition, the topology of Castanopsis, Castanea, Quercus, and

Fagus genera in the phylogenetic tree is congruent to the
previous phylogenetic and morphological study (Manos et al.
2008). Taken together, our chloroplast genome is useful to
investigate phylogenetic relationships of C. sieboldii as well as
its genetic diversities along with geographical distribution.
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