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Abstract

Background

Sentinel physician surveillance in communities has played an important role in detecting

early signs of epidemics. The traditional approach is to let the primary care physician volun-

tarily and actively report diseases to the health department on a weekly basis. However, this

is labor-intensive work, and the spatio-temporal resolution of the surveillance data is not pre-

cise at all. In this study, we built up a clinic-based enhanced sentinel surveillance system

named “Sentinel plus” which was designed for sentinel clinics and community hospitals to

monitor 23 kinds of syndromic groups in Taipei City, Taiwan. The definitions of those syn-

dromic groups were based on ICD-10 diagnoses from physicians.

Methods

Daily ICD-10 counts of two syndromic groups including ILI and EV-like syndromes in Taipei

City were extracted from Sentinel plus. A negative binomial regression model was used to

couple with lag structure functions to examine the short-term association between ICD

counts and meteorological variables. After fitting the negative binomial regression model,

residuals were further rescaled to Pearson residuals. We then monitored these daily stan-

dardized Pearson residuals for any aberrations from July 2018 to October 2019.

Results

The results showed that daily average temperature was significantly negatively associated

with numbers of ILI syndromes. The ozone and PM2.5 concentrations were significantly posi-

tively associated with ILI syndromes. In addition, daily minimum temperature, and the ozone

and PM2.5 concentrations were significantly negatively associated with the EV-like syn-

dromes. The aberrational signals detected from clinics for ILI and EV-like syndromes were

earlier than the epidemic period based on outpatient surveillance defined by the Taiwan

CDC.
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Conclusions

This system not only provides warning signals to the local health department for managing

the risks but also reminds medical practitioners to be vigilant toward susceptible patients.

The near real-time surveillance can help decision makers evaluate their policy on a timely

basis.

Introduction

Sentinel physician surveillance is a traditional and fundamental approach to monitor disease

activity in communities. Many countries such as France, Japan, and the United Kingdom have

set up sentinel-based surveillance for a long time [1–3]. Different countries have had different

focuses of diseases, but influenza-like illness (ILI) has been one of the common focuses for sur-

veillance. The data from sentinel surveillance can be used to compute the incidence of diseases

or outpatient consultation rate [4]. In order to cope with emerging infectious diseases or the

potential threats of bioterrorism, syndromic surveillance in the emergency room (ER) has

been developed to detect any aberrations of syndromic groups rather than specific diseases [5].

The success of using such a surveillance system has in part been due to the fact that it does not

need any extra work from physicians. The monitored data are automatically retrieved and

computed from hospital information systems (HIS). The algorithms for aberration detection

can be applied to either disease diagnosis codes based on the International Classification of

Diseases Ninth or Tenth Revision (ICD-9 or ICD-10) [6] or free-text-based chief complaints

[7]. Although surveillance in an ER setting has shown good performance for early warning,

our past experience showed that aberration signals of ILI from an outpatient setting can be ear-

lier than those from ER, especially for novel pandemic flu in 2009 [8]. In the United States, the

feasibility of applying outpatient surveillance for ILI at the community level has been demon-

strated, with a pattern consistent with syndromic and virological surveillance [9]. The advan-

tages of syndromic surveillance and sentinel surveillance can be integrated to ensure

community health quickly and precisely. The idea of precision public health can take the right

intervention for the right population swiftly [10]. The United Kingdom has had national syn-

dromic surveillance based on multiple health care settings including a telehealth triage system,

general practice and ER for 20 years [11]. The system has become an important component of

the public health system for early warning and situational awareness.

In Taiwan, there have been many infectious-disease-related surveillance systems (https://

nidss.cdc.gov.tw/en/) such as notifiable infectious disease reporting systems, school-based

infectious disease reporting systems, syndromic surveillance systems in ER, and outpatient

and hospitalization surveillance from national health insurance data. In December 2009, Tai-

wan’s CDC (Centers for Disease Control) discontinued its sentinel physician surveillance sys-

tem for two major reasons, including the labor-intensive reporting process (86.08% reporting

via fax or phone) and the representativeness issue [12]. Syndromic surveillance and national

health surveillance can capture the epidemic situation at a national or city level, but the timeli-

ness of data exchange, spatial resolution and the number of monitored syndromic groups are

limited. Based on past epidemic experience, daily and small-area surveillance can detect early

aberrations [8]. In addition, emerging infectious diseases do not have typical symptoms at the

early stage of an epidemic. Traditional disease-based reporting systems cannot capture this

kind of signal. Therefore, we set up a clinic-based surveillance system to monitor 23 kinds of

syndromic groups in communities. Through longitudinal surveillance and sensitive statistical

models, the system can automatically remind medical practitioners of the epidemic situation
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of different syndromic groups and help them remain vigilant to susceptible patients. Further-

more, local health departments can take action based on aberrations to prevent the epidemic

from getting worse and to reduce the severity of the infected cases. In this study, we used our

first-year data on ILI and enterovirus-like (EV-like) illness in Taipei City, Taiwan to evaluate

the timeliness of the “Sentinel plus” system for detection of aberrations at the earliest stages.

Materials and methods

Ethics

This study was approved by the Institutional Review Board on Biomedical Science Research,

Academia Sinica (AS-IRB-BM-18017). For participating clinics, the research team needed to

receive written consent from the chief physician who is in charge of the clinic first and then

activated their accounts. The collaborating two companies in charge of the clinics’ hospital

information systems (HIS) helped set up the computing and uploading a plugin in the systems’

background. The data collected in these systems were all aggregated data without any patient

identifiers. The data were aggregated into 23 syndromic groups and seven age groups before

being uploaded to the HIS providers’ server. The data visualization is displayed with four dif-

ferent spatial resolutions including clinics, villages, townships and the whole city. The ILI and

EV-like illness aggregated data we used are provided at the open repository, figshare.com (10.

6084/m9.figshare.11497137).

Data source

In July 2018, we began to set up a clinic-based enhanced sentinel surveillance system named

“Sentinel plus” which was designed for sentinel clinics and community hospitals to monitor 23

kinds of syndromic groups to detect early signs of epidemics. The list of the 23 syndromic

groups is shown in S1 File. A snapshot of the Sentinel plus is shown in S2 File. Due to the

closed environment of information systems in clinics, they used different HIS and data

exchange via virtual private networks (VPN). The research team collaborated with the HIS

providers with the top two market shares in Taiwan to pipeline aggregated data from clinics to

Sentinel plus. In addition, the data from community hospitals were via point-to-point trans-

mission with encryption. The specific International Classification of Diseases (ICD) codes of

monitored syndromic groups from medical records of participating clinics were computed.

Here, we used two syndromic groups, i.e. ILI for all ages and EV-like illness for ages 0–6 from

Sentinel plus. ICD-10 diagnoses of daily visits from July 2018 to July 2019 were obtained from

58 participating clinics and eight community hospitals in Taipei City (Fig 1). EV-like data

were not collected in the community hospitals. Thus, the EV-like data only include data from

clinics.

The definition of ILI with ICD-10 diagnoses was adopted from the International Society for

Disease Surveillance, and the definition of EV-like illness was adopted from one local study

[13] in Taiwan. In addition to surveillance data, we also incorporated weather data and air pol-

lutants into the prediction model. Daily meteorological data were downloaded from Taiwan’s

Central Weather Bureau (https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp). Air qual-

ity monitoring data were downloaded from the Taiwan Air Quality Monitoring Network

(TAQMN) (https://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx).

A general representation of the statistical model

The relationship between environmental exposure and health outcomes, such as commonly

daily mortality or morbidity counts, is an important research topic, and many epidemiological
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studies attempt to elucidate these links [14, 15]. However, count data are often overly dis-

persed. A common way to deal with overdispersion for count data is to use a generalized linear

model (GLM) framework, where the most common approach is a quasi-Poisson or a negative

binomial regression model [16]. Moreover, the effect of a specific environmental exposure

event is not limited to the period when it is observed, but is delayed in time [17, 18]. This situa-

tion also occurs when assessing the short-term effects of environmental stressors, such as

meteorological conditions [19, 20] and air quality [21, 22], for ILI and EV. Therefore, it

requires the use of statistical models that are flexible enough to describe lagged associations

between the health outcomes and environmental factors. Steps in variable selection during

model building are described as follows.

Step 1. Reduce the number of variables in the dataset by selecting candidate variables for

the model. This can be achieved by reviewing the existing literature and consulting with

experts.

Step 2. Apply appropriate variable selection method within the candidate variables to

include variables in the final model.

If we are interested in finding to what extent there is a numerical relationship between a

response variable and explanatory variables of interest, using their correlation coefficients will

give misleading results if there is another, confounding variable that is numerically related to

both variables of interest. This misleading information can be avoided by controlling for the

confounding variables, which is done by computing the partial correlation coefficient. To

decide whether or not a covariate should be added to the model, the partial correlation test,

Fig 1. Spatial distribution of participating clinics and community hospitals in Taipei City.

https://doi.org/10.1371/journal.pone.0254479.g001
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which controls the effect of other collected covariates, was conducted in this study. Moreover,

variance inflation factors were used for testing multicollinearity to avoid covariates being

correlated.

In this study, data on ICD-10 diagnoses come in the form of counts, and we relate these

counts to environmental factors and other covariates. To better account for over-dispersion

and lagged dependencies, we used a negative binomial regression model coupled with lag

structure functions to examine the short-term association (day-to-day variation) between ICD

counts and k meteorological variables. This model represents the counts of outcome events yt
at day t as

logðEðytÞÞ ¼ logðDÞ þ b0 þ
Xm

j¼1
aj � sjðxj; wj; tÞ þ

Xp

k¼1
bkzk; t; t ¼ 1; 2; . . . ; n ð1Þ

where αj, j = 1,2,. . .,m, β0, and βk, k = 1,2,. . .,p are regression coefficients. The logarithm of Δ
is an offset term. In this study, the number of clinics was specified as an offset variable.

The number of clinics here refers to the number of clinics that report ICD codes of a certain

disease on the day. Although most clinics are closed on Sundays and public holidays, the open-

ing days during weekdays may vary among clinics. Furthermore, not every participating clinic

will have patients with a certain disease every day, such as ILI or EV-like disease. Thus, the

offset term in the model is used to correct for the variation in the number of clinics. The vari-

ables zk,t include other covariates with linear effects specified by the related coefficients βk. Sta-

tistical significance for model coefficients was 0.05. The function sj and two row vectors

xj ¼ ðxj; t� l0 ; . . . ; xj; t� l; . . . ; xj; t� LÞ, wj ¼ ðwj; t� l0
; . . . ;wj; t� l; . . . ;wj; t� LÞ will be described in

detail later.

To explore the influence of environmental factors on ICD-10 counts of the ILI and EV-like

syndromic groups, two meteorological factors—average temperature for ILI and minimum

temperature for EV-like illness and relative humidity—and two air pollutants—PM2.5 and

ozone—are considered in the proposed model. Considering the collinearity and the goodness

of fit, different temperature variables were used in building the model for different syndromes

in this study. Furthermore, two additional covariates—day of the week and public holidays—

are included as dummy variables in both models, so as to cope with calendar effects.

Modelling lagged associations

In the presence of delayed effects for xj, the outcome at a given time t may be explained in

terms of past exposures xj, t-l, with l as the lag, representing the period elapsed between the

exposure and the response. The main complexity of modeling and interpreting dependencies

lies in the additional temporal dimension needed to express the association, beyond the usual

exposure–response relationship, as the health outcome depends on both intensity and timing

of past exposure. Nonetheless, the appropriate representation of the temporal pattern of such

dependencies may provide further insights into the association of interest and prevent biases

in estimates and predictions.

Assuming a linear exposure–response relationship, a general notation of exposure–

response function, sj, for xj can be given by

sjðxj; wj; tÞ ¼ xjw
T
j =
XL

l¼l0
wj; t� l ¼ ð

XL

l¼l0
xj; t� l � wj;t� lÞ=

XL

l¼l0
wj; t� l ð2Þ

where xj ¼ ðxj; t� l0 ; . . . ; xj; t� l; . . . ; xj; t� LÞ and wj ¼ ðwj; t� l0
; . . . ;wj; t� l; . . . ;wj; t� LÞ.

The functions sj denote smoothed relationships defined by the lag-response vector wj in

terms of the exposure history to the environmental factor xj measured over the lag interval l =

l0, . . ., L, with l0 and L as the minimum and the maximum lag, respectively. This
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parameterization is such that the lag-response function wj, t-l is directly defined as a lag struc-

ture which may represent different time scales depending on the study.

In this study, the lag-response function wj, t-l is modeled by indicators for each lag l to iden-

tify the linear exposure–response association and is defined as: wj, t-l = 1, if the partial correla-

tion between xj, t-l and yt is statistically significant; and wj, t-l = 0, otherwise. Statistical

significance for the partial correlation was 0.1.

Aberration detection rule and forecasting procedure

After fitting the negative binomial regression model, residuals were further rescaled to Pearson

residuals [8]. The standardized Pearson residuals from the fitted model on n consecutive days

were denoted as

Rt ¼ ðyt � ŷtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðŷtÞ

p
; for t ¼ 1; 2; . . . ; n; ð3Þ

where ŷ t is the fitted value given by the model. We then monitored these daily standardized

Pearson residuals for any aberrations.

Since the sample size n is often large, the standardized Pearson residuals could be assumed

to be approximately distributed normally, with mean 0 and variance 1. Therefore, we proposed

a simple rule by directly monitoring the series of Pearson residuals. When a Pearson residual

was larger than the 100(1−α)th percentile of the standard normal distribution, a signal was

issued for the day to report a possible aberrant outbreak. In this study, the 97.5th percentile of

the standard normal distribution, i.e. 1.96, was used to set the threshold.

A main purpose of syndromic surveillance systems is usually to detect disease outbreaks

rapidly and effectively for guiding interventions to control epidemics. Thus predictability is

one of fundamental components of syndromic surveillance systems. To evaluate stability and

predictive accuracy, a rolling analysis with a fixed window is used to back-test our model on

the data in this study. The visiting volume and the age structure of the patients are different in

clinics and hospitals. Therefore, we separated the two kinds of data for model fitting and pre-

diction. In the clinics’ part, the count data of a total of 475 consecutive days (from 14 July 2018

to 31 October 2019) are then split into a training set (from 14 July 2018 to 30 June 2019) and a

testing set (from 1 July 2019 to 31 October 2019). The training set consists of the first 352 data

records, and the testing set consists of the rest of the data. We use the rolling window method

to keep the sample size constant at 352, by adding the 353th observation and dropping the first

observation. This procedure is repeated until the last observation of the entire sample. In the

community hospitals’ part, the count data of a total of 473 consecutive days (from 16 July 2018

to 31 October 2019) collected are also split into a training set (from 16 July 2018 to 30 June

2019) and a testing set (from 1 July 2019 to 31 October 2019). The constant rolling window of

HIS data is set to 350 for the rolling window method.

The rolling forecast errors for the one-step-ahead forecast are computed across all testing

data, and predictive performance is evaluated using the root forecast mean squared error

(RMSE) and the mean absolute percentage error (MAPE), which are given as follows.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

t¼1
ðyt � ŷtÞ

2

r

ð4Þ

MAPE ¼
1

n

Xn

t¼1

jyt � ŷtj
yt

� �

� 100% ð5Þ

In addition, comparison with the reference standard was required to evaluate the perfor-

mance of early aberration detection alerts from clinics and community hospitals, respectively.
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Although it was difficult to find a gold standard for defining the epidemic period, we use an

intuitive method to establish the "ground truth" about the existence and timing of an epidemic.

Two types of reference datasets were collected from open data of the Taiwan CDC, including

the syndromic surveillance system in ER, and outpatient surveillance from national health

insurance data, respectively. The temporal resolution of the data is weekly, starting from Sun-

day to Saturday. The spatial resolutions of outpatient and ER data are different because of the

availability of the total volume of visits. In outpatient data, the spatial unit is Taipei City. In ER

data, the spatial unit is the Taipei region including Taipei City, New Taipei City, Keelung City,

Yilan County, Lianjiang County, and Kinmen County. Two standard deviations above the

mean during the study period was used as the threshold of the gold standard method for both

datasets to determine when an epidemic occurred. Aberration signals were plotted on Saturday

when the number of weekly reported cases in the corresponding week exceeding the defined

threshold.

Results

Summary statistics of environmental factors over the training period are presented in Table 1.

It should be noted that the temperature variable was different in ILI and EV-like syndromes

because of the model selection. Daily average temperature was used for daily ILI syndromic

surveillance, while the daily minimum temperature was used for daily EV syndromic

surveillance.

Different lag times of environmental factors were considered in the process of model selec-

tion. Table 2 shows the lag structure of each environmental factor for daily ILI and EV syndro-

mic surveillance, respectively. In this study, the lag interval for each environmental factor was

specified from one to seven days. Under the assumption of a linear exposure–response rela-

tionship, the lag-response function is the moving average of lagged exposures. For daily ILI

Table 1. Descriptive statistics for daily data of environmental factors and ICD-10 counts of ILI and EV in Taipei City.

Environmental factor (unit) Min Q1 Q2 Q3 Max Mean Standard deviation

Temperature (˚C) (daily average) 13.30 19.98 23.45 28.10 31.90 23.55 4.74

Temperature (˚C) (daily minimum) 11.90 17.48 20.90 25.13 28.70 21.06 4.35

Relative 50.30 68.71 76.00 82.70 93.70 75.24 9.11

humidity (%)

O3 (ppm) 10.00 33.61 41.30 50.40 84.30 41.52 13.19

PM2.5 (μg/m3) 4.00 11.01 14.00 19.00 42.00 15.58 6.90

ICD-10 counts of ILI syndrome 49.00 803.50 1695.00 3200.75 5999.00 2071.07 1372.97

ICD-10 counts of EV syndrome 0.00 5.00 9.00 16.00 56.00 11.07 8.27

https://doi.org/10.1371/journal.pone.0254479.t001

Table 2. The lag-response functions of environmental factors for daily ILI syndromic surveillance.

Environmental factor Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

ILI syndrome Temperature (daily average) 1 1 1 1 1 1 1

Relative humidity 0 1 0 0 0 0 0

O3 1 0 0 1 0 0 0

PM2.5 0 0 0 0 1 1 1

EV syndrome Temperature (daily minimum) 1 1 1 1 1 1 1

Relative humidity 0 1 1 0 0 0 0

O3 0 1 1 1 0 1 0

PM2.5 1 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0254479.t002
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syndromic surveillance, daily average temperature, relative humidity, concentration of ozone

and concentration of PM2.5 were calculated using the moving average of lags 1–7, lag 2, lags 1

and 4, and lags 5–7, respectively. For daily EV syndromic surveillance, daily minimum temper-

ature, relative humidity, ozone and PM2.5 concentrations were calculated using the moving

average of lags 1–7, lags 2–3, lags 2–4 and 6, and lag 1, respectively.

Results of the negative binomial regression model on the daily series of ILI and EV-like syn-

dromes are presented in Table 3. In summary, the volume of ILI syndromes was significantly

high on Mondays and low on Tuesdays, public holidays and days excluding not only public

holidays but also the day after public holidays. Daily average temperature was significantly

negatively associated with ILI syndromes (p<0.01). The ozone and PM2.5 concentrations were

significantly positively associated with ILI syndromes. For EV surveillance, EV-like syndromes

were significantly high on Mondays and Fridays. Daily minimum temperature, the ozone and

PM2.5 concentrations were significantly negatively associated with the EV-like syndromes.

During the stage of model fitting, the adjusted R-squared values for the ILI syndromic model

and the EV syndromic model are 0.8867 and 0.7399, respectively.

To test multicollinearity, we examined variance inflation factors (VIF) for both models

including all explanatory variables. In S3 File, the VIFs are all less than 10, indicating that mul-

ticollinearity is not a serious concern.

We evaluated the performance of the proposed models for ILI and EV syndromic surveil-

lance in aberration detection from 14 July 2018 to 30 June 2019 in the following, respectively.

Fig 2 displays the time series of the average ILI syndromes from Sentinel plus. It also presents

epidemic signals generated by two defined thresholds, and aberration alerts from clinics and

community hospitals using our proposed model. Based on surveillance data of Taiwan’s CDC,

there was an ILI epidemic period during January to February in 2019 and the first outbreak

signal among outpatients (January 12, 2019; with blue + symbol) appeared earlier than that in

Table 3. Estimated coefficients from negative binomial regression.

ILI syndrome EV syndrome

Estimate Std. Error Estimate Std. Error

(Intercept) 4.7623�� 0.1371 1.4513�� 0.3094

Days of the week

Monday 0.2874�� 0.0347 0.2008�� 0.0683

Tuesday -0.1018�� 0.0341 0.0676 0.0713

Wednesday -0.0615� 0.0342 0.0102 0.0717

Thursday -0.0506 0.0342 0.0039 0.0714

Friday 0.0151 0.0345 0.1530� 0.0719

Saturday (Baseline) (Baseline)

Sunday 0.0213 0.0343 0.0816 0.0823

Public holidays

Public holidays -0.2579�� 0.0752 -0.0662 0.1610

Day after public holidays (Baseline) (Baseline)

Days excluding public holidays and day after public holidays -0.1468� 0.0618 -0.0012 0.1208

Temperature (ILI: daily average, EV: daily minimum) -0.0261�� 0.0022 -0.0181�� 0.0049

Relative humidity -0.0009 0.0011 -0.0032 0.0025

O3 0.0019�� 0.0009 -0.0094�� 0.0022

PM2.5 0.0037� 0.0018 -0.0069� 0.0030

Note: ‘�’: p-value < 0.05

‘��’: p-value < 0.01

https://doi.org/10.1371/journal.pone.0254479.t003
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ERs (February 9, 2019; with purple + symbol). For the results of our proposed model, the first

aberration alert from clinics (January 6, 2019; with red X symbol) was triggered earlier than

that from community hospitals (February 3, 2019; with symbol, green triangles). The first aber-

ration alert of ILI from clinics appeared approximately six days earlier than the defined epi-

demic period from outpatient surveillance of Taiwan’s CDC, 28 days earlier than the first

signal detected from community hospitals, and 34 days earlier than the first signal detected

from ER surveillance of Taiwan’s CDC.

The EV-like data were only collected in clinics. Fig 3 demonstrates the time series of the

average counts of EV-like syndromes from clinics. Based on outpatient surveillance of Tai-

wan’s CDC and the defined threshold in this study, there were two EV epidemics during the

study period. One was from November 2018 to January 2019; the other was in June 2019. In

Fig 2. Results of aberration detection by proposed method using ILI syndromes collected from Sentinel plus.

https://doi.org/10.1371/journal.pone.0254479.g002

Fig 3. Results of aberration detection by proposed method using EV syndromes collected from Sentinel plus.

https://doi.org/10.1371/journal.pone.0254479.g003
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the first epidemic period, the first aberration alert from clinics was generated on November 17,

2018 (with red X symbol) and was seven days earlier than the first outbreak signal of CDC EV

outpatient surveillance (November 24, 2018; with blue + symbol) and 49 days earlier than

CDC EV ER surveillance (January 5, 2019; with purple + symbol). In the second EV epidemic

period, the first aberration alert from clinics was issued on June 16, 2019 (with red X symbol).

Compared to the two streams of EV surveillance from Taiwan CDC, the first aberration alert

of clinics was six days earlier than the CDC EV outpatient surveillance (with blue + symbol)

but one day later than the CDC EV ER surveillance (with purple + symbol).

Fig 2 also shows that the proposed model issued sporadic alerts during the test period of the

ILI. However, there was no alert issued by OPD and ER surveillance. In Fig 3, the proposed

model based on ICD counts first shows the first aberration alert in mid-June during the test

period (1 July 2019 to 31 October 2019) of EV-like syndrome. Compared with the open weekly

data for OPD and ER released by Taiwan’s CDC, the proposed model can issue alerts one

week or the first day of the week before the related peaks. By contrast, based on OPD and ER

surveillance of Taiwan’s CDC and the defined threshold in this study, their data generated too

many false alerts, with both of them generating alerts weekly from August to October.

The one-step-ahead forecasts for ILI and EV syndromes are shown in Figs 4 and 5, respec-

tively. The overall predicted ICD counts pattern was consistent with the observed ICD counts

pattern. The RMSEs of ILI and EV are 308.78 and 9.27. The MAPEs of ILI and EV are 0.0917

and 0.2161.

Fig 4. One-step-ahead forecasts for forecast period for ILI syndromes in a rolling manner.

https://doi.org/10.1371/journal.pone.0254479.g004
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Discussion

Syndromic surveillance in ER settings around the world has shown good performance on early

warning of infectious diseases [23, 24]. On the other hand, sentinel physician surveillance in

communities can capture milder symptoms and is better suited to a younger population,

including pre-school children, students and young adults. With the help of health informatics,

the traditional way to report diseases manually by physicians can be replaced with an auto-

matic approach to compute the matching ICD-10 codes of the specific syndromes from hospi-

tal information systems. This method does not change the behavior of the physicians, i.e.

involves no additional workload, and could reduce the potential recall bias and improve the

timeliness of surveillance. This study demonstrates that applying the concept of syndromic

surveillance in clinics is feasible and performs well for aberration detection. Clinics are the

fundamental primary care system in communities and can reflect residents’ health condition

locally. Medical practitioners participating in the Sentinel plus system can access the system to

obtain aggregated results of the prevalence of symptoms in neighboring areas. They also can

view the aberration signal at the city level and also can check the risk level of their own clinic

and their surrounding areas. This system not only provides warning signals to the local health

department for managing the risks but also reminds the medical practitioners to be vigilant

toward susceptible patients.

The two syndromic groups were used to develop methods for improving the temporal accu-

racy of early aberration detection in this study. However, a hospital-emergency-room-based

real-time outbreak and disease surveillance system has been established by Taiwan’s CDC,

Fig 5. One-step-ahead forecasts for forecast period for EV syndromes in a rolling manner.

https://doi.org/10.1371/journal.pone.0254479.g005
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which aims to collect individual ICD-9-CM and ICD-10 codes from patient ER visits at desig-

nated emergency response hospitals. A week later, a surveillance report is released by the Tai-

wan CDC’s open data portal. The focuses of the ER system and Sentinel plus are different.

Sentinel plus focuses on mild diseases at the early stage of an epidemic in a community,

whereas the ER system focuses on severe diseases, and the patients might come from a wider

area, including other townships and counties.

A growing body of epidemiological and clinical evidence has shown that daily air pollution

and meteorological factors increase the risks of numerous diseases [19–22]. In this study, envi-

ronmental air pollutants such as PM2.5, PM10, ozone, nitrogen oxides, sulfur dioxide and car-

bon monoxide and meteorological factors, such as daily maximum, minimum, and average

temperatures, relative humidity, air pressure, wind speed, and precipitation, were considered

as covariates for model building. Our study suggested that daily average temperatures, relative

humidity, ozone, and PM2.5 were associated with ILI cases, and daily minimum temperatures,

relative humidity, ozone, and PM2.5 were associated with EV cases.

Model selection is an important part of any statistical analysis. In this study, the model is

selected based on hypothesis testing. Final estimation, interpretation and prediction are then

based on the selected model. We used a negative binomial regression model to couple with lag

structure functions to examine the short-term association between ICD counts and meteoro-

logical variables. Historically, a primary use of regression was to illuminate a supposed rela-

tionship between independent variables and an outcome variable. The goal has been to

understand an important relationship and explain it using the data that the regression was fit

to. This step does not directly address predictive accuracy, but it can provide useful insight in a

predictive setting. With the advent of big data, regression is widely used to form a model to

predict individual outcomes for new data, rather than explain data in hand (i.e., a predictive

model). Variable selection methods are used to reduce dimensionality and create more com-

pact models. In this case, the focus is not on predicting individual cases, but rather on under-

standing the overall relationship. Statistical tests can help us to investigate the statistical

significance of the relationships modelled through regression analysis; however, some limita-

tions should be noticed. Results of significance tests are based on probabilities and as such can-

not be expressed with full certainty. When a test shows that a difference is statistically

significant, then it simply suggests that the difference is probably not due to chance. Statistical

inferences based on the significance tests cannot be said to be entirely correct evidence con-

cerning the truth of the hypothesis. This problem occurs because all hypothesis tests have a

false discovery rate. Thus we should avoid misinterpretations and misuses of statistical signifi-

cance tests.

We used Pearson residuals of the proposed GLM model for detecting aberrations of an epi-

demic in the early stage, which is that if the Pearson residual per day in an area exceeds a criti-

cal value (say 1.96, in this study), an epidemic in that area will begin in the following weeks (a

warning of an epidemic). For the two syndromic groups illustrated in this study, the early

stages of an epidemic might be detectable in pre-epidemic periods. The alert signals of the pro-

posed methods appeared earlier than those of OPD and ER surveillance. There were still spo-

radic signals during post-epidemic periods, because ICD-10 counts were higher than in the

non-epidemic periods. The epidemic aberrations presented herein are based on ICD-10 counts

of syndromic groups from clinics. Because clinics were recruited on a voluntary basis, our

results might include potential biases. For building a stable surveillance system and applying

the proposed method of epidemic warning to surveillance, it will be important to further study

setting thresholds for the onset and end of epidemics for specific diseases.

In our model performance, data with low counts have an increased risk of producing false

positive alarms. This can be solved by setting the threshold value, which is determined by the
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best compromise between sensitivity and specificity for a given disease. However, a higher

threshold will cause a lower sensitivity. Thus, another solution is as follows. If aberrations are

significant on consecutive days, then an aberration alert is issued. We expect this rule will

reduce the number of false positive alarms without reducing the system sensitivity.

Influential points can seriously distort all aspects of data analysis such as altering the estima-

tion of the regression coefficient and swaying the outcome of statistical inference. Detecting

multiple influential observations is much more challenging in a high-dimensional setting, due

to the notorious “masking” and “swamping” effects. In the language of multiple testing, mask-

ing is the problem of getting false negatives and swamping is the problem of getting false posi-

tives. In this paper, the masking effect would not have substantially influenced our results by

examining forecasting performance. However, we might encounter this problem in the future

for other symptom groups surveillance. To quantify the influence of an observation, we can

compare a predefined measure evaluated on the whole dataset and the measure evaluated on a

subset of the data leaving out the observation under investigation. However, multiple influen-

tial observations are commonly encountered, and measures based on the leave-one-out

approach may be ineffective when there are multiple influential observations due to the mask-

ing and swamping effects. Since the number of influential observations is generally unknown

in practice, it is natural to employ a notion of leave-many-out or group deletion.

Routine analysis of public health surveillance data to detect departures from historical pat-

terns of disease frequency is required to enable timely public health responses to decrease

unnecessary morbidity and mortality. The aim of such surveillance includes detection of epi-

demics, especially detection in the early stage, essential for the control of epidemics of infec-

tious diseases. Because infectious disease threats usually start locally and subsequently spread

widely, observation of the data for small areas is important in order to deny them the opportu-

nity to spread further among people and overwhelm health systems. For example, Weng et al.

[25] observed by using spatio-temporal analysis that the epidemic patterns of EV and ILI both

diffuse from the northern suburban districts to central Taipei. Chan et al. [26] found that mild

EV cases had begun to rise in May 2008, and the outbreak spread from south to north before

the detected spatio-temporal clusters in June 2008. Chan et al. [8] found that the 2009 H1N1

pandemic flu in different regions of Taiwan reflected different waves of transmission in August

2009. Tang et al. [27] proposed that the influence of latitude variation on the spatial spreading

of HFMD provided an important basis for detecting HFMD epidemic trends. Thus, warnings

of epidemics in small areas might provide information on epidemics in large areas. Our system

not only provides warning signals to the local health department for managing the risks but

also reminds medical practitioners to be vigilant toward susceptible patients. Participating

clinics can view aberration signals at the city level and also can check the risk level of their own

clinic and neighboring areas. Although a national surveillance system can provide nationwide

data, it takes time to integrate information from all over the country. For government decision

making, it is helpful to have predictions of future epidemic trends. For this purpose, our sur-

veillance system can provide both high spatial and temporal resolution for understanding the

progress of an epidemic.

In this study, we concurrently compared the signals of ILI in clinics and community hospi-

tals. The results found that the signals detected from clinics were earlier than the signals

detected from outpatient surveillance, from ER surveillance of Taiwan’s CDC, and also from

community hospitals. In addition, we found that the signals from outpatient surveillance of

Taiwan’s CDC were also earlier than community hospitals’. The community hospitals’ signals

were only earlier than ER surveillance of Taiwan’s CDC. The data from outpatient surveillance

were originally from national health insurance data including different levels of care providers,

from clinics to large hospitals. Although the total visiting volume was quite high in outpatient
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surveillance, the patients of medical centers and regional hospitals were mostly from other cit-

ies or townships because of the pattern of healthcare-seeking behaviors [28]. This might dilute

the true epidemic situation locally. In addition, the temporal resolution of outpatient surveil-

lance was weekly and the spatial resolution was at the city level. However, the clinic surveil-

lance can have better daily temporal resolution and village (community) spatial resolution. ER

surveillance here reflects the peaking wave of the ILI epidemic during Chinese New Year vaca-

tion, when most of hospitals and clinics were closed, and only ERs were open [29].

Statistical process control (SPC) combines time series analysis methods with graphical pre-

sentation of data, often yielding insights into the data more quickly and in a way more under-

standable to lay decision makers. Its primary tool, the control chart, provides us with a method

of better understanding data for monitoring epidemic disease outbreaks. Although SPC is a

versatile tool which can help us identify long-term and consistent change in trends, it usually

cannot identify rapid outbreaks. A comparison to more traditional charts such as the u-chart

and c-chart would be more relevant.

In addition, we also compared a statistical process control method, cumulative sum

(CUSUM), and our proposed method. CUSUM [30, 31] is used widely in surveillance systems

because it is easy to compute and interpret. Results of aberration signals for ILI and EV-like

syndromes generated by the proposed method and CUSUM are shown in S4 and S5 Files,

respectively. In terms of early aberration detection performance, our proposed method outper-

forms CUSUM. The latter tends to detect sustained changes, because it accumulates the devia-

tions from the mean value over an interval rather than considering deviations at a single time

point. Because of its cumulative nature, it may miss subtle changes in the early stages of the

outbreak that occur leading up to a major increase in disease incidence. This feature also

causes warning signals to continue to appear after the epidemic. In contrast, the alarm signals

of our proposed method can detect the subtle changes in the early stage of the outbreak.

The annual epidemic seasons of enterovirus in Taiwan were May to June and September to

October [26, 32]. In our study period, we indeed detected EV-like signals among those aged

from 0 to 6 in September 2018 and May-June 2019. However, we also detected another big

wave of EV epidemic in November-December 2018. In clinics, we found the first signal was

issued on November 17, 2018. The next week (the 48th week of 2018), Taiwan CDC issued the

EV weekly report indicating the EV isolation rate in communities was 47.8% (https://www.

cdc.gov.tw/Category/MPage/0IaI1fGlb_ZPJ_ER_aJWKg). From the 49th week to 52th week of

2018, the EV isolation rates were 60%, 43.8%, 41.3% and 54.9%, respectively. The major sub-

type of EV was Coxsackie A virus, exceeding 80% of all positive isolates. The signals from clin-

ics were earlier than outpatient and ER surveillance of Taiwan’s CDC. We found that the

patients aged 0–6 accounted for 21% of total visits in clinics, but the same age group in com-

munity hospitals only accounted for 4%. That might be good evidence of the need to monitor

pediatric-related infections in clinics.

Limitations

Several limitations of this study should be mentioned. First, the enhanced clinic-based sentinel

surveillance system, Sentinel plus, started to recruit the clinics in June 2018, but it has only

been slightly over a year since data collection began for evaluation of the system in this study,

and this may limit the generalizability of the study results. However, the recruiting process is

still ongoing, and we believe that an increase in the number of clinics will help us capture

more early-alert signals. Second, the system does not include identifiers for individual patients,

but instead collects syndromes diagnosed and ICD codes automatically fetched by the hospital

information systems. Therefore, some patients who made visits more than once may have had
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their visits counted independently, yielding inaccurate estimates of variance. Because the sys-

tem included at most five diagnosis codes for each patient, and it is less likely that patients

would visit medical care providers more than once in the same day, this limitation might affect

our conclusion only to a small degree. Third, lag structures and model coefficients are not

fixed over time. Thus, the model should be established and calibrated according to the differ-

ent characteristics of infectious diseases and the varied needs of different areas. The incorpo-

ration of automatic model calibration should be considered in further studies.

Conclusions

Traditional surveillance systems often operate with considerable delay; thus complementary

surveillance systems are required to provide the necessary lead time. Syndromic surveillance

systems may fulfil this role. Clinics are the fundamental primary care system in communities

and can reflect the residents’ health condition locally. The Sentinel plus system is the funda-

mental primary surveillance system in communities and can reflect the residents’ health condi-

tion locally. Medical practitioners participating in the system can access the system to obtain

aggregated results of the prevalence of symptoms in neighboring areas. This system not only

provides warning signals to the local health department for managing the risks but also

reminds the medical practitioners to be vigilant toward susceptible patients. The innovations

of this study are to set up the community-based syndromic surveillance system and to consider

the simplicity and stability of the statistical model for routine surveillance to provide timely

signals. We are convinced that the temporal and spatial resolution of this system is better than

traditional symptom monitoring systems. The near real-time surveillance can help decision

makers take action or evaluate policies for controlling epidemics.
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