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Abstract: Three novel gold(III) complexes (1–3) of general composition [Au(Bipydc)(S2CNR2)]Cl2
(Bipydc = 2,2′-bipyridine-3,3′-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC),
ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have
been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques.
The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the
complexes. The in vitro cytotoxic studies demonstrated that compounds 1–3 were highly cytotoxic
to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than
cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was
further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex
2 induces cell death through apoptosis.

Keywords: gold(III); 2,2′-bipyridine-3,3′-dicarboxylic acid; anti-cancer activity; dithiocarbamates;
apoptosis

1. Introduction

The clinical success of platinum anti-cancer drugs [1–4] prompted a great deal of
attention towards the development of isoelectronic gold(III) anti-cancer complexes with
the anticipation that they might have activity similar to that of platinum(II) anti-tumor
drugs [5–17]. Both gold(III) and platinum(II) give rise to square planar geometries; but
the high redox potential for gold(III) compounds, their relatively poor stability, and faster
ligand substitution reactions could impede their application as medicinal agents under
normal physiological conditions [5–14,17,18]. However, the coordination of bidentate
and polydentate ligands, such as 2,2′-bipyridine and terpyridine, provides sufficient sta-
bilization to gold(III) compounds under physiological conditions and shows favorable
anti-tumor properties [7,8,11–16].

As a result, assorted sets of a potential anti-tumor gold(III) compounds were synthesized
and characterized, which exhibited significant anti-proliferative effects in vitro under similar
physiological conditions. They include the gold(III) complexes of bipyridines [11–13,19–23], di-
amines [16,17,23–29], quinolones [16], dithiocarbamates [30–37], and porphyrinates [38,39],
as well as dinuclear gold(III) complexes [13,22,23] and a variety of organogold(III) com-
pounds [37,40–42].
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Mechanistic studies on the cytotoxic gold(III) complexes indicate that these complexes
show a weak binding affinity to DNA, suggesting that they exert anti-proliferative effects,
mainly through DNA-independent mechanisms [7,11–13,43]. The compounds of gold(III)
have shown high reactivity to various protein models indicating that the interactions
between gold and proteins are responsible for their cytotoxic effects [7,13,23,33,44–47].
The apoptosis for such compounds can be caused by direct mitochondrial damage [42,48].
The key targets for these gold compounds are some unusual proteins, for example mito-
chondrial selenoprotein, thioredoxin reductase, the proteasome and the nuclear factor kb
(NF-kb) [32,33,47–50]. The strong inhibition of thioredoxin reductase could ultimately lead
to the profound change of the mitochondrial membrane potential, to cause cytochrome c
release and subsequent excitation of apoptosis [49].

Gold(III) complexes containing bipyridine ligands have been extensively investigated
for the cytotoxic properties by Messori and other groups [11–13,22,23]. These complexes ex-
ist in mononuclear [13] as well as dinuclear forms [22]. The gold(III) atom in [Au(bipy)X2]
+ complexes has a square-planar geometry, attained by two N atoms from the bipyridine
and two halide/pseudohalide ions. Angela Casini and co-workers have reported the syn-
thesis and anti-cancer properties of the gold(III) series of compounds containing bipyridine
derivatives. They noted that the compound with methylated bipyridine showed more cy-
totoxic activity against A2780 (the human ovarian carcinoma cell line) in comparison with
methoxylated, aminated, and even no-branched derivatives [13]. Amani et al. elaborated
on the study by using different anions for the cationic gold(III) bipyridine derivative [21].
Counter anions have been shown to play a major role in the cytotoxicity of the related
compounds in various cell lines. The complexes with the relevant anionic part of [AuX4]−

(X = Cl and Br) displayed good agreement in their anti-cancer activities toward human
cancer cell lines.

Due to their strong cell growth-inhibitory effects, gold(III)-dithiocarbamates have
received significant attention as potential drugs for cancer treatment [30–37]. In this
context, we have taken advantage of the idea of linking the well-known gold(III)-based
bipyridine moiety with the effective chemo-protective function of dithiocarbamates, which
proved to be an efficient strategy [19,20]. In an effort to develop more effective anti-
cancer agents with reduced toxicity, we report here the synthesis, spectral characterization,
in vitro anti-tumor activities, DNA damage, and cell death studies of three new gold(III)
compounds (1–3) using 2,2′-bipyeidine-3,3′-dicarboxylic acid ligand (Bipydc) along with
three dithiocarbamates. The possible structures of the investigated complexes are shown in
Scheme 1.



Molecules 2021, 26, 3973 3 of 16Molecules 2021, 26, x FOR PEER REVIEW 3 of 16 
 

 

 

 
Scheme 1. The possible structures of gold(III) complexes along with resonance assignment. In all cases, counter ions are 
chloride. 

2. Results and Discussion 
2.1. Synthesis and Spectroscopic Characterization 

The complexes were prepared by treating Na[AuCl4].2H2O, 2,2′-bipyridine-3,3′-di-
carboxylic acid, and sodium salts of dithiocarbamates in 1:1:1 stoichiometric ratio in eth-
anol. The complexes were isolated as dry powder solids, soluble in DMSO and chloro-
form. The stoichiometry of complexes 1–3 was formulated on the basis of elemental anal-
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Scheme 1. The possible structures of gold(III) complexes along with resonance assignment. In all cases, counter ions are
chloride.

2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization

The complexes were prepared by treating Na[AuCl4]·2H2O, 2,2′-bipyridine-3,3′-
dicarboxylic acid, and sodium salts of dithiocarbamates in 1:1:1 stoichiometric ratio in
ethanol. The complexes were isolated as dry powder solids, soluble in DMSO and chlo-
roform. The stoichiometry of complexes 1–3 was formulated on the basis of elemental
analysis. The complexes 1–3 are assumed to be a classic mononuclear species with square-



Molecules 2021, 26, 3973 4 of 16

planar geometry [31–33,37]. In all cases the gold(III) center is stabilized by the presence
of two nitrogen ligands, and coordination of dithiocarbamates takes place through the
sulfur-donating atoms of the NCSS moiety in a bidentate symmetrical mode.

Due to the steric effects of the substituents placed at the 3,3′-positions, the two pyridine
rings of the bipyridyl ligand (Bipydc) in the complexes are not coplanar [51]. The structure
of the platinum(II) complex [Pt(Bipydc)Cl2]·2DMF shows that Bipydc is coordinated to
platinum through its nitrogen atoms. However, the coordinated pyridine rings are twisted
by 26.5◦, relative to one another, owing to the steric repulsion between the carboxylic acid
groups in the 3,3′-positions of Bipydc [52]. A similar structural arrangement is predicted
for the present series of the complexes. In some cases, coordination through carboxyl
groups is also observed. For example, in a recent report on copper(II) coordination polymer
with 2,2′-bipyridyl-3,3′-dicarboxylic acid {[Cu(Bipydc)(H2O)]·2H2O}n, the ligand is found
to coordinate through both the nitrogen and oxygen atoms of the carboxyl group, but to
different metal ions [53].

The selected IR frequencies of the ligands and their gold(III) complexes are given
in Table 1. In the IR spectra of the complexes (1–3), a strong band around 1500 cm−1

is associated with the C-N stretching vibration of the N–CSS− moiety of dithiocarba-
mates [30–32,37,54]. This value defines a carbon–nitrogen bond order intermediate between
a single bond (ν = 1350–1250 cm−1) and a double bond (ν = 1690–1640 cm−1) [54]. The
C = N stretching mode of the bipyridine ligand also falls in the same region [13,21] and is
therefore indistinguishable from this band. The higher-frequency shifts in ν(N–CSS) mode
of dithiocarbamates upon coordination are consistent with an increase in the C–N double
bond character and support the bidentate coordination of the S atoms of (-CSS) moieties to
the metal center. The bands in the region of the 1100–900 cm–1 represent the symmetrical
and asymmetrical vibrational modes of (CSS) and (CSS) stretching, respectively. The C–H
(aromatic) and C–H (aliphatic) stretching vibrations appear around 3000 and 2900 cm−1,
respectively. In addition, the signal at about 3400 cm−1 represents the O-H absorptions
of the COOH groups of Bipydc ligands. The appearance of this band indicates that the
carboxylate ions are not involved in complexation. The presence of the absorption band
characteristics of Bipydc and dithiocarbamates suggests the coordination of both ligands to
the gold(III) center.

Table 1. IR frequencies (cm−1) of free ligands and their complexes.

Ligand/Complex ν (O-H) ν (C-H) ν (COO) ν (N-CS) ν (C = C) ν (CSS)

DMDTC - - - 1488 - 926
DEDTC - - - 1445 - 986
DBDTC - 2923, 2854 1600 1467 1436 985

A 3451 2953, 2851 1645 - - -
1 3448 - 1652 1575 1399 1047, 967
2 3440 2975, 2853 1662 1550 1347 1065, 993
3 3439 2928, 2854 1716 1549 1435 1067, 904

The 1H and 13C-NMR chemical shifts of the complexes are provided in Tables 2 and 3,
respectively. In the 1H NMR spectra of complexes 1 and 2, the N(CH) protons of dithio-
carbamates were detected between 3 and 4 ppm and around 5 ppm for 3. The splitting
pattern of the protons attached to the R groups is usual. The 1H NMR spectrum of complex
3 shows multiple peaks centered between δ 7.22 and 7.33 ppm, due to the protons of the
benzene ring. The aromatic protons of bipyridine resonate around 7 ppm. The N = C-H
proton appeared at the most downfield position of about 8.8 ppm.
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Table 2. 1H-NMR chemical shifts for free ligands and their compounds in DMSO-d6.

Ligand/Complex H-1 H-2 H-3 H-6 H-8 H-9 Aromatic-Hs

DMDTC - - - - 3.35 s - -
DEDTC - - - - 3.93 q 1.13 t -

DBDTC - - - - 5.31, 4.77 d - 7.24 m–7.39
m

A 8.71d 7.58 t 8.31d - - - -
1 8.67d 7.52 t 8.26 d - 3.36 s - -
2 8.69d 7.56 t 8.29 d - 3.76 q 1.28 t -

3 8.89d 7.77 t 8.78 d 10.13 4.85, 4.76 d - 7.22 m–7.33
m

s: Singlet; d: Doublet, t: Triplet; q: Quartet; m: Multiplet.

Table 3. 13C-NMR chemical shifts for free ligands and their complexes in DMSO-d6.

Ligand/Complex C1 C2 C3 C4 C5 C6 C = S C8 C9 Aromatic Cs

DMDTC - - - - - - 208.3 45.7 - -
DEDTC - - - - - - 206.4 49.5 12.1 -
DBDTC - - - - - - 213.1 56.9 - 127.7–137.2

A 157.9 126.8 138.4 123.3 150.3 166.7 - - - -
1 158.8 126.6 137.8 122.8 150.6 167 193.9 40.3 - -
2 158.2 126.6 138.1 123 150.3 166.7 193.8 46.5 12 -
3 155.9 119.4 142.8 122.8 151.2 193.4 52.1 -

The 13C{1H} NMR spectra of the complexes exhibit signals due to the N–CH and
CS2 carbons of dithiocarbamates near 50 and 200 ppm, respectively. A significant upfield
shift in the CS2 resonance is attributed to the lowering of the C = S bond order upon
coordination and a shift of N-C electron density, producing a partial double bond character
in the C–N bond. The aromatic carbons of the bipyridine ring resonate between 120 and
160 ppm. Downfield shifts in C = N resonance of the ligands upon complexation indicates
the binding of Bipydc to gold(III) through the imine nitrogen atom. The peaks due to
carboxylate carbons are observed near 167 ppm. The 1H and 13C-NMR chemical shift
values are in accordance with the literature reports [13,20,21,30,54].

2.2. Cytotoxic Activity

The in vitro cytotoxicity of synthesized gold(III) complexes (A, 1–3) was evaluated via
MTT assays towards four cell lines: A549, HeLa, MDA-231, and MCF-7. The MTT signal
is mainly influenced by the cellular metabolic activity, where higher metabolic activity of
the cells will produce higher MTT signals, and vice versa. For comparison, the anti-cancer
activity of cisplatin was also examined under the same conditions. The corresponding IC50
values are given in Table 4. Comparisons of cell viability percentages for all cell lines are
shown in Figures 1–4. All four complexes (A,1–3) displayed excellent cytotoxic activity,
as compared to cisplatin. In most cases, the IC50 value of the complexes (1–3) was about
3 µM, while for cisplatin it was around 9 µM (except for MCF-7, 31 µM). The cytotoxic
effects of the complexes are comparable to each other against the selected four cells. It has
been observed that the activity is enhanced upon the complexation of dithiocarbamates.
Complex 1 was found to be the most effective against HeLa cells, 2 against MCF-7, and 3
against A549 cells. Figure 4 showed that complex 1 unexpectedly produced higher MTT
signals at higher concentrations (10, 30, and 100 µM) compared to lower concentrations
(3 µM) in MDA-231 cells. A possible explanation for the disparity of MTT signals between
higher and lower concentrations is that at higher concentration complex 1 might have
induced oxidative burst, which subsequently increased the metabolic activity of MDA cells,
leading to the magnification of MTT signals despite the overall cellular death. The higher
cytotoxicity of the complexes may be related to the strong binding of dithiocarbamate
ligands with the gold(III) ion, which would increase its stabilization. Since cancer cells
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have a higher proliferative capacity than normal cells, the complexes are expected to
target tumor cells via the induction of reactive oxygen species leading to DNA damage
and cellular death [55,56]. The comparable cytotoxicity of the complexes reflects that
the structure of dithiocarbamate has little influence on the anti-tumor properties of the
complexes. Although the anti-tumor activities of complexes 1–3 are significant, they seem
poor compared to those reported earlier for such complexes [20]. Further in vivo studies
using mice models should be carried out to evaluate the safety of major organs and the
efficacy of anti-cancer properties. Since these complexes bear structural similarities to
cisplatin, it is proposed to use cisplatin as a positive control for dosing and comparison.

Table 4. IC50 values (µM) of cisplatin and gold(III) compounds (A, 1–3) against A549, HeLa, MDA-
231, and MCF-7 cancer cell lines.

IC50 in µM

A549 HeLa MDA-231 MCF-7

Cisplatin 9.61 (± 0.08) 9.3 (± 0.2) 7.8 (± 0.02) 31.06 (± 0.1)

A 7.4 (± 0.07) 7.3 (± 0.03) 5.5 (± 0.02) 15.9 (± 0.021)

1 3.02 (± 0.1) 2.8 (± 0.05) 3.3 (± 0.01) 4.08 (± 0.019)

2 3.08 (± 0.06) 3.1 (± 0.1) 3.3 (± 0.01) 2.7 (± 0.1)

3 3.1 (± 0.5) 3.7 (± 0.07) 4.1 (± 0.03) 3.7 (± 0.019)
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Figure 3. Effect of the concentration of complexes A, 1–3 and cisplatin on the viability of HeLa cells.
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Figure 4. Effect of the concentration of complexes A, 1–3 and cisplatin on the viability of MDA cells.

2.3. Apoptosis Induction

To further investigate how the complexes inhibited proliferation, the induction of
apoptosis for complex 2 was evaluated in MCF-7 cells after 24 h. The control, 1 µM, and
5 µM concentrations of the complex were used. The observed apoptotic effect was com-
pared to the control and expressed in Figure 5. The results showed that complex 2 inhibited
apoptosis proliferation. Distinct morphological characteristics, including cytoplasmic and
nuclear condensation, breakdown in DNA, mucosal dysfunction, and microvilli, are usu-
ally associated with apoptosis. The exposure of phosphatidylserine (PS) is usually before
plasma membrane integrity loss during apoptosis. Healthy cells do not react to annexin V,
a marker of PS, while apoptosis-prone cells are reactive to annexin V [57]. Figure 5 shows
the percentage of apoptotic cells (MCF-7) increased in a dose-dependent manner. The
total percentage rates of early apoptosis and late apoptosis for MCF7 were 1.68 ± 0.33%,
56.78 ± 1.50%, and 70.07 ± 0.42%, respectively. It is clear that complex 2 induced apoptosis
at a sub-toxic dose.
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2.4. DNA Damage

Conventional anti-cancer agents are genotoxic. They induce DNA damage, crumble
the cancer cell’s ability to proliferate, and force cells to undergo apoptosis. To assess
whether complex 2 behaved in a manner similar to classic genotoxic chemotherapy drugs
and that DNA damage was the underlying mechanism for the elevation of apoptosis,
the total DNA damage of MCF7 cells was measured 24 h after treatment. Two treatment
concentrations of complex solutions 1 µM and 5 µM were compared to control cells that
were left with no treatment. The assay revealed significantly increased chromosomal DNA
strand breaks upon addition of the complex in dose-dependent manner. The total DNA
damage percentages of 1µM and 5µM treated apoptotic cells were 8% and 27%, respectively,
compared to the control cells, which was 5% (Figure 6). These data suggest that complex 2
induced DNA insults in the treated cells leading to promote apoptosis.

2.5. Stability of Complexes 1 and 3

The stability of complexes 1 and 3 was checked in acetonitrile with 0.5% v/v PBS
(pH 7.0) at room temperature using UV–visible spectroscopy. The complexes are completely
soluble in both acetonitrile and phosphate buffer solution (PBS, pH 7.0). The spectra were
taken in the beginning and after 24 h and 72 h, as shown in Figure 7. No changes were
observed in the spectra, indicating their stability in solution.
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2.6. Effect on ROS Level

Flow cytometry analysis of ROS level was measured by using a fluorescent dihy-
droethidium (DHE) probe. Complex 2 treated MCF-7 cells indicated the progressive
increase in ROS in a dose-dependent manner (1, 5, and 10 µM) as shown in Figure 8. The
shift in the peaks towards the right as compared to the control indicates the increment in
ROS levels in complex 2 treated MCF-7 cells. The accumulation of ROS is known to induce
apoptosis, as confirmed by the results of a recent study [58].
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2.7. Effect on Mitochondrial Membrane Potential

Apoptosis increases mitochondrial membrane permeability, lowering the transmem-
brane potential of the mitochondrial membrane. The decreasing mitochondrial membrane
potential has been associated with apoptosis and DNA damage induction, indicating that
apoptosis is also associated with the mitochondrial pathway. Figure 9 shows how the
concentration of complex 2 (1, 5, and 10 µM) decreases the mitochondrial membrane
potential. In the control group, membrane potential decrease was observed at 97.3% in
MCF-7 cells, while the highest mitochondrial membrane potential decrease was observed
at 86.0% with 10 µM complex 2. The percentage indicates that the mitochondrial membrane
potential decreases with increasing complex 2 concentration (1, 5, and 10 µM), indicating
mitochondrial depolarization and apoptosis induction in complex 2 treated MCF-7 cells.
This manner is consistent with the previous results that showed the increased apoptosis
and DNA damage with the decreasing mitochondrial membrane potential in MCF-7 cells
at a sub-toxic dose of complex 2 [58].
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significant compare to control.

3. Experiment and Instrumentation
3.1. Materials

Sodium tetrachloridoaurate(III) dihydrate (NaAuCl4·2H2O), 2,2′-bipyridine-3,3′-
dicarboxylic acid, and sodium salts of dimethyldithiocarbamate dihydrate, diethyldithiocar-
bamate, and dibenzyldithiocarbamate were purchased from Sigma Aldrich, Co. (St. Louis,
MO, USA). Ethanol, diethyl ether, and dichloromethane were obtained from Fluka AG
(St. Gallen, Switzerland). All solvents were of analytical grade and were used without
further purification.

3.2. Instrumentation

The instruments used to characterize the prepared complexes have been reported in
the literature [54].

3.3. Synthesis of [Au(Bipydc))Cl2]Cl (A)

It was prepared by combining 0.122 g (0.5 mmol) 2,2′-bipyridine-3,3′-dicarboxylic acid
in 10 mL of ethanol and 0.20 g (0.5 mmol) NaAuCl4·2H2O in 10 mL of ethanol. The mixture
was stirred for 3 h at room temperature and then filtered. The yellow product was washed
twice with ethanol (5 mL) and three times with diethyl ether (10 mL), then dried in the
dark and stored in a fridge. Yield = 0.212 g, 77.6%. Analysis (C12H8AuCl3N2O4, 547.52):
Calcd. C 26.32, H 1.47, N 5.11; found C 25.98, H 1.53, N 5.54.

3.4. Synthesis of Complexes 1–3

In the first step, 0.122 g (0.5 mmol) 2,2′-bipyridine-3,3′-dicarboxylic acid in 10 mL of
ethanol was added to 0.200 g (0.5 mmol) Na[AuCl4]·2H2O in 10 mL of ethanol, and the
mixture was stirred for 3 h, generating a yellow product. In the second step, 0.5 mmol
of the respective sodium dithiocarbamate in 5 mL of ethanol was added dropwise to the
above mixture. The mixture was stirred for an additional 10 min. For complexes 1 and
2, yellow precipitates were obtained, while in the case of 3, it was an orange color. The
products were collected by filtration, washed with distilled water (3 × 10 mL), and dried
under vacuum. Yield: 0.215 g, 68% for 1; 0.245 g, 74.2% for 2; 0.278 g, 71% for 3.
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3.5. Analysis

(C15H14AuCl2N3O4S2, 632.30): Calcd. C 28.49, H 2.23, N 6.64, S 10.14; found C 28.21,
H 2.36, N 6.54, S 9.98.

(C17H18AuCl2N3O4S2, 660.35): Calcd. C 30.92, H 2.74, N 6.36, S 9.71; found C 30.89, H
2.80, N 6.54, S 10.01.

(C27H22AuCl2N3O4S2, 784.49): Calcd. C 41.33, H 2.82, N 5.35, S 8.17; found C 40.99, H
2.74, N 5.45, S 8.31.

3.6. In Vitro Cytotoxicity Assay

To assess the cytotoxicity and determine the effective dose, IC50, the MTT assay was
used. The human cancer cell lines A549 (lung cancer), HeLa (cervical), MDA-MB-231
(breast), and MCF-7 (breast) were cultured in a 96-well plate at 5 × 104 cells/well in
quadruplicate in 150 µL DMEM for 24 h. They were treated with cisplatin and complexes
(A, 1, 2, and 3) at concentrations of 0.3, 1, 3, 10, 30, and 100 µM for 24 h. Then, 15 µL of
DMEM containing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
(5 mg/mL) was added to each well and placed in a CO2 incubator at 37 ◦C for 3 h. After
incubation, a purple-colored formazan was produced and appeared as dark crystals at the
bottom of the wells. The culture medium was discarded from each well and replaced with
100 µL of isopropanol to dissolve the formazan crystals. The absorbance of the 96-well
plate was taken at 570 nm with Mithras2LB943 against reagent blank. The IC50 value for
each sample was calculated using GraphPad 6.0 and Excel 2019.

3.7. Apoptosis Analysis for Complex 2

To detect the apoptotic effect of complex 2 on MCF-7 cells, we used the (FITC) Annexin
V Apoptosis Detection Kit (BioLegend, San Diego, CA, USA). The cells were seeded in
6-well plates, at 5 × 104 cells per well, and treated with different concentrations of complex
2 (0, 1, and 5 µM) for 24 h. After harvesting the cells, cell suspension was stained with FITC
Annexin V/7-AAD according to the manufacture’s protocol. Cells treated with a DMSO
concentration of less than 0.1% (v/v) were used as a control. All samples were analyzed
using a flow cytometer (Beckman Coulter, FC500, Indianapolis, IN, USA).

3.8. DNA Damage of Complex 2

Besides apoptosis, the ability to induce DNA damage upon treatment was investigated.
MCF-7 cells were seeded in 6-well plates, at 5× 104 cells per well, and treated with complex
2 at concentrations of 0, 1, and 5 µM for 24 h. Cells treated with a DMSO concentration
of less than 0.1% (v/v) were used as a control. Then, cells were harvested and prepared
with the Muse Multi-Color DNA Damage Kit (Merck Millipore, Burlington, MA, USA)
according to the manufacturer’s protocol. The percentage of DNA damage was assessed
using flow cytometry (Beckman Coulter, FC500, Indianapolis, IN, USA).

3.9. ROS Production of Complex 2

To estimate the level of ROS, MCF-7 cells were seeded in 6-well plates, at 5 × 104

cells per well, followed by incubation for 24 h at 5% CO2, 37 ◦C, and a 95% humidified
environment. Varying concentrations of Complex 2 (1, 5, and 10 µM) were added to each
well and incubated for 24 h, with a DMSO concentration of less than 0.1% (v/v); untreated
cells were used as a negative control. After incubation, cells were collected and washed
with 1X PBS, following the Muse oxidative stress kit protocol (Merck Millipore, Burlington,
MA, USA). Briefly, the washed cells were suspended in 1X assay buffer and then incubated
for 30 min at 37 ◦C after adding the oxidative stress reagent. We estimated the percentage
of ROS using flow cytometry (Beckman Coulter, FC500, Indianapolis, IN, USA).

3.10. Mitochondrial Membrane Potential of Complex 2

MCF-7 cells were seeded in 6-well plates, at 5 × 104 cells per well, followed by
incubation for 24 h at 5% CO2, 37 ◦C, and a 95% humidified environment. Varying
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concentrations of Complex 2 (1, 5, and 10 µM) were added to the each well and incubated
for 24 h. Cells treated with a DMSO concentration of less than 0.1% (v/v) were used as a
control. Then, cells were harvested and prepared with the Muse MitoPotential kit (Merck
Millipore, Burlington, MA, USA) according to the manufacturer’s protocol. Briefly, 95 µL of
MitoPotential and 5 µL of 7-AAD reagents were added to cells. Then, they were incubated
for 20 min in a 37 ◦C CO2 incubator. The percentage of depolarized cells was assessed by
flow cytometry (Beckman Coulter, FC500, Indianapolis, IN, USA).

3.11. Statistical Analysis

All results are reported as mean values ± standard deviation. A one-way ANOVA
test was used for all comparison results.

4. Conclusions

Three new gold(III) complexes (1–3) containing 2,2′-bipyridine-3,3′-dicarboxylic acid
and dithiocarbamate ligands have been synthesized and spectroscopically characterized.
The spectroscopic data supported the coordination of both ligands to the gold(III) ion.
In vitro cytotoxicity assay of the complexes demonstrated that they possess very high
activity as compared to cisplatin. The results reveal that the dithiocarbamate group plays
a significant role in the cytotoxicity of complexes. The apoptosis analyses revealed that
the complexes inhibited proliferation, through the induction of apoptosis. The apoptosis
induction also triggered DNA damage, oxidative stress (confirmed by accumulated ROS),
and depolarization of the mitochondrial membrane, showing the great potential of tested
gold(III) complexes (A, 1–3) for anti-cancer activity. The promising results of this study
stress the need for further preclinical evaluation of this series of gold compounds to test
their clinical potential.
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