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Objectives: We developed a framework for objectively comparing hearing 
aids, independent of brand, type, or product family. This was done using 
a large dataset of commercially available hearing aids. To achieve this, we 
investigated which hearing aid features are suitable for comparison, and 
are also relevant for the rehabilitation of hearing impairment. To com-
pare hearing aids objectively, we distinguished populations of hearing 
aids based on a set of key hearing aid features. Finally, we describe these 
hearing aid subpopulations so that these could potentially be used as a 
supporting tool for the selection of an appropriate hearing aid.

Design: In this study, we used technical (meta-)data from 3911 hearing 
aids (available on the Dutch market in March 2018). The dataset con-
tained about 50 of the most important characteristics of a hearing aid. 
After cleaning and handling the data via a well-defined knowledge dis-
covery in database procedure, a total 3083 hearing aids were included. 
Subsequently, a set of well-defined key hearing aid features were used 
as input for further analysis. The data were split into an in-the-ear style 
hearing aid subset and a behind-the-ear style subset, for separate analy-
ses. The knowledge discovery in databases procedure was also used 
as an objective guiding tool for applying an exploratory cluster analysis 
to expose subpopulations of hearing aids within the dataset. The latter 
was done using Latent Class Tree Analysis, which is an extension to the 
better-known Latent Class Analysis clustering method: with the impor-
tant addition of a hierarchical structure.

Results: A total of 10 hearing aid features were identified as relevant 
for audiological rehabilitation: compression, sound processing, noise 
reduction (NR), expansion, wind NR, impulse (noise) reduction, active 
feedback management, directionality, NR environments, and ear-to-
ear communication. These features had the greatest impact on results 
yielded by the Latent Class Tree cluster analysis. At the first level in the 
hierarchical cluster model, the two subpopulations of hearing aids could 
be divided into 3 main branches, mainly distinguishable by the overall 
availability or technology level of hearing aid features. Higher-level 
results of the cluster analysis yielded a set of mutually exclusive hear-
ing aid populations, called modalities. In total, nine behind-the-ear and 
seven in-the-ear modalities were found. These modalities were charac-
terized by particular profiles of (complex) interplay between the selected 
key features. A technical comparison of features (e.g., implementation) 
is beyond the scope of this research.

Conclusions: Combining a large dataset of hearing aids with a probabi-
listic hierarchical clustering method enables analysis of hearing aid char-

acteristics which extends beyond product families and manufacturers. 
Furthermore, this study found that the resulting hearing aid modalities 
can be thought of as a generic alternative to the manufacturer-dependent 
proprietary “concepts,” and could potentially aid the selection of an ap-
propriate hearing aid for technical rehabilitation. This study is in line with 
a growing need for justification of hearing aid selection and the increas-
ing demand for evidence-based practice.

Key words: Cluster analysis, Evidence-based practice, Hearing aid fea-
tures, Hearing aids, Hearing aid selection, Latent class analysis, Latent 
class trees analysis.
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INTRODUCTION

Hearing aids are the primary tools for the rehabilitation 
of hearing impairment. Objective selection of and rehabilita-
tion with hearing aids has been considered important since the 
earliest days of hearing aid fitting (Carhart 1950) and remains 
important to this day (Anderson et al. 2018). Today’s hearing 
care professionals and audiologists can choose from an over-
whelming number of different types and brands of hearing aids 
to accommodate the needs of the hearing impaired individual. 
Presently, most hearing aid brands offer several product fami-
lies, aiming for a wide price range and scope of rehabilitation 
purposes. Factors such as competition among hearing aid manu-
facturers and the development of complex hearing aids with a 
wide range of features have led to the need for manufacturers to 
distinguish themselves, for example, by using their own termi-
nology to describe comparable hearing aid characteristics.

Hearing aid characteristics are commonly referred to as fea-
tures and are the building blocks of the hearing aid, essentially 
defining the properties of the hearing aid. Although there are 
many differences between hearing aid features, such as the pre-
cise implementation of a feature and terminology used, hear-
ing aid features can easily be grouped together by purpose. For 
instance, within hearing aid brands or even product families, 
there are many types of single-microphone noise reduction 
(NR) concepts. All these NR concepts share the same purpose, 
which is to improve speech-to-noise ratio and listening comfort 
(Brons et al. 2014). Currently, new developments in hearing aid 
technologies are usually presented in terms of proprietary “con-
cepts,” which are combinations of features rather than isolated 
features (Le Goff 2016; Carlile 2017; Rodrigues 2019). How-
ever, the component features may still be recognized as known 
features, such as directionality or wind NR (WNR). These pro-
prietary “concepts” are mainly used to outline the interplay of 
several existing features, but in contrast to commonly known 
and understood features, proprietary “concepts” are manufac-
turer dependent. Therefore, it becomes more challenging to 
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compare hearing aid characteristics both between and within 
different brands.

Hearing Aid Selection
A considerable amount of research has been conducted with 

focus on effectiveness and relevance of specific hearing aid fea-
tures, such as compression (Verschuure et al. 1996; Jenstad & 
Souza 2005; Bor et al. 2008; Alexander & Rallapalli 2017; May 
et al. 2018), NR (Bentler & Chiou 2006; Hoetink et al. 2009; 
Brons et al. 2013, 2014; Desjardins & Doherty 2014; Wu et al. 
2018), various modes of directionality (Leeuw & Dreschler 1991; 
Bentler et al. 2004; Picou et al. 2014; Wu et al. 2018). In general, 
these studies focus exclusively on the evaluation of one hearing 
aid feature, usually in great detail. To our knowledge, a compa-
rable mixture of several objectively defined hearing aid features, 
across a wide selection of brands and types of hearing aids, has 
to date not been examined. Attempts have been made to assess 
differences between hearing aids (Cox et al. 2014, 2016; Kates et 
al. 2018; Wu et al. 2018), but these are rather limited and do not 
focus on the interplay between different features.

Over the past decades, the process of hearing aid selection 
has gradually shifted from a selection driven primarily by the 
amplification characteristics of hearing aids (Studebaker 1982; 
Cox 1985; Byrne 1996), toward a selection method that besides 
amplification takes into account the availability of more com-
plex signal processing and overall level of technology (Meister 
et al. 2010; Northern 2011; Gioia et al. 2015). A recent study 
by Anderson et al. (2018) shows that the availability of specific 
(signal-processing) hearing aid features is an important aspect 
of selection among audiologists. The hearing aid selection pro-
cess is prone to various types of bias: for example, selection 
could be influenced by previous experiences of the hearing aid 
dispenser (Johnson et al. 2009; Gioia et al. 2015). A caveat 
regarding hearing aid selection is the absence of an objective 
method for comparing hearing aids. If our goal is to select the 
hearing aid, which best accommodates the patients’ rehabilita-
tion needs, then there is a need for a tool for objectively compar-
ing hearing aids (Anderson et al. 2018). In particular, we should 
be able to objectively compare relevant hearing aid features be-
tween different brands and types of hearing aids.

Data Mining
There has been an increase in research that focuses on the 

application of data mining, also in the field of audiology. For 
instance, data-mining techniques have been used to explore 
the possibility of improving hearing aid fitting and validation 
through the use of large datasets (Mellor et al. 2018a). The 
strength of data-mining techniques is their potential to reveal 
important hidden relations within databases (Kaur & Wasan 
2006). For this reason, and given the reasonable number of 
available hearing aids, the application of data mining to assess 
hidden relationships between the features of hearing aids seems 
promising. The term “modality” has been coined to define these 
relationships between features, and to characterize a population 
of closely related hearing aids. We hypothesize that variation 
within and differences between hearing aid populations in the 
form of hearing aid modalities, can be modeled using a well-
defined subset of key features.

Goal of the Study
The aim of our study is to devise a structure that enables 

comparisons between hearing aids, in an objective manner in-
dependent of brand, type or product family, and based on their 
key features. We used the technical (meta-)data, provided by 
hearing aid manufacturers to achieve this.

We formulated several research questions (1) which hearing 
aid features can be considered to be key features, (2) can we dis-
tinguish populations of hearing aids (i.e., modalities) based on 
key hearing aid features, and (3) is there any brand-dependency 
among the modalities?

Comparison of individual features (or how these features 
might be implemented) is beyond the scope of this research. 
Furthermore, our knowledge is currently insufficient to enable 
us to relate technical features to patient needs, but this could a 
be a goal for future research.

METHODS

In this study, we focused on (hidden) relations between hearing 
aid features. These relations, called modalities, could arise coinci-
dently or could be the result of deliberations in the R&D depart-
ments of manufacturers. In the process of defining hearing aid 
modalities, several steps were undertaken that will be explained 
in detail in this section. In short, publicly available technical hear-
ing aid data were gathered, including information on the availa-
bility and adaptability of various hearing aid features. Hearing 
aid populations in the form of modalities could be modeled using 
information about specific hearing aid features. The benefit of 
this approach is that hearing aid modalities can be defined, inde-
pendent of brand or type. A possible drawback of this method is 
that manufacturer-defined availability and adaptability are not al-
ways compatible between the different brands and even sometimes 
between different types of hearing aids within the same brand.

Database
We utilized a database used by Dutch hearing care profes-

sionals for selection of hearing aids. It contains the most im-
portant characteristics of the hearing aids that were available 
on the Dutch market in March 2018 [in Dutch: “ZN-hoortoes-
tellendatabase,” managed by the Platform for Audiological 
Clinical Testing (PACT) foundation*]. The dataset used in this 
research included technical information from 3911 hearing 
aids, containing all major, and some lesser-known hearing aid 
manufacturers. The database comprised a mixture of different 
types of data: not only technical information but also data such 
as date of introduction, several identifiers, and functional infor-
mation such as water resistance. For each hearing aid, a total of 
50 unique hearing aid–related variables were registered using 
publicly available information provided by manufacturers and 
verified and supplemented by independent audiologists on be-
half of PACT; a full list of the database attributes can be found 
in Appendix B in Supplemental Digital Content, http://links.
lww.com/EANDH/A652.

*The PACT foundation represents a scientific collaboration of almost all 
Dutch Audiological Centers.
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The Knowledge Discovery in Databases Process
As a consequence of having different data measure types (or-

dinal, nominal, interval) in our database, a systematic and well-
defined approach was needed for data processing procedures, 
data analysis, and interpreting results. The method we used for 
deducing knowledge from data is referred to as Knowledge 
Discovery in Databases (KDD) and is explained in depth by 
Fayyad et al. (1996). They describe it as “the nontrivial process 
of identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data.” KDD is an iterative process that 
consists of five distinct stages which we explain briefly in this 
article. Each stage of the KDD can be evaluated after execution 
and newly gained insights can be applied directly. A more thor-
ough description of KDD in relation to audiology can be found 
in Mellor et al. (2018b).

Selection
The first step in the KDD process is selection of a dataset 

using a subset of variables and/or a selection of data samples. 
The selection is driven by prior knowledge and predetermined 
goals. Understanding of the application domain is therefore es-
sential. Following this step, the list of database attributes listed 
in Appendix B in Supplemental Digital Content, http://links.
lww.com/EANDH/A652, was reduced based on expert opinion 
(“prior knowledge”). This was done by asking a panel of (6) 
experienced audiologists and researchers to select, in mutual 
agreement, a subset of audiologically relevant variables. The 
term “audiologically relevant” was defined as hearing aid fea-
tures that have an (direct or indirect) effect on the function-
ing of the hearing aid without influence from the user. Table 1 
shows the subset made based on expert opinion selection. 
Further reduction of variables was attained by the iterative 

character of the KDD process. For instance, a variable could 
be removed when intermediate analysis results indicated that 
there was no significant contribution. This would be the case 
for a variable which showed a considerable correlation to one 
or more other variables. The final list of hearing aid features 
used in the data mining stage is described in the Results sec-
tion. In addition, two predefined exclusion criteria were applied 
to the data; exclusion of (1) bone conduction hearing aids, pure 
Contralateral Routing Of Signals devices, hearing aid glasses, 
and body-worn hearing aids; (2) hearing aid brands that were 
not available via regular distributors in the Netherlands.

Preprocessing
Due to fundamental differences between behind-the-ear 

(BTE) type hearing aids and in-the-ear (ITE) type hearing aids, 
the data were split into two subsets based on the style of hear-
ing aid. The primary reason for this is the difference in design 
constraints between the two types, which cause different sets of 
features to be prioritized. The data in these subsets consisted of 
continuous and categorical variables, the latter being both or-
dinal (interval) and dichotomous. In the preprocessing stage, 
data were cleaned of noise (e.g., outliers, faulty data) and miss-
ing data. We dealt with this by defining missing data and outliers, 
and then creating rules for handling data which matched these 
definitions. We decided to completely remove all data that had 
missing or invalid data points on any of the variables used in the 
(final) analysis at the data mining stage. Outliers were identified 
as anomalies (e.g., values that could reasonably be assumed to be 
incorrect, eg, a value that was an order of magnitude larger than 
comparable values). Identification and removal of invalid data 
were important steps as it could have a considerable effect, espe-
cially when applying categorical data to classification analysis. 
As a result of the rigorous exclusion policy, the final dataset did 
not contain any records that had missing or invalid data.

Transformation
Data transformation procedures can serve many purposes, 

although a general aim is to further reduce any potential bias 
that could originate from dominating values in any variable of 
the dataset (Mellor et al. 2018b). Data exceeding the 75 percen-
tile of the variable were grouped together in a “greater than or 
equal to” value. This was done to handle some extreme cases in 
the upper ranges of the scales within the data.

Hidden structures within a dataset can be exposed with the 
use of exploratory cluster analysis. An important condition for 
such a method is a limited interdependence of variables. Al-
though this cannot be eliminated completely in most real data-
sets, efforts should be made to minimize dependency between 
variables. In our dataset, we identified two groups of hearing aid 
features whose members were closely related in a complemen-
tary fashion, namely directionality and ear-to-ear communica-
tion. For directionality, the compound variable was assembled 
from the following hearing aid features: directionality, auto-
matic directionality, adaptive directionality, and beam forming 
directionality. Initially, the hearing aid feature adaptive direc-
tionality was an ordinal scaled variable, but was transformed 
to a dichotomous variable that indicated the availability of this 
feature. The other directionality features were already dichoto-
mous variables. In addition, the four directionality features as 
described above were found to be redundant (e.g., if automatic 

TABLE 1. List of audiologically relevant “ZN-
hoortoestellendatabase” database attributes

Name Type/Scale

OSPL 90 (max output) dB
OSPL 50 (max gain) dB
OSPL 60 (max reference) dB
Upper limit bandwidth Hz
Adjustable compression channels Number
Adjustable MPO channels Number
Signal processing channels Number
Directionality Y/N
Automatic directionality Y/N
Adaptive directionality levels Number
Natural “ear like” directionality Y/N
Binaural beamforming Y/N
Noise reduction levels Number
Noise reduction environments Number
Wind noise reduction levels Number
Passive feedback levels Number
Active feedback levels Number
Expansion levels Number
Impulse reduction levels Number
Ear to ear feature synchronization Y/N
Ear to ear sound streaming Y/N
Frequency lowering levels Number
Environmental steering Y/N
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directionality was present, directionality was also present). 
Similarly, a compound ear-to-ear communication variable was 
constructed using the hearing aid features: ear-to-ear feature 
sync and ear-to-ear sound streaming. The resulting compound 
variables comprised, respectively, 5 and 3 levels, increasing in 
complexity. For example, a hearing aid with a level 4 direction-
ality featured all types of directionality except a beam forming 
directionality.

Data Mining
Knowledge discovery is at the root of the data mining stage 

and goals that arise from it can be subdivided into two types: 
verification and discovery (Fayyad et al. 1996). Our research is 
primarily focused on the discovery of patterns in data: a form of 
cluster analysis seemed to be most suitable to meet the conditions 
of our research aim. Han et al. (2011) defined cluster analysis 
as follows: “the process of partitioning a set of data objects (or 
observations) into subsets.” This can be viewed as a data mod-
eling technique that provides for concise summaries of the data 
(Berkhin 2006), without a priori knowledge (Mellor et al. 2018b).

The data mining stage of the KDD process often includes 
repeated iterative application of particular data mining methods 
(Fayyad et al. 1996). During the iterative process, a multitude 
of latent class models were fitted to the data which resulted in 
a further reduction of variables. Essentially, only variables that 
contributed to the model fit and interpretation of the model were 
included in the final analysis.
Latent Class Analysis • Latent Class Analysis (LCA) is 
a model-based, nondeterministic, clustering/classification 
method which has its roots in structural equation modeling 
(Oberski 2016a) and is presently used in multiple fields of 
science for analyzing multivariate discrete (categorical) data 
(Oberski 2016b). LCA has several powerful advantages over 
traditional cluster analysis techniques (Magidson & Vermunt 
2002), and has shown to be a very useful tool for exploratory 
purposes (Oberski 2016a). Classification using LCA is based on 
membership probabilities estimated from the model, unlike the 
all-or-none based classification seen in cluster analysis such as 
k-means or DBSCAN. A more detailed description explaining 
the mechanism of LCA can be found in Appendix A in Supple-
mental Digital Content, http://links.lww.com/EANDH/A652.

Deciding on the number of classes that best fits the data is 
done in an exploratory setting. Depending on the dataset, it is 
not uncommon to end up with a large number of classes (Van 
Den Bergh et al. 2018). Such a result can become exceedingly 
complicated and difficult to interpret, reducing the practical use 
of the model. To overcome this problem, Van Den Bergh et al. 
(2017) suggested an extension to LCA, which they called La-
tent Class Trees (LCT) analysis.
Latent Class Trees • LCT analysis was developed to provide 
a solution to some common difficulties when interpreting LCA 
results, such as the absence of a distinct optimum number of 
classes that fits a model or the fact that it is often unclear how 
different model results are interconnected. LCT addresses these 
problems by imposing a hierarchical structure on the latent 
classes (Van Den Bergh et al. 2017). In short, LCT is defined 
by a structure of mutually linked classes that are formed by se-
quentially splitting classes into two subclasses (using LCA with 
weighted membership probabilities). This allows for a substan-
tive interpretation of the relation between classes of different 

levels, and so of how classes are formed and related. A detailed 
description explaining the mechanism of LCT can be found in 
Appendix A in Supplemental Digital Content, http://links.lww.
com/EANDH/A652. Estimation of the latent class models was 
made using Latent Gold 5.1 (Vermunt & Magidson 2016), and 
the recursive procedure of the LCT method was applied using 
customized R scripts (RStudio Team 2016. RStudio: Integrated 
Development for R. RStudio, Inc., Boston, MA).

Interpretation/Evaluation
The LCT method (as an extension of the LCA method) was 

used to discover hidden profiles of hearing aid features, which 
will be referred to as hearing aid modalities. As the LCT method 
was applied in an exploratory setting, the aim was not to find the 
“true” number of hearing aid modalities, but to define a set of 
modalities that describes the data reasonably well and, more-
over, is easy to interpret.

Despite the described advantages of the KDD process, di-
mensionality reduction due to selection, transformation, or data 
cleaning always results in a loss of detail. Obviously this is done 
to enhance interpretation, however, results should be interpreted 
in this context.

RESULTS

Originally the data consisted of 50 distinct hearing aid fea-
tures variables. Reduction of these variables was guided by the 
KDD process. First, a panel of experienced audiologists and 
researchers were asked to agree on a subset of variables as being 
audiologically relevant (KDD: data selection stage); the pro-
cessed and/or transformed variables were checked for interde-
pendency, which was considered an unwanted property (KDD: 
preprocessing stage). Remaining variables were processed and 
several variables were merged into compound hearing aid fea-
tures variables (KDD: transformation stage). Finally, variables 
that did not contribute to the model fit and interpretation of the 
model were removed (KDD: data mining and interpretation 
stages). Note that due to the iterative nature of the KDD pro-
cess, the above-mentioned steps were not necessarily executed 
only once each.

As a result of the KDD process, a total of 10 hearing aid fea-
tures were identified as fundamental: compression (C), sound 
processing (SP), noise reduction (NR), expansion (Ex), wind 
NR, impulse (noise) reduction (IR), active feedback manage-
ment (FBM), directionality (Dir), noise reduction environments 
(NRe), and ear-to-ear communication (ETE). Table 2 lists these 
fundamental hearing aid features, along with a brief description 
of the variable. Spearman’s rank-order correlations between all 
fundamental hearing aid features were examined, and all proved 
to be positive and significant (p < 0.01). This indicates that as 
the number of levels or bands of a certain feature increases, all 
other features showed an increase in bands or levels as well. It 
can be seen from Table 3 that most results did not exceed a weak 
to moderate (0.3 < Spearman’s ρ < 0.5) correlation, although 
in 3 cases, a moderate correlation was found. The strongest 
correlation found was between the features C and Spearman’s  
ρ = 0.69). Other notable correlations were found between the 
following pairs of features: ETE and C (Spearman’s ρ = 0.51), 
and ETE and Dir (Spearman’s ρ = 0.51).
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Data from 3083 of the original 3911 hearing aids remained 
after applying the exclusion criteria and the KDD process. 
Of the 828 hearing aids removed from the analysis, 303 were 
removed as a result of the predefined exclusion criteria. Another 
19 were removed during the KDD process because of faulty fea-
ture data, and 506 were removed based on missing data. Most 
(n = 417) of the hearing aids removed during the KDD pro-
cess came from three hearing aid brands. For the three brands 
involved, this means a percentage reduction in hearing aids 
that could contribute to the analysis of 16%, 29%, and 56%, 
respectively.

Additionally, the data were split according to the style of 
the hearing aid, n = 2106 for BTE and n = 977 for ITE. The 
resulting hearing aid features could be grouped in terms of a 
common domain in which the features operate, this introduces a 
specific order and was purely done for the ease of interpretation. 

However, the naming of the domains and the grouping was sub-
jective and an attempt by the authors to interpret differences 
between groups of hearing aid features.

Latent Class Tree Analyses
In the KDD process which led to the LCT presented in this 

section, over 80 different LCT’s were built and evaluated; each 
model was constructed by using a unique combination of hear-
ing aid feature data. This procedure was an essential part of the 
selection of the 10 final features. Evaluation and selection of 
the best fitting model were based on model measures but also 
on whether the model was meaningful in terms of content. It is 
not feasible to present each LCT analysis and all intermediate 
results here.
Model • Hearing aid data were split into a BTE and an ITE 
subset. Independent LCT analyses were performed for each 
subset. The decision process for the number of primary splits of 
the LCT is crucial and was guided by the relative improvement 
measure. This measure signifies the improvement in terms of re-
ducing the Bayesian Information Criterion for an increase in the 
number of splits (see also Appendix A in Supplemental Digital 
Content, http://links.lww.com/EANDH/A652).

Relative improvement results for the primary node for both 
BTE and ITE data are shown in Table B.2 of Appendix B in 
Supplemental Digital Content, http://links.lww.com/EANDH/
A652. The premise here is the smallest possible number of in-
itial splits. The relative improvement measure indicated that a 
3 split primary node was optimal for both subsets. This means 
that additional splits showed either a similar or smaller relative 
improvement measure.

Graphical representations of the complete BTE and ITE 
models are shown in Figure 1. For each model, the first split 
represents the most dominant structures in the data and is coded 

TABLE 2. A list of fundamental key features

Feature Domain Brief Description

N of compression channels Signal processing Number of adjustable signal compression channels
N of sound processing 

channels
Signal processing Nominal number of channels in which gain could be adjusted

Noise reduction Signal processing Number of adjustable noise reduction levels
Expansion Comfort The availability, and if so, number of adjustable levels of suppression of weak sounds in a 

silent surrounding
Wind noise reduction Comfort The availability, and if so, the number of adjustable wind noise reduction levels
Impulse noise reduction Comfort The availability, and if so, the number of adjustable levels to suppress sudden loud sounds
Active feedback manager Comfort The availability, and if so, the number of adjustable levels in which feedback could be 

actively corrected
Noise reduction 

environments
Adaptation The ability to recognize different acoustical environment (on which to apply noise 

reduction); the availability, and if so, the number of recognizable environments
Directionality compound Adaptation NP = no directionality

L1 = fixed directionality
L2 = automatic directionality
L3 = adaptive directionality
L4 = beam forming directionality
Compound variable is redundant to its lower levels

Ear-to-ear compound Adaptation Communication between a matched pair of similar hearing aids:
NP = no ear-to-ear communication
L1 = feature sync
L2 = sound streaming
Compound variable is redundant to its lower levels

Key-features were grouped into the domains: Signal Processing, Comfort and Adaptation. These domains were chosen to indicate in which direction these features operate.

TABLE 3. Spearman ranked-order correlations of 10 
fundamental hearing aid features

C SP NR Ex WNR IR FBM Dir NRe

SP 0.69         
NR 0.37 0.22        
Ex 0.34 0.32 0.35       
WNR 0.28 0.18 0.17 0.10      
IR 0.40 0.08 0.36 0.05 0.22     
FBM 0.39 0.35 0.48 0.49 0.12 0.19    
Dir 0.36 0.30 0.34 0.15 0.24 0.18 0.08   
NRe 0.34 0.34 0.46 0.11 0.12 0.20 0.22 0.32  
ETE 0.51 0.32 0.36 0.05 0.17 0.32 0.17 0.51 0.38

Correlations ≥0.50 are in bold. Features: 
C, compression; Dir, directionality; ETE, ear-to-ear communication; Ex, expansion; FBM, 
active feedback management; IR, impulse (noise) reduction; NR, noise reduction; NRe, 
noise reduction environments; SP, sound processing; WNR, wind noise reduction.
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similarly for both subsets. The order in which the branches of 
the BTE and ITE tree are presented, was specifically chosen to 
support comparison between the two subsets by emphasizing 
similarities at the primary split level. The number in each node 
on either side represents the number of hearing aids assigned to 
a particular node at some level. Consecutive splits were made at 
different levels for each branch, eventually ending in BTE and 

ITE specific modalities. Each split represents a two class (LCA) 
model at some level k, L

k
, and each model was dependent on the 

result of a prior “parent” model at level L
k-1

; Figure 2 exempli-
fies this dependency by showing the hierarchical relation of the 
second branch for the BTE subset. The feature profile empha-
sized in the top left graph of Figure 2 was considered an inter-
mediate result. Next, corresponding model results at this level 

Fig. 1. Graphical representation of the final LCT results: (A) the BTE subset, and (B) the ITE subset. The top node for each model is the starting point for the 
model at level 0, the modalities are at the lowest level at the end of the tree. The underlined numbers inside the nodes correspond to the number of allotted 
hearing aids. The allocation of hearing aids to a class is based on probabilities. Therefore, slight deviations could occur between the sum of child nodes and 
the parent node. BTE indicates behind-the-ear; ITE, in-the-ear; LCT, Latent Class Trees.

Fig. 2. Example showing the dependency of hearing aid feature profiles on prior “parent” models; each LCA model in the tree is dependent on (all) prior LCA 
model results up to the lowest level at the end of the tree. The bottom profile plots show the formation of two different profiles within the first BTE branch. In 
this example, a “parent” model at level 3 (striped dark grey line; highlighted in the top left panel) splits into two “child” nodes (schematically shown in the 
top right panel). As there were no further splits from the models at the bottom panels onward, the results at this level were considered BTE modality E and 
F. Mean hearing aid feature data were rescaled between 0 and 1 to enable a straightforward comparison between different scaled variables. Features were 
ordered according the three domains: signal processing, comfort, and adaptation. Whiskers show a 95% confidence interval of the specific feature. The lines 
between the points do not refer to a dependency between adjacent features, but were included to interpret and compare the feature profiles between modali-
ties. Labels x axis: compression (C), sound processing (SP), noise reduction (NR), expansion (Ex), wind noise reduction (WNR), impulse (noise) reduction (IR), 
active feedback management (FBM), directionality (Dir), noise reduction environments (NRe), ear-to-ear communication (ETE). BTE indicates behind-the-ear; 
LCA, Latent Class Analysis.
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were used to construct a “child” model yielding two distinct 
profiles, presented in the two graphs at the bottom of Figure 2. 
In this example, no further splits were made after level L

3
; both 

resulting feature profiles were recognized as a final result and 
are referred to as modality E and F.

The size of the terminal node was considered the main ter-
mination criterion for the LCT model, as suggested by Pelaez et 
al. (2019) and Nasserinejad et al. (2017). Furthermore, model 
statistics and predefined additional rules for all intermediate 
levels up to level 4 were used to shape the final LCT results, 
and are found in Appendix A in Supplemental Digital Content, 
http://links.lww.com/EANDH/A652.
Modalities BTE • Focusing on the primary split, Figure 3 
(upper panel) visualizes the three most dominant structures of 
the BTE subset. These three profiles outline the basis on which 
the LCT for the BTE subset was built, and thus the direction 
in which the final modalities evolved. Hearing aid feature data 
were rescaled between 0 and 1 to enable a straightforward com-
parison. Table 4 shows the means, SD and rescaled means for 
the BTE subset primary node profiles for each hearing aid fea-
ture. Rescaled mean levels at the primary node show that BTE 
devices allotted to profile 1 (upper panel Fig. 3; dark gray) 
consisted on average of a high feature potential, with rescaled 
means ranging between 0.55 and 0.89. Hearing aids belonging 
to profile 2 (upper panel Fig. 3; light gray) and especially profile 
3 (upper panel Fig. 3; blue) on the other hand, show on average a 
more limited feature potential profile with rescaled means rang-
ing between 0.16 and 0.66 for profile 2, and 0.03 and 0.43 for 
profile 3.

The nine modalities that resulted from the BTE subset LCT 
analysis could be characterized by means of their profile plots 
(Fig. 4), which show the profiles of the modalities resulting 
from the different hearing aid features, and allows for a detailed 
analysis. About half (44.7%) of all BTE hearing aids were as-
sociated with the first branch, which covered modalities A to 

D. These modalities were defined by an overall intermediate to 
high feature potential for the hearing aid features on all three 
feature domains. Table 5 shows that there were large differences 
between rescaled means concerning the different modalities. 
For example, modality A and B evolved along the same branch, 
but differed notably between feature potential for IR (rescaled 
means for modality; A = 0.78; B = 0.53) and active feedback 
management (rescaled means for modality; A = 0.57; B = 1.00). 
Similar differences occur between particular features for the 
other modalities of the first branch, yet the largest differences 
between the modalities of the first branch were found for the 
features in the adaptation domain (Fig. 4).

The second branch contains 39.3% of all BTE hearing aids, 
and covers modalities E to H. These modalities shared a lim-
ited feature potential for most features. Despite this, the feature 
profile for modality F also shows a high feature potential for 
C and SP with rescaled means of 0.81 and 0.82, respectively. 
For modality H, a high feature potential was observed for the 
features SP, Dir, and NR environments, with rescaled means of 
0.79, 0.82, and 0.86, respectively. The third branch resulted in 
a single modality, I, which represented 16.0% of the total BTE 
data. This modality was characterized by an overall low feature 
potential, most evident for the hearing aid features related to the 
domains signal processing and adaptation.
Modalities ITE • Comparable with the BTE analysis, the LCT 
obtained for the ITE subset resulted in a primary split, expos-
ing the most dominant structures in the ITE subset. Figure 3, 
lower panel, shows the three profile plots at the primary node. 
It can be seen that these profiles share some resemblance to the 
BTE results, which is reflected by the mean, SD, and rescaled 
means tabulated in Table 6. The first branch (Fig. 3, lower panel, 
dark gray) accounts for 40.1% of the ITE data, and resulted in 
modality a, b, and c. This branch is characterized by modali-
ties with an above average feature potential (rescaled means 
between 0.88 and 0.47). The largest variation between feature 
potential for modalities a and b was found in the features in the 
adaptation domain, as illustrated by Figure 5. Modality c shows 
a very unique feature profile and contained only hearing aids 
with the maximum adjustable levels to suppress sudden loud 
sounds (Table 7, IR: mean = 5, SD = 0, rescaled mean = 1). 
Likewise, modality b only contained hearing aids that were fit-
ted with all four levels of directionality (Dir: mean = 5, SD = 0, 
rescaled mean = 1).

The second branch (Fig. 3, lower panel, light gray) relates 
to 29.6% of all ITE hearing aids and resulted in a single mo-
dality. This modality, d, shows an average feature potential for 
the features in the signal processing domain, yet contained only 
hearing aids with almost no ability for wireless communica-
tion (ETE: mean = 1.04, SD = 0.19, rescaled mean = 0.02). The 
third branch (Fig. 3, lower panel, blue) contained 30.3% of all 
ITE hearing aids, and resulted in modalities e to g. Most of the 
features within these modalities showed limited feature poten-
tial: in particular hearing aids within modality g were found to 
be very limited (rescaled means ranging from 0 to 0.36), with 
regard to available feature potential, compared with the total 
subset of ITE hearing aids.

Secondary Analyses
Thus far, we did not use any additional (meta) data such as 

information about the brands of the hearing aids or the date of 

Fig. 3. Profiles plots primary node, for the BTE subset (upper panel) and the 
ITE subset (lower panel): profile 1 (dark grey), profile 2 (light grey), profile 3 
(blue). For axis configuration, see also Figure 2. BTE indicates behind-the-
ear; ITE, in-the-ear.
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introduction. In our opinion, the features and modalities are 
much more important than specific brands or the dates of in-
troduction. Nevertheless, associations involving the latter vari-
ables may provide additional insights.
Hearing Aid Introduction Date • The introduction date was 
defined as the date (month and year) when the hearing aid be-
came commercially available on the Dutch market. For this 
analysis, we used the data of the 3083 hearing aids that were 
also used for the BTE and ITE LCT model analyses. For 604 
hearing aids, the date of introduction was unknown, however 

the absence of an introduction date was not a formal exclu-
sion criteria. Most devices were introduced between 2010 and 
2017; dates before 2009 were omitted, as there were only a few 
hearings aids representing these dates. Although there were dif-
ferences between the median introduction dates of the differ-
ent hearing aid brands, no notable effects were found between 
brands and modalities. Figure 6 shows the (fitted) progression 
of feature potential related to the three feature domains over 
time: the data were grouped by the year of introduction. Sepa-
rate analyses were done for the BTE subset and the ITE subset. 

TABLE 4. Mean, SD, and rescaled mean feature levels for each primary node profile for the BTE subset (including the total BTE 
subpopulation) and hearing aid feature

Branch

C SP NR Ex WNR IR FBM Dir NRe ETE

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

1 9.9 1.5 14.7 3.6 6.3 1.8 3.3 1.3 2.7 1.0 3.7 1.3 4.7 1.4 4.2 0.8 5.8 2.0 2.1 0.8
2 6.8 1.6 11.8 3.9 3.8 1.8 2.5 1.3 2.1 1.0 1.6 1.4 3.2 1.2 3.7 0.9 3.8 2.1 1.4 0.7
3 3.8 1.0 4.1 3.4 3.3 1.6 2.2 1.1 1.9 0.9 2.6 1.1 2.7 1.4 2.7 0.9 3.4 1.8 1.1 0.6
Total 7.7 2.7 11.9 5.3 4.9 2.3 2.8 1.2 2.4 1.0 2.7 1.5 3.8 1.6 3.7 1.1 4.7 2.4 1.6 0.8

 Rescaled Mean

Branch C SP NR Ex WNR IR FBM Dir NRe ETE

1 0.89 0.72 0.76 0.58 0.58 0.68 0.74 0.79 0.69 0.55
2 0.58 0.57 0.40 0.38 0.36 0.16 0.44 0.66 0.40 0.17
3 0.28 0.16 0.33 0.29 0.31 0.39 0.34 0.43 0.35 0.03

Features: 
BTE indicates behind-the-ear;  C, compression; Dir, directionality; ETE, ear-to-ear communication; Ex, expansion; FBM, active feedback management; IR, impulse (noise) reduction; NR, noise 
reduction; NRe, noise reduction environments; SP, sound processing; WNR, wind noise reduction.

Fig. 4. Profile plots of nine final BTE modalities A to I: solid lines represent mean features measures for the specific modality, while dashed lines show mean 
feature measure of all devices in the dataset. For axis configuration, see also Figure 2. BTE indicates behind-the-ear.
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For the BTE subset, only the adaptation domain showed a sig-
nificant (positive) trend (p = 0.018, r2 = 0.52) between the year 
of introduction and level of feature potential. The ITE data show 
a significant (positive) relation between the date of introduction 
and the domains signal processing (p = 0.013, r2 = 0.56) and 
adaptation (p = 0.006, r2 = 0.62). For both BTE and ITE data, 
the comfort domain did not yield a significant relation between 
feature potential and date of introduction.
Hearing Aid Brand Analysis • In this analysis, we looked at 
the relationship between the BTE and ITE modalities and dif-
ferent hearing aid brands. Again, separate analyses were done 
for the BTE subset and the ITE subset. The total dataset con-
tained 44 hearing aids brands (including private labels), from 
which a subset was selected consisting of the 8 most commonly 

used hearing aids brands in the Netherlands: Bernafon (Bern, 
Switzerland), Oticon (Copenhagen, Denmark), Phonak (Stäfa, 
Switzerland), Resound (Ballerup, Denmark), Siemens/Sivan-
tos (Erlangen, Germany), Starkey (Eden Prairie, MN), Unitron 
(Kitchener, Canada), and Widex (Lynge, Denmark) (in alphabet-
ical order). This subset includes 2173 hearing aids of the 3083 
hearing aids of the total dataset (70%). Figure 7A shows the dis-
tributions for each modality across the eight hearing aid brands 
(columns) for the BTE subset (left) and the ITE subset (right). 
Likewise, Figure 7B shows the distribution of each brand across 
each of the modalities (rows). It should be noted that the absolute 
numbers of hearing aids are dependent on both modality size as 
well as the hearing aid brands associated with the modality. Con-
sequently, percentages of the same brand-modality combination 
do not translate well between Figure 7A and B.

TABLE 5. Mean, SD, and rescaled mean (res M) feature levels for all BTE modalities and the complete BTE subset

C SP NR Ex WNR IR FBM Dir NRe ETE

All           
   M 7.68 11.89 4.85 2.83 2.35 2.72 3.79 3.73 4.65 1.64
 SD 2.66 5.29 2.33 1.22 0.98 1.49 1.63 1.11 2.39 0.77
   res M 0.67 0.57 0.55 0.46 0.45 0.43 0.56 0.68 0.52 0.32
A           
 M  10.04 13.91 6.02 2.59 2.67 4.12 3.87 3.88 5.22 1.88
   SD 1.20 3.27 1.49 1.07 0.94 0.89 1.10 0.72 2.20 0.66
   res M 0.90 0.68 0.72 0.40 0.56 0.78 0.57 0.72 0.60 0.44
B           
 M  9.95 16.43 4.42 3.71 2.61 3.12 6.00 3.52 5.57 1.68
   SD 0.67 3.04 1.07 0.78 0.77 1.08 0 1.06 0.97 0.47
   res M 0.89 0.81 0.49 0.68 0.54 0.53 1.00 0.63 0.65 0.34
C           
   M 8.43 12.7 7.97 4.13 2.86 3.03 5.50 4.43 6.07 1.90
   SD 1.89 4.29 0.40 1.28 1.22 1.73 0.67 0.51 2.48 0.85
   res M 0.74 0.62 1.00 0.79 0.62 0.51 0.90 0.86 0.72 0.45
D           
   M 11.00 16.47 6.44 3.13 2.80 4.26 3.94 4.76 6.58 2.91
   SD 0 1.99 1.82 1.43 1.07 1.07 1.60 0.43 1.26 0.29
   res M 1.00 0.81 0.78 0.53 0.60 0.82 0.59 0.94 0.80 0.95
E           
 M 6.33 9.87 4.73 2.91 2.08 1.87 3.86 3.85 2.73 1.34
   SD 1.15 4.08 1.76 1.22 0.85 0.93 1.29 0.75 2.43 0.52
   res M 0.53 0.47 0.53 0.48 0.36 0.22 0.57 0.71 0.25 0.17
F           
   M 9.07 16.61 3.05 2.92 2.25 1.32 4.39 2.89 3.71 1.01
   SD 0.31 3.12 0.88 0.72 0.94 0.67 1.51 1.34 1.88 0.12
   res M 0.81 0.82 0.29 0.48 0.42 0.08 0.68 0.47 0.39 0.01
G           
 M  7.03 9.25 2.03 1.99 1.93 1.88 1.99 3.41 3.72 1.49
   SD 1.41 3.83 0.31 0.53 0.87 0.52 0.10 1.07 2.21 0.79
   res M 0.60 0.43 0.15 0.25 0.31 0.22 0.20 0.60 0.39 0.24
H           
 M  5.03 16.00 5.07 2.00 2.21 1.00 2.00 4.27 7.00 1.51
   SD 1.09 0 3.04 0 0.77 0 0 0.54 0 0.55
   res M 0.40 0.79 0.58 0.25 0.40 0 0.20 0.82 0.86 0.25
I           
   M 3.78 4.13 3.31 2.18 1.94 2.58 2.69 2.71 3.43 1.06
   SD 0.67 0.88 1.86 0.86 0.75 1.32 1.27 1.22 1.47 0.24
   res M 0.28 0.16 0.33 0.29 0.31 0.39 0.34 0.43 0.35 0.03

Legend for index noncompound variables: (1) feature not present, (2) low potential, (3) intermediate potential, (4) high potential. Directionality: (1) no directionality, (2) fixed directionality, (3) 
automatic directionality, (4) adaptive directionality, (5) beam forming directionality. Ear-to-ear communication compound: (1) no ear-to-ear communication; (2) feature sync; (3) sound streaming. 
Features: 
BTE indicates behind-the-ear; C, compression; Dir, directionality; ETE, ear-to-ear communication; Ex, expansion; FBM, active feedback management; IR, impulse (noise) reduction; NR, noise 
reduction; NRe, noise reduction environments; SP, sound processing; WNR, wind noise reduction.
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For example, BTE hearing aids of brand 7 accounted for 
89.5% of modality B and 71.2% of modality F (Fig. 7A). Yet, 
the combination of brand 7 and modality B accounted for 53.6% 
of the 239 hearing aids of brand 7, whereas the combination 
brand 7 and modality F amounts to 33.0% of all brand 4 hearing 
aids (Fig. 7B). The percentages in Figure 7A add up to 100% for 
each modality (rows), so it becomes clear what the distribution 
of hearing aid brands is per modality. Similarly, the percentages 
in Figure 7B add up to 100% for each brand (column). The dif-
ferent brands were not evenly distributed overall modalities, and 
some modalities consisted almost completely of one particular 
brand (e.g., BTE modality B, and H; ITE modality G). Other 
modalities showed a wider selection of different brands. How-
ever, for each modality there seems to be one or two dominating 

brand(s) that accounts for more than 50% of the devices within 
that modality.

DISCUSSION

The main focus of this research was to define a framework 
for objective comparisons between groups of hearing aids that 
share a similar level of feature potential. The framework is in-
tended to be independent of brand, type, or product family and 
preferably based on key hearing aid features. To achieve this, 
it was necessary to explore which hearing aid features could 
be considered key features. Subsequently, these key features 
were used to distinguish groups of hearing aids (i.e., modali-
ties), that were related to each other by a comparable level of 
feature potential. The data used in this research were obtained 

TABLE 6. Mean, SD, and rescaled mean feature levels for each primary node profile for the ITE subset (including the total ITE 
subpopulation) and hearing aid feature

Branch

C SP NR Ex WNR IR FBM Dir NRe ETE

M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD

1 9.8 1.6 14.9 3.8 6.0 1.9 2.9 1.2 2.4 1.0 3.8 1.3 4.3 1.5 3.9 1.1 6.2 1.6 2.2 0.7
2 8.0 1.4 14.6 3.1 4.3 1.9 3.3 1.2 1.6 1.1 1.9 1.2 4.7 1.7 2.7 1.0 4.5 1.5 1.0 0.8
3 4.5 1.0 5.6 3.5 3.2 1.8 1.9 1.1 1.9 1.1 2.6 1.0 2.5 1.6 2.8 1.0 3.4 1.4 1.1 0.7
Total 7.7 2.7 12.0 5.7 4.7 2.2 2.7 1.1 2.0 1.0 2.8 1.4 3.9 1.7 3.2 1.3 4.8 2.3 1.5 0.8

 Rescaled Mean

Branch C SP NR Ex WNR IR FBM Dir NRe ETE

1 0.88 0.73 0.72 0.48 0.47 0.69 0.66 0.72 0.74 0.60
2 0.70 0.71 0.47 0.57 0.19 0.22 0.75 0.43 0.50 0.02
3 0.35 0.24 0.32 0.23 0.31 0.40 0.31 0.46 0.34 0.04

Features: 
C, compression; Dir, directionality; ETE, ear-to-ear communication; Ex, expansion; FBM, active feedback management; IR, impulse (noise) reduction; ITE, in-the-ear; NR, noise reduction; NRe, 
noise reduction environments; SP, sound processing; WNR, wind noise reduction.

Fig. 5. Profile plots of seven final ITE modalities a to g: solid lines represent mean features measures for the specific modality, while dashed lines show mean 
feature measure of all devices in the dataset. For axis configuration, see also Figure 2. ITE indicates in-the-ear.
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by collecting technical (meta-)data, provided by hearing aid 
manufacturers.

The strength of the resulting modalities is twofold. First, it 
provides a simple overview of comparable hearing aids, based 
on technical (meta-)data. In the future, knowledge can be 
obtained about the relationship between patient problems, and 
effective technical features to solve these problems. Relating 
patient problems to beneficial technical features would enable 
the audiologist to select a suitable hearing aid in a way which 
could lead to a more rapid and well-targeted fitting. In the ab-
sence of evidence-based knowledge, this framework could be 
used to collect practice-based evidence. Second, despite the ab-
sence of such knowledge, modalities could be useful when an 
initial fitting is not found to be beneficial. Distinct hearing aid 
modalities would allow the audiologist to “try something dif-
ferent” with confidence that a hearing aid representing another 
modality is really different.

Thus, hearing aid modalities offer the possibility to investi-
gate the relations between technical features and patient needs. 
Without the need to benchmark all available hearing aids in a 
modality, fitting and/or rehabilitation results from individual 
hearing aids can be generalized for the entire population of 

hearing aids within a particular modality. Expanding the pos-
sibilities of comparing hearing aids, fits well within a growing 
need for justification of hearing aid selection and the demand 
for evidence-based practice (Anderson et al. 2018). A good ex-
ample of this demand is the growing interest in patient-reported 
outcome measures concerning hearing aid rehabilitation, which 
are used to assess and evaluate the added value of a hearing aid 
fit (Humes et al. 2009; Vestergaard Knudsen et al. 2010; Perez 
& Edmonds 2012; Ferguson et al. 2017). Hearing aid modalities 
defined in this research may potentially be matched to patterns 
of individual hearing problems measured by rehabilitation out-
comes, such as described by Lansbergen et al. (2018).

Recently, there have been some attempts to compare hearing 
aids based on the level of technology (Humes et al. 2009; Cox 
et al. 2016; Johnson et al. 2018; Wu et al. 2018). However, these 
comparisons were driven by user output (objectively measured 
using performance scores or subjectively using self-reported 
outcome measure) and do not directly measure differences in 
technology within the hearing aid. The LCT analysis facilitates 
comparison of hearing aids on a lower level, by focusing on 
elementary differences between hearing aids; comparing either 
the availability of a feature or the number of levels or bands by 

TABLE 7. Mean, SD, and rescaled mean (res M) feature levels for all ITE modalities and the complete ITE subset

C SP NR Ex WNR IR FBM Dir NRe ETE

All           
 M  7.65 11.96 4.67 2.72 2.01 2.84 3.90 3.22 4.83 1.52
   SD 2.70 5.69 2.23 1.14 0.97 1.44 1.65 1.30 2.26 0.75
   res M 0.67 0.64 0.52 0.43 0.34 0.46 0.58 0.55 0.55 0.26
a           
 M 10.03 15.4 5.15 3.22 2.57 3.71 4.50 3.57 5.17 1.80
   SD 0.97 3.50 1.78 1.07 1.06 1.02 1.55 0.97 1.38 0.66
   res M 0.90 0.76 0.59 0.56 0.52 0.68 0.70 0.64 0.59 0.40
b           
 M 9.75 16.52 6.73 3.17 2.49 2.74 3.68 5.00 6.77 2.75
   SD 1.94 1.96 1.83 1.41 1.07 1.40 1.88 0 1.14 0.46
   res M 0.87 0.82 0.82 0.54 0.50 0.43 0.54 1.00 0.82 0.87
c           
 M 9.28 11.74 7.23 1.90 1.87 5.00 4.65 3.36 7.79 2.53
 SD 2.08 4.08 0.94 0.31 0.45 0 0.61 1.30 0.62 0.55
   res M 0.83 0.57 0.89 0.22 0.29 1.00 0.73 0.59 0.97 0.77
d           
 M  8.01 14.55 4.32 3.29 1.57 1.87 4.73 2.72 4.49 1.04
 SD 1.77 4.92 2.12 1.09 0.84 1.03 1.47 1.26 2.31 0.19
   res M 0.70 0.71 0.47 0.57 0.19 0.22 0.75 0.43 0.50 0.02
e           
   M 4.43 5.46 2.46 1.98 2.17 2.35 1.99 3.12 3.97 1.05
   SD 1.09 2.97 0.99 0.33 0.61 1.19 0.27 1.09 1.19 0.28
   res M 0.34 0.23 0.21 0.24 0.39 0.34 0.20 0.53 0.42 0.03
f           
   M 4.45 5.66 5.31 1.87 2.27 3.51 3.74 2.83 4.35 1.20
   SD 0.99 1.94 1.14 0.34 0.96 1.23 0.89 1.18 2.05 0.40
   res M 0.34 0.25 0.62 0.22 0.42 0.63 0.55 0.46 0.48 0.10
g           
   M 4.62 5.88 2.13 1,83 1.00 1.86 2.12 2.23 1.00 1.00
   SD 1.53 2.45 0.77 0.71 0 0.35 0.70 1.06 0 0
   res M 0.36 0.26 0.16 0.21 0 0.21 0.22 0.31 0 0

Legend for index noncompound variables: (1) feature not present, (2) low potential, (3) intermediate potential, (4) high potential. Directionality: (1) no directionality, (2) fixed directionality, (3) 
automatic directionality, (4) adaptive directionality, (5) beam forming directionality. Ear-to-ear communication compound: (1) no ear-to-ear communication; (2) feature sync; (3) sound stream-
ing. Features: 
C, compression; Dir, directionality; ETE, ear-to-ear communication; Ex, expansion; FBM, active feedback management; IR, impulse (noise) reduction; ITE, in-the-ear; NR, noise reduction; NRe, 
noise reduction environments; SP, sound processing; WNR, wind noise reduction.
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which features could be adjusted (e.g., the number of compres-
sion bands or levels of NR). An important aspect is that the LCT 
analysis also takes into consideration specific combinations 
of technologies in terms of profiles that go beyond individual 
features or functionalities. In addition, the modalities were 
obtained using a probabilistic model instead of deterministic, 
and within the current results, there are measures of uncertainty.

Modalities
This study describes a (statistical) framework that applied 

LCT to a large dataset of hearing aids, and led to the forma-
tion of mutually exclusive hearing aid modalities. A hearing 
aid modality is characterized by a pattern of feature potential; 

or to put it differently, modalities characterize populations of 
closely related hearing aids. Modalities could be thought of as 
a generic alternative to the manufacturer-dependent proprietary 
“concepts” that comprise a specific interplay between certain 
features. Modalities are in essence not manufacturer specific, 
nor a substitute to their “concepts”; they have been developed 
to be generic and always include information about a given set 
of features.

Before the LCT results presented in this article, the data 
went through several KDD stages. An important decision was 
to split the data based on the style of hearing aid. Consequently, 
two separate LCT analyses were performed. In the process of 
the LCT analysis, the dataset was split unconditionally at the 
first LCA, developing three separate branches of modalities, for 
both the BTE and ITE subset. These branches were defined by 
the most dominant structures in the data. Finally, nine BTE and 
seven ITE modalities could be distinguished, each characterized 
by a specific feature configuration.

It is interesting to note that the primary split yielded fairly 
comparable profile plots for the three branches (Fig. 3) for both 
the BTE and ITE subsets. This result is important for two rea-
sons: splitting the data and running two separate LCT mod-
els could be considered as an alternative to cross-validation; 
second, there are only small and specific differences between 
BTE and ITE hearing aids on a basic level with respect to 
hearing aid feature potential. The latter can also be derived by 
observing similarities in the mean BTE subset and ITE subset 
feature plots of Figures 4 and 5.

The LCT analysis resulted in several modalities with large 
variation between hearing aid features. For example, hearing 
aids related to ITE modality c all have high IR feature poten-
tial, but only limited feature potential for Ex and WNR. This 
seems to be a nontrivial result considering the weak correla-
tions between these modalities, which might be an intentional 
choice of design. There seems to be no research that has directly 
investigated or referred to specific nontypical feature configu-
ration, investigating rehabilitation in relation to these modali-
ties could reveal interesting insights in the effectiveness of this 
configuration.

An important advantage of identifying hearing aids modali-
ties with distinct feature profiles is that devices related to a cer-
tain modality could serve a very different and specific type of 
rehabilitation demand when compared with devices related to 
another modality. Such specific details on the combination of 
features within hearing aid populations could support the de-
mand for an evidence-based selection method (Anderson et 
al. 2018). In practice, modalities might serve as estimators for 
selecting hearing aids with a particular set of feature potential. 
For instance, when a practitioner would like to select a hear-
ing aid to fit a large hearing loss with ski-sloping threshold 
values, a BTE style hearing aid with an emphasis on signal pro-
cessing domain features, such as modality D might be a valid 
first choice. At this point, however, modalities have not been 
matched to rehabilitation outcomes and there is no evidence 
that particular modalities perform better than others. Besides, 
Anderson et al. (2018) demonstrates that audiologists rely on 
the manufacturers’ first fit for the fitting of hearing aid features 
(with the exception of frequency-specific gain), which certainly 
increases the importance of an objective selection method for a 
particular configuration of hearing aid features.

Fig. 6. Top of the table shows the number of hearing aids included in the 
analysis, for each year of introduction and hearing aid style type. The three 
graphs show rescaled mean hearing aid feature potential per domain (y 
axis) for grouped hearing aids (BTE: light grey squares; ITE: dark grey dots), 
plotted against the year of introduction (x axis) from 2009 up to and in-
cluding 2018. The x axes of all three graphs share the same grouped hearing 
aids per year of introduction, and a linear model was fitted on each of the 
domain-specific data. The top graph shows the domain signal processing. 
The middle graph shows the domain comfort, and the bottom graph shows 
the domain adaptation. BTE indicates behind-the-ear; ITE, in-the-ear.
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BTE ITE Subset Comparison • Similarities between the 
BTE and ITE subset were already briefly reviewed when the 
primary split results were discussed. Taking a step back, it is 
also interesting to investigate differences in the data of the 
two subsets. Considering Tables 4 and 6, it can be seen that 
on average, differences were most pronounced in the features 
WNR, Dir, and ETE. For these features the BTE subset showed 
a higher feature potential. Differences were also evident when 
examining the hierarchy of the LCT model (Fig. 1). The final 
number of modalities and termination depth of the nodes dif-
fered between the BTE and ITE analyses. Despite the fact that 
main stop criterion for terminating a node (and thus defining 
modalities) was proportional to the size of the subset. It seems 
that besides the most dominant structures, there are differences 
between BTE and ITE feature potential profiles on a higher 
(and more explicit) level. For a cross-validation approach of 
the data, the results of the primary split seem to be a good 
first-order approximation. However, it is important to bear in 

mind that the split between BTE and ITE data did not resulted 
in equally sized samples, and obviously the samples were not 
randomly distributed.

The feature domains results (Figs. 4 and 5) show that there 
is a positive relation between the signal processing domain and 
the two other domains comfort and adaptation. This suggests 
there is a distinct relation between the level of technology of one 
set of features and the features related to other domains. Never-
theless modality-specific differences remain, which implies that 
the formation of the modalities cannot simply be dismissed as 
a positive correlation between the level of feature technology.

Key Features
The formation and partitioning of the 10 key hearing aid 

features can also be considered a valuable result, if only for the 
fact that the analysis is as strong as the input variables that were 
used. Unmistakably, the choice of hearing aid features that were 

Fig. 7. Distribution of the BTE subset (upper panels) and ITE subset (lower panels), based on a selection of eight hearing aid brands (in random order). The 
percentages in (A) represent the distribution for each modality (row), while the percentages in (B) represent the distribution for each brand (column). The sur-
face tone gives an indication of the underlying number. BTE indicates behind-the-ear; ITE, in-the-ear.
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considered for this research is not a complete list of features that 
could be marked as audiologically relevant for rehabilitation. 
Results should therefore be interpreted considering the inclu-
sion of specific hearing aid features. Additionally, hearing aid 
features excluded as a result of the KDD process held little to no 
information that could be beneficial to the LCT analysis.

Some hearing aid features were expressed in terms of 
number of levels (e.g., Ex) or channels (e.g., compression). 
There is a general assumption that a larger range of adjustable 
channels or levels is analogous to an overall higher level of tech-
nology. Results of the BTE and ITE modalities projected on 
the domains of functionality already showed a positive relation 
between mean feature potential between the domains. Further-
more, it is reasonable to assume that higher feature potential 
(i.e., a larger the number of levels or channels) relates to more 
technologically advanced devices that can be fitted with a higher 
level of sophistication. Even though correlations between in-
dividual features were not evident, most key features did not 
strongly depend on the level of other features, yet showed a pos-
itive dependency with the overall level of technology. This will 
probably not hold for each individual hearing aid, however, in 
general, the number of levels and channels and the level of tech-
nology in hearing aids tend to be associated.

Year of Introduction
The three feature domains (signal processing, comfort, and 

adaptation) were used to analyze the relation between the year 
of introduction of the device and level of feature potential over 
the period of a decade. For the BTE subset, only the adaptation 
domain showed a significant and strong effect of year of intro-
duction on feature potential level. For the ITE subset, significant 
positive relations were found between the year of introduction 
and the feature domains signal processing and adaptation. It is 
interesting to note that for these domains, the increase in feature 
potential for ITE hearing aids is stronger compared with BTE 
hearing aids. It could be argued that miniaturization of technical 
resources enables manufactures to increase feature potential in 
the limited space and power supply of the ITE, to the point that 
ITE devices approach the feature potential of BTE hearing aids. 
In contrast to the features related to the dimensions of signal 
processing and comfort, the features of the adaptation domain 
are fairly new and emerging. For the BTE hearing aids, these 
results seem to suggest that there has been only limited devel-
opment in the level of feature potential over the past decade. On 
the other hand, it might also be true that functionality of existing 
features improved without an additional increase in feature po-
tential. Such could for example be achieved by increasing em-
phasis on the combined usage of features by manufacturers (i.e., 
concepts). A note of caution is due here since a considerable 
portion (19.5%) of the data lacked any information about the 
date of introduction.

Relation to Hearing Aid Brands
The interplay between hearing aid features fulfills an impor-

tant role in the hearing aid fitting process. It is unlikely that the 
precise connection and dependency between features will be fully 
understood by each hearing aid clinician (Mellor et al. 2018a), 
partly because the complexity and methods of implementation of 
the features are hidden in most cases. In addition, the increasing 

use of manufacturer proprietary “concepts” contributes strongly 
to this issue. The ability to distinguish between configurations of 
hearing aid features, without the burden of manufacturer-specific 
terminology and “concepts,” would be of value in relation to the 
prediction of rehabilitation outcomes/success.

We analyzed the relationship between BTE and ITE modali-
ties and different hearing aids brands, using a selection of hear-
ing aid brands that consisted of the eight most commonly used 
hearing aids brands in the Netherlands. Results of these analy-
ses revealed several modalities that included brand transcend-
ing configurations, while other modalities turned out to be more 
brand-specific. The latter group seems to mainly include hearing 
aids from one or two brands (e.g., BTE modality B and H, or 
ITE modality C and G). However, these brands were not limited 
to these modalities. This could imply that some product fami-
lies within a particular brand have a very distinct composition of 
features that seems to deviate from other types of hearing aids 
from the same brand. For example, BTE modality B is almost 
completely dominated by brand 7, and therefore could be con-
sidered as an almost exclusive brand 7 modality. However, brand 
7 is not exclusively associated with modality B, as 33.1% of all 
devices of brand 7 were also associated with modality F. Also, 
each brand (that was included in the subset) was on average pre-
sent in 6.75 modalities, which demonstrates that most modalities 
were not directly associated with one specific brand. Such diver-
sity increases the usability of the modalities as a more objective 
selection tool for an appropriate hearing aid selection.

Limitations
The major limitation of this study is the absence of know-

ledge on how patient needs relate to technical features cat-
egorized into hearing aid modalities. Without this information, 
hearing aid modalities are of limited use. Whether the current 
approach of clustering a large population of hearing aids was 
a success in relation to the research aim, depends on how the 
results are considered. Despite its exploratory nature, this study 
offers some insight into the coherence of feature potential be-
tween selected hearing aid features.

Another potential shortcoming of this model is that it was 
designed only to reveal patterns between hearing aids present in 
the current database. Therefore, the model may need to be ex-
tended for future hearing aids. This approach was chosen inten-
tionally, as we did not want to anticipate technical developments 
taking place in new hearing aids. The main argument here is that 
we cannot foresee how novel modalities and interactions could 
fit into or be explained by the present model. Although it would 
be possible to assign some new hearing aids to the existing pro-
files based on individual feature profiles, even if a measure of 
some feature is different from the measure ranges within the 
present database. Due to the size of the dataset, it would be 
highly unlikely that the currently presented modalities would 
alter as a result of the addition of several new hearing aids, nor 
that the modalities would not apply to new hearing aids. How-
ever, it is advisable to repeat the analysis as more and more 
new hearing aids become available (and consequently replace 
outdated devices).

Although a selection of important key features was de-
fined during the initial KDD process and further used for the 
LCT analysis, it is still a simplification and approximation of 
the complete description of the potential of each hearing aid. 
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It is not possible to define generalized categories that capture 
the whole variety of different concepts and features present 
in modern hearing aids. Even when a concept is broadly used 
among hearing aids from different manufacturers, the imple-
mentation of a concept could lead to differences that at best 
complicate comparability.

It should be mentioned that quantitative measures such as the 
clustering of hearing aids by modeling particular combination 
of features does not and should not replace the interpretation of 
a specific feature configuration as is common practice in a clin-
ical setting. The large individual variability in patient character-
istics makes a full “Expert-System” not feasible. The modalities 
described can be characterized as a hearing aid selection guid-
ing system to support the selection of an appropriate device or a 
comparable group of devices for an individual hearing-impaired 
person. Complementary research that addresses questions about 
the relationship between the proposed modalities and patient 
needs could reassert the usefulness of the current method.

CONCLUSIONS

The general assumption that hearing aids can be grouped by a 
low or high level of technology (sometimes referred to in terms of 
basic and premium devices) seems to be valid only as a first-order 
approximation. This research shows that it is possible to group 
hearing aid populations based on a much more detailed config-
uration of hearing aid features. In total nine BTE and seven ITE 
modalities were defined, each with a particular feature configura-
tion, which accommodated a total of 3083 different hearing aids. 
These modalities could be thought of as a generic alternative to 
the manufacturer-dependent proprietary “concepts,” and could 
potentially support the selection of an appropriate hearing aid 
for rehabilitation of hearing loss. This study will form the basis 
for bringing together quantitative results in audiological rehabil-
itation and will provide an objective structure for the technical 
classification of the hearing aids of the past decade, without the 
burden of manufacturer-specific terminology.
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