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Introduction
Our understanding of sudden unexpected death (SUD) in the 
young has improved substantially with the recognition of latent 
heart disease caused by ion channel gene mutations. The most 
extensively studied of these is long QT syndrome (LQTS), 
which was initially described as a lethal, idiopathic disease of 
severe QT prolongation and deafness.1,2 In the modern era, 
registry data and numerous genetic breakthroughs have rede-
fined LQTS as a heritable condition of variable severity.3 To a 
lesser extent, the other channelopathies, including Brugada 
syndrome (BrS), catecholaminergic polymorphic ventricular 
tachycardia (CPVT), idiopathic ventricular fibrillation, early 
repolarization syndrome, and short QT syndrome (SQTS), 
have benefited from similar molecular advancements. Some 
forms of familial atrial fibrillation (AF), sinoatrial node (SAN) 
dysfunction, sick sinus syndrome (SSS), and progressive car-
diac conduction disease (PCCD) also have overlapping fea-
tures of channelopathy and structural heart disease. When a 
pathogenic mutation in an ion channel gene is identified in  
the clinical setting, it can improve risk stratification, family 
screening and guide treatment.3–6 In rare cases, an ion channel 
gene mutation may also manifest as structural heart disease,7–12 
or in noncardiac pathology, such as epilepsy.13–15 These nonar-
rhythmic phenotypes can be life-threatening, and electrophysi-
ologists need to be aware of their existence. This review 
describes the phenotypic spectrum and molecular basis of the 
nonarrhythmic phenotypes associated with ion channel gene 
mutations.

Ion Channel Gene Mutations in Cardiomyopathy
Many genes have been implicated in cardiovascular disease, 
including those associated with arrhythmia and cardiomyopa-
thy. Among these genes, the data supporting pathogenicity are 
variable, in part because many cases are sporadic, and molecular 
mechanisms are difficult to elucidate. This section will focus on 
the genes for which there is reasonable and consistent evidence 
of a cardiac channelopathy phenotype, in addition to a poten-
tial link to cardiomyopathy (Table 1). However, even for the 
genes meeting this criteria (ie, SCN5A, KCNQ1, RYR2, and 
HCN4), disease causation may be questionable. For example, 
although SCN5A has long been associated with BrS, emerging 
evidence indicates that BrS may be an oligogenic disease (ie, >1 
gene influences phenotype).24 Supplementary Table 1 includes 
the clinical-, genetic-, and population-level evidence for dis-
ease causation for each variant. The link between many of these 
variants and human disease is likely to change as scientific 
knowledge evolves.

SCN5A

Ion influx through the voltage-gated sodium channel (Nav1.5) 
encoded by SCN5A is a ubiquitous process underlying cardio-
myocyte excitability and cell-to-cell conduction.25 SCN5A has 
been implicated as a causative or modifier gene in nearly all of 
the channelopathies, including LQTS, BrS, CPVT, SQTS, AF, 
PCCD, and SSS.8,9,26–31 The J-wave syndromes, as well as BrS, 
are linked to loss-of-function mutations in SCN5A, whereas 
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LQT3 is associated with gain-of-function mutations.9 In some 
channelopathies, such as CPVT and SQTS, the SCN5A link is 
limited to single families.26,28

A well-established nonelectrophysiological manifestation of 
SCN5A variants is dilated cardiomyopathy (DCM).9,20–22,32 Of 
these, the R222Q variant is supported by the most robust 
data.9,20,22,32 In a cohort of 338 genotype-elusive patients with 
DCM, McNair et al9 identified 5 missense SCN5A variants in 
15 subjects. These individuals experienced arrhythmias seem-
ingly out of proportion to the degree of cardiac dysfunction, 
including supraventricular arrhythmia, SSS, AF, ventricular 
tachycardia (VT), and PCCD in the absence of QT prolonga-
tion or J-point elevation. These missense variants typically 
localized to highly conserved regions of SCN5A, supporting 
their pathogenic role, and a shared voltage-sensing mechanism 
underlying both DCM and arrhythmia.9 R222Q is located in 
the domain I voltage sensor of SCN5A and leads to hyperpolar-
izing shifts in activation and inactivation gating.22 This muta-
tion reduces peak Na+ current and incites cardiomyocyte 
hyperexcitability. An additional modifier in SCN5A (H558R) 
may play a role in this overlap phenotype,22 although DCM 
has been reported in a second family without H558R polymor-
phism.20 A distinct, but nearby, mutation (R219H) in SCN5A 
also appears to manifest in AF, VT, and DCM.21 R219H is 
located in a highly conserved region of SCN5A and leads to 
excessive proton leak, suggesting that acidification of cardio-
myocytes may induce DCM.21 Additional unknown genetic 
modifiers may unmask SCN5A-linked DCM, as seen in BrS 
and LQTS.4,29 It is believed that causative gene mutations 
involved in various cardiac phenotypes typically disrupt “final 
common pathways,” which lead to the disease state.33 The dis-
covery of a cardiomyopathy-channelopathy overlap syndrome 
posed a paradigm shift in electrophysiology, namely, that elec-
trical excitability in Na+ channels may lead to dilatory remod-
eling and familial DCM.8

Lenegre-Lev syndrome, also known as PCCD, is defined by 
gradual idiopathic fibrosis of the cardiac conduction system 
and is usually seen in the aging population.30 In the past, 
PCCD was not considered a traditional channelopathy because 

of its microscopic structural manifestations; however, SCN5A 
mutations have been implicated in PCCD and nonprogressive 
forms of conduction abnormality.30 The mechanism linking 
impaired Na+ current and PCCD is not well established, and 
aging likely plays a role in unmasking the phenotype.30

SCN5A variants can be challenging to interpret in the clini-
cal setting. Nav1.5 probably has many roles and directly inter-
acts with other proteins, such as PKP2-encoded plakophilin, 
which underlies arrhythmogenic right ventricular cardiomyo-
pathy (ARVC).34 In this setting, loss of PKP2 function leads to 
impaired INa, suggesting an important, shared role between 
desmosomes, gap junctions, and Na+ channels in maintaining 
INa.35 This discovery is supported by a large BrS cohort with 
coexisting Na+ channel dysregulation and PKP2 variants.36 A 
growing number of studies also report possible subtle structural 
changes in patients with BrS34 and abnormal electrograms dur-
ing epicardial mapping.37 Ablation can normalize the electro-
cardiogram but does not provide complete protection from 
arrhythmia.38 This highlights the complex pathophysiological 
mechanisms of BrS, which remain elusive despite decades of 
research. Brugada syndrome is likely oligogenic,24 as evidenced 
in stem cells which did not recapitulate an arrhythmia pheno-
type in vivo despite harboring SCN5A mutations.39 This is 
highlighted by the relatively high allele frequencies of certain 
BrS-associated variants (Supplementary Table 1).

KCNQ1

KCNQ1, encoding the pore-forming subunit (Kv7.1) of the 
slowly activating delayed-rectifier potassium channel, under-
lies LQTS, SQTS,40 and atrial arrhythmias.40,41 Despite 
KCNQ1 being an ion channel gene, cases of LQTS and SQTS 
complicated by cardiomyopathy have been described.11,23 One 
such example is a highly arrhythmogenic cardiomyopathy 
observed in the setting of a loss-of-function KCNQ1 (R397Q) 
mutation.23 A hypothesized mechanism by which a mutation 
in KCNQ1 propagates structural heart disease is as follows23: 
KCNQ1 and KCNE1 form repolarizing channels which are 
regulated by beta-adrenergic-mediated protein kinase 

Table 1. Summary of genes implicated in the cardiomyopathy-channelopathy overlap syndrome.

ION CHANNEL GENES AND THEIR ASSOCIATION WITH CHANNELOPATHy AND CARDIOMyOPATHy

 SCN5A KCNQ1 RYR2 HCN4

LVNC Nakashima et al16 Ohno et al10

Campbell et al12

Roston et al17

Milano et al18

ARVC Tiso et al7
Roux-Buisson et al19

 

DCM McNair et al8,9

Nair et al20

Gosselin-Badaroudine et al21

Cheng et al22

Xiong et al23  

Abbreviations: ARVC, arrhythmogenic right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; LVNC, left ventricular noncompaction.
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A–dependent phosphorylation. IKs currents are also sensitive 
to Ca2+, in part through interaction with calmodulin. Abnormal 
interaction between mutant Kv7.1 and calmodulin may lead to 
Ca2+ dysregulation and impaired cardiomyocyte contractility, 
thus producing a structural phenotype. Similar mechanisms 
have been theorized in other cardiomyopathy-channelopathy 
overlap syndromes,9,42,43 including SCN5A-associated DCM 
and left ventricular noncompaction (LVNC) and KCNQ1-
associated DCM in 3 patients with SQTS.44 However, 
incomplete phenotyping and so-called tachycardia-induced 
cardiomyopathy may confound these reports, and mechanistic 
descriptions are largely speculative. Alternatively, KCNQ1 may 
be a genetic modifier of structural heart disease. These dra-
matic but isolated observations highlight the need for further 
biophysical and linkage studies and detailed phenotyping.

An overlap between a channelopathy and a developmental 
abnormality has recently been seen in the form of LVNC.16,42,45 
Left ventricular noncompaction is an uncommon congenital 
cardiomyopathy defined by intertrabecular sinusoids commu-
nicating with the ventricular cavity. In 2013, Nakashima 
reported LVNC in a young child with cardiac arrest, QTc pro-
longation, and a pathogenic KCNQ1 variant.16 Accordingly, 
ion channel genes have embryological roles46 and may also be 
downstream targets of transcription factors. These provide 
hypothetical mechanisms by which KCNQ1 may relate to con-
genital heart disease. However, the channelopathy-LVNC link 
is ill-defined and may be attributable to the coexistence of 2 
rare, unrelated pathologies.

RYR2

Catecholaminergic polymorphic ventricular tachycardia is a 
channelopathy that leads to polymorphic VT during exertion 
or emotional stress. Priori et al47 implicated RYR2 in CPVT, 
which encodes the ryanodine receptor 2 (RyR2).47 Ryanodine 
receptor 2 is the largest ion channel in the human genome with 
a complex heterotetrameric structure, which allows it to inter-
act with the cytosol, plasma membrane, and lumen of the sar-
coplasmic reticulum.48 As such, RyR2 may be involved in 
cellular processes that extend beyond the action potential. 
Since 2001, more than 200 gain-of-function RYR2 variants 
have been described.49 To a lesser extent, loss-of-function 
RYR2 mutations exist, but instead underlie an arrhythmia syn-
drome distinct from CPVT.50–52 RYR2 variants7,10,17,19 and 
abnormalities in Ca2+ current53 are also associated with changes 
in cardiac structure.

Arrhythmogenic right ventricular cardiomyopathy came to 
be recognized due to its severe electrophysiological conse-
quences (and extracardiac cutaneous phenotype). Accordingly, 
diagnostic criteria rely on electrical findings,54 in addition to 
coexistent fibrofatty ventricular infiltration, making it the pro-
totypical cardiomyopathy-channelopathy overlap syndrome. 
Arrhythmogenic right ventricular cardiomyopathy is a disorder 
of the intercalated disk, desmosome, and gap junction,55,56 of 

which the intercalated disk is integral in forming the myocar-
dial scaffold.56 The intercalated disk interacts with a variety of 
proteins, including ion channels.57 As Priori and colleagues 
were describing RYR2-associated CPVT, Tiso et al7 published 
on 4 ARVC families with variants in RYR2. More recently, 6 
rare missense variants in RYR2 were identified in 64 previously 
genotype-elusive ARVC subjects.19 Tiso and colleagues 
hypothesized that Ca2+ dysregulation at the sarcoplasmic retic-
ulum, a mechanism also proposed to underlie CPVT, leads to 
myocardial necrosis, resulting in ARVC.7 The role of the inter-
calated disk in this relationship is unclear, and data linking ion 
channels to the intercalated disk involve Na+ rather than Ca2+ 
current.57 Further molecular work is needed to determine the 
mechanism of RYR2-related ARVC.

RYR2 is also linked to LVNC.10,45 Our group recently 
described a loss-of-function mutation in a family with LVNC 
and atypical CPVT.17 In another family, there are 2 female 
CPVT probands with deletion of exon 3 in RYR2, exercise-
induced ventricular ectopy, and LVNC.10 Family screening 
identified 8 mutation carriers, of which 7 had LVNC.  
A structural phenotype related to RYR2 exon 3 deletion has 
also been described in an unrelated patient.12 These are some 
of the reports describing large exon deletions of RyR2. At pre-
sent, it is not known whether larger deletions of RyR2 are 
likely to manifest in structural heart disease. In addition, some 
RYR2 mutations may actually be benign polymorphisms,58 
and variants of unknown significance in RYR2 are common,59 
making it difficult to link rare structural phenotypes to RYR2.

HCN4

Before the genetic basis of conduction disease was known, 
SAN dysfunction was thought to be a channelopathy, caused 
by impaired “funny current,” If.60 Using a candidate gene 
approach, Macri et  al61 demonstrated that HCN4 variants 
cause chronotropic incompetence. HCN4 is expressed in the 
SAN and encodes the hyperpolarization-activated cyclic 
nucleotide–gated potassium channel 4. Since their work, 
HCN4 has been implicated in familial sinus bradycardia,18,62 
tachycardia-bradycardia syndrome, and AF.62 Unlike tradi-
tional channelopathies, HCN4 does not appear to manifest in 
primary ventricular arrhythmia.

In 2014, Milano and colleagues18 showed that HCN4 may 
have a structural role in a family with SAN dysfunction, LVNC, 
and HCN4 mutation. There are two main mechanistic hypoth-
eses to explain HCN4-related LVNC. The first is that although 
HCN4 is expressed predominantly in the SAN, it is coexpressed 
in ventricular progenitor cells.63 Under these circumstances, 
HCN4 mutations could lead to congenital heart disease and 
then later manifest as bradycardia after birth. The second 
hypothesis is that trabeculation is a compensatory response to 
bradycardia, as seen in athletes with low resting heart rates.64 
Most recently, multiple variants in HCN4, including those pre-
viously implicated in LVNC,18,65 have been shown to underlie 
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ascending aortic dilation.66 Young patients with symptomatic, 
chronotropic incompetence, LVNC, and/or aortic dilation 
should be considered for sequencing of HCN4.

Extracardiac Manifestations of Ion Channel Gene 
Mutations
The following section discusses the channelopathies which 
have been classically associated with a systemic phenotype, as 
well as emerging theories supporting the systemic impact of 
these mutations. For these syndromes, a description of the sys-
temic findings often predated the causative molecular abnor-
mality. Table 2 summarizes these genotype-phenotype 
correlations.

Syndromic features of the long QT syndrome

The Jervell and Lange-Nielsen syndrome was described over 50 
years ago as a constellation of congenital deafness, childhood 
SUD, and QTc prolongation.1,2,73 We now know that this syn-
drome is caused by homozygous recessive mutations in KCNE 
and KCNQ1.1 In the heterozygous state, enough K+ is secreted 
into the endolymph to maintain the endocochlear potentials 
responsible for sensory conduction.74 However, in a homozy-
gous state, little or no functional protein is produced, resulting 
in deafness and a markedly prolonged QT interval.1,73,75

Timothy syndrome (TS) (allelic to LQT8) is an autosomal 
dominant type of LQTS, characterized by congenital heart 

disease, syndactyly, autism, and immunodeficiency.67,76,77 
Timothy syndrome is almost universally lethal by the third 
decade of life.67 In 1995, the Cav1.2 Ca2+ channel encoded by 
CACNA1c, usually in exon 8A, was found to be causative in 
TS.67 CACNA1c is ubiquitously expressed and has embryologi-
cal importance, highlighted by the diverse congenital TS mani-
festations, including seizures, cognitive disability, electrolyte 
derangements, and hypoglycemia.67,76,77 Polymorphisms in 
CACNA1c may also play a role in valvular heart disease78 and 
psychiatric disease.79

Andersen-Tawil syndrome (ATS) (classified as LQT7) is an 
autosomal dominant syndrome classically defined by the triad 
of episodic flaccid paralysis, QTc prolongation, and congenital 
morphological anomalies.80 In actuality, ATS is better defined 
by its characteristic T-U wave patterns than by QT prolonga-
tion, which is usually absent.80 Mutations in the inward-recti-
fying potassium channel, KCNJ2, underlie ATS,68 as well as 
isolated cases of SQTS81 and CPVT.82 In fact, the bidirectional 
VT characteristic of ATS is a phenocopy of CPVT, and both 
conditions appear to respond well to Na+ channel antago-
nists,59,83 suggesting the possibility of a shared mechanism.

The role of SCN5A in gastrointestinal motility

SCN5A-encoded Nav1.5 has been identified in gastrointestinal 
(GI) smooth muscle cells84 and interstitial cells of Cajal,85 rais-
ing suspicion that the familial preponderance of certain GI 

Table 2. Summary of genes implicated in systemic syndromes.

SyNDROME GENE FUNCTIONAL 
SIGNIFICANCE

MANIFESTATIONS CITATION

Jervell and Lange-
Nielsen syndrome

KCNQ1/KCNE1 LoF QTc prolongation
Deafness

Neyround et al1

Timothy syndrome CACNA1c GoF QTc prolongation
Congenital heart disease
Syndactyly
Autism
Immunodeficiency
Seizures/neurological deficits
Hypotonia
Electrolyte derangements
Hypoglycemia

Splawski et al67

Andersen-Tawil 
syndrome

KCNJ2 LoF QTc prolongation
Micrognathia
Hypertelorism
Short stature
Scoliosis
Low-set ears
Clinodactyly
Periodic paralysis

Plaster et al68

Primary epilepsy KCNH2
KCNQ1
RYR2
KCNJ2
SCN5A

LoF
LoF
Not listed
LoF
LoF

LQT2
LQT1
CPVT
ATS (LQT7)
BrS

Johnson et al13

Zamorano-Leon et al14

Goldman et al69

Nagrani et al70

Marquez et al71

Sandorfi et al72

Abbreviations: ATS/LQT7, Andersen-Tawil syndrome/long QT syndrome type 7; BrS, Brugada syndrome; CPVT, catecholaminergic polymorphic ventricular tachycardia; 
GoF, gain of function; LoF, loss of function; LQT1, long QT syndrome type 1; LQT2, long QT syndrome type 2.
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diseases could be attributable to heritable Na+ channel defects. 
Subsequent functional and animal studies confirmed the 
importance of SCN5A in GI motility,86 and SCN5A variants 
are now thought to underlie human GI syndromes,87 including 
reports of overlapping GI and BrS phenotypes.88 This example 
highlights the importance of pursuing comprehensive evalua-
tions in all patients, as yet unrecognized syndromes may relate 
to the ion channel genes.

Glucose control in CPVT patients with RYR2 
mutations

RYR2 is ubiquitously expressed in a variety of tissues, including 
the brain and pancreas.89 Using oral glucose tolerance testing, 
Santulli et al90 found that patients with CPVT have impaired 
glucose regulation, likely related to RyR2 dysfunction. They 
recapitulated this phenotype in CPVT mice and then rescued 
β-cell function in vitro using small molecules that stabilize 
RyR2, called “Rycals.”90 Rycals have not been studied in human 
CPVT but do offer hope that genotype-specific treatments are 
possible.48

Epilepsy

Ventricular arrhythmias can cause hypoxemic seizures, includ-
ing reports of cardiac ion channelopathy masquerading as epi-
lepsy.14,91 The possibility of arrhythmic syncope must be 
considered in all patients with unexplained seizure, with a care-
ful focus on the electrocardiogram and history. However, sei-
zures can occur independent of arrhythmia in patients with 

channelopathy. KCNQ1 channels are expressed in both neural 
and cardiac tissue,13 and primary epilepsy and LQTS have 
been reported to coexist in 1 LQT1 family.92 This relationship 
extends to LQT2,14 in which seizures may be even more preva-
lent.93 Recently, whole exome sequencing of SUD in epilepsy 
victims revealed several rare LQTS variants.15 Animal models 
further support evidence of a phenotypic overlap.69 In ATS,71 
BrS,72 and CPVT,70 this phenomenon may also exist, making 
cardiocerebral-channelopathy overlap syndrome91 a suitable all-
encompassing term. We recommend that cardiologists and 
neurologists pursue detailed phenotyping in patients with 
arrhythmias and seizures (Figure 1) so as not to miss this unify-
ing syndrome.

Conclusions
Mutations in the ion channel genes underlie a variety of pheno-
types that extend beyond the electrocardiogram, ranging from 
overt, life-threatening symptoms, to concealed, benign pathol-
ogy. The most recognized overlapping manifestations include 
cardiomyopathy and the systemic features of LQTS, almost all 
of which were described before the modern molecular era. So 
far, no unifying mechanism exists to explain these syndromes, 
and a variety of additional factors may influence gene expression 
in ion channel diseases, such as epigenetic factors in cancer 
proliferation,94 genetic compartmentalization in heart disease,95 
and posttranslational modifications in epilepsy.96 The ion chan-
nels interact with one another, and disruption of one channel 
may induce dysfunction in another, as has been shown with 
Ca2+ regulation in LQTS models.97 In many of these examples, 
genetic causation may be questionable,98 and genetic testing is 

Figure 1. Simplified algorithm for the assessment of a potential ion channel overlap syndrome.
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probabilistic in nature.99 We propose an assessment model 
(Figure 1) that emphasizes the multidisciplinary care required 
to evaluate these syndromes. In the future, improved clinical 
recognition will inform further molecular studies on the mecha-
nistic basis of the nonarrhythmic phenotypes.
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