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Abstract: It is of great significance to search for efficient, renewable, biodegradable and economical
membrane materials. Herein, we developed an organic-inorganic hybrid regenerated cellulose
membrane (ZrO2/BCM) with excellent hydrophilic and anti-fouling properties. The membrane was
prepared by introducing ZrO2 particles into an N-Methylmorpholine-N-oxide(NMMO)/bamboo
cellulose(BC) solution system by the phase inversion method. The physi-chemical structure of the
membranes were characterized based on thermal gravimetric analysis (TGA), Fourier transform
infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-
ray diffraction (XRD). The modified regenerated cellulose membrane has the excellent rejection of
bovine serum albumin (BSA) and anti-fouling performance. The membrane flux of ZrO2/BCM is
321.49 (L/m2·h), and the rejection rate of BSA is 91.2%. Moreover, the membrane flux recovery rate
after cleaning with deionized water was 90.6%. This new type of separation membrane prepared with
green materials holds broad application potential in water purification and wastewater treatment.

Keywords: ultrafiltration membrane; regenerated cellulose membrane; ZrO2; anti-fouling property

1. Introduction

With the continuous development of society, the problem of water pollution has
attracted more and more attention [1]. Ultrafiltration technology plays a crucial role in
water purification and wastewater treatment [2,3]. Ultrafiltration membranes materials
mainly include polyethersulfone (PES) [4–6], polysulfone (PSF) [7,8] and polyvinylidene
fluoride (PVDF) [9–11]. However, in the process of polymer membrane synthesis, non-
biodegradable organic materials will cause environmental pollution and energy waste, so it
is of great research significance to seek environmentally friendly and economical membrane
raw materials [12].

Cellulose is one of the most abundant renewable and biodegradable organic materi-
als [13,14]. Regenerated cellulose (poly(1,4)-d-glucose), obtained by dissolving cellulose,
has the advantages of good chemical stability, high hydrophilicity and biodegradability,
and has gradually become a research hotspot for membrane materials [15,16]. However,
cellulose membranes suffer from low mechanical strength and poor anti-fouling prop-
erty [17,18].

Membrane fouling is an crucial issue in ultrafiltration(UF) separation
applications [19,20]. Contaminants such as proteins are easily adsorbed and deposited
on the membrane surface and in the pores, which leads to a decrease in permeation flux
and shortens the service life of the membrane [21]. In addition, the membrane structure
with low mechanic strength would be damaged during the long-term operation of the
membrane, resulting in reduced flux and poor flux recovery after cleaning. Therefore,
improving the anti-fouling performance and stable performance of the membrane is still a
challenge for membrane applications [22,23].
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In recent years, the introduction of nano inorganic oxides, such as SiO2, Al2O3, TiO2,
and ZrO2 into polymer membranes for improving the antifouling performance of the
membrane has become one of the research hotspots [24–26]. The blending of these fillers
would modulate the surface properties of the membrane and improves the antifouling.
ZrO2 enjoys the merits of pleasurable thermal stability, corrosion resistance and good
biocompatibility, which can improve the physical and chemical properties of the mem-
brane [27–29]. Meanwhile, when ZrO2 is fixed on the surface of the membrane, the polarity
of the Zr-O bond is easy to form a hydroxyl group (-OH) with the hydrolysis of the particle
surface to improve the hydrophilicity of the membrane. Pang et al. [30] blended ZrO2 with
PES to prepare an anti-fouling composite ultrafiltration membrane which has a higher
porosity and a larger average pore size. Shen et al. [31] used a two-step method to introduce
functionalized ZrO2 into the PVDF ultrafiltration membrane to improve the separation
efficiency of the membrane for oil-water mixtures. Wen et al. [32] prepared a dense ZrO2
ultrafiltration membrane with nanocrystals as the precursor, which effectively reduced
the pollution of ceramic membranes. It can be seen that the introduction of nano-ZrO2
into the membrane material improves the permeability and antifouling performance of
the membrane.

However, the modification of cellulose membrane by nano-ZrO2 has been rarely
reported. In this work, the ZrO2/BCM was prepared by blending nano-ZrO2 with natural
bamboo cellulose (BC) using a convenient phase inversion method. This study focuses on
the systematic analysis of the effect of ZrO2 on the surface microstructure, composition,
crystal structure, and thermal stability of regenerated cellulose. In addition, the protein
retention performance of ZrO2/cellulose membrane and the stability during the filtration
process were also studied.

2. Materials and Methods
2.1. Materials

Cellulose with a polymerization degree of 650 was kindly provided by Sichuan Tianzhu
Bamboo Resources Development Co., Ltd. (Chengdu, China). N-Methylmorpholine- N-oxide
(NMMO) (Analytical reagent > 97%) was obtained from Tianjin Hainachuan Science and
Technology Development Co., Ltd. (Tianjin, China). Gallic acid (PG, Sinopharm Group
Chemical Reagent Co., Ltd., Shanghai, China). Zirconium Dioxide (ZrO2) was obtained
from Macklin Co., Ltd. (Shanghai, China). Bovine serum albumin (BSA) was purchased
from Aladdin Chemical Reagent Co., Ltd., Shanghai, China. The water used in this work
was deionized.

2.2. Preparation of the Membrane

The preparation of the membrane was schemed in Figure 1. Firstly, an appropriate
amount of BC was dried at 60 ◦C under vacuum for 12–24 h before use. Secondly, the
nano-ZrO2 particles (0.5–2.5 wt.%, based on BC) were added into the 85 wt.% NMMO
aqueous solution and ultrasonically dispersed for 30 min [33,34]. The above mixture was
then heated to 90 ◦C, followed by the addition of 2~3 wt.‰ of antioxidant (n-propyl
gallate). The dried BC (3 wt.%, based on NMMO) was further dissolved in the mixture with
continuously stirring for 2~3 h at a raised temperature of 110 ◦C. The resulting mixture was
defoamed for 4~6 h at 90 ◦C to obtain a uniform brown-yellow casting membrane liquid.

The casting membrane liquid was poured onto the non-woven fabric on the coating
machine. The scraper was heated to 60~90 ◦C and the scraping speed was controlled to
20 cm/min. The as-scraped membrane was placed in air for 10~15 s and then soaked
in deionized water for another 24~48 h [35]. Finally, the membrane was taken out and
dried in the air to obtain a regenerated cellulose membrane with a thickness of 300 µm.
The obtained modified cellulose regenerated membrane was recorded as ZrO2/BCM. The
unmodified regenerated cellulose membrane was prepared as the same procedure except
for the addition of ZrO2, and recorded as BCM.



Membranes 2022, 12, 42 3 of 14Membranes 2022, 12, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. The scheme of the preparation of ZrO2/BCM. 

The casting membrane liquid was poured onto the non-woven fabric on the coating 
machine. The scraper was heated to 60~90 °C and the scraping speed was controlled to 20 
cm/min. The as-scraped membrane was placed in air for 10~15 s and then soaked in de-
ionized water for another 24~48 h [35]. Finally, the membrane was taken out and dried in 
the air to obtain a regenerated cellulose membrane with a thickness of 300 μm. The ob-
tained modified cellulose regenerated membrane was recorded as ZrO2/BCM. The un-
modified regenerated cellulose membrane was prepared as the same procedure except for 
the addition of ZrO2, and recorded as BCM. 

2.3. Membrane Characterization 
Cellulose regenerated membranes were observed on a scanning electron microscope 

(SEM, Zeiss Sigma 300, Carl Zeiss AG, Jena, Germany). The crystallinity of the BCM and 
ZrO2/BCM were determined by an X-ray diffraction system (Ultima IV, Rigaku, Tokyo, 
Japan). The test angle was set from 5° to 90° at the speed of 2.4 °/min. Infrared spectra in 
the 4000~600 cm−1 range were recorded with an FT-IR instrument (Bruker VERTEX 70 & 
ALPHA, ) at room temperature. The mass change of the membrane material as a function 
of temperature was recorded with a TG-DTA Instruments (TG209F3, NETZSCH, Selb, 
Germany) at a nitrogen flow rate of 20 mL/min. Approximately 2−3 mg of sample was 
weighed and heated from 25 to 900 °C.  

2.4. Performance of Regenerated Cellulose Membranes 
(1)Pure Water Flux of the Membrane. 
The permeation performance of the membranes was tested as shown in Figure 2. The 

membrane was pretreated in the system under testing conditions for 30 min at a pressure 
of 0.1 MPa until the pressure and water output were stable. After that, the volume of water 
passing through the membrane was recorded every three minutes. The water flux was 
calculated by Equation (1): 𝑄௪ ൌ ௏஺∙௧  (1)

where 𝑄௪ is the permeate flux (L/m2∙h), V is the volume of permeate (L), A is the effective 
area of the membrane (m2), and t is the permeate collection time (h).  
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2.3. Membrane Characterization

Cellulose regenerated membranes were observed on a scanning electron microscope
(SEM, Zeiss Sigma 300, Carl Zeiss AG, Jena, Germany). The crystallinity of the BCM and
ZrO2/BCM were determined by an X-ray diffraction system (Ultima IV, Rigaku, Tokyo,
Japan). The test angle was set from 5◦ to 90◦ at the speed of 2.4 ◦/min. Infrared spectra
in the 4000~600 cm−1 range were recorded with an FT-IR instrument (Bruker VERTEX
70 & ALPHA, ) at room temperature. The mass change of the membrane material as a
function of temperature was recorded with a TG-DTA Instruments (TG209F3, NETZSCH,
Selb, Germany) at a nitrogen flow rate of 20 mL/min. Approximately 2–3 mg of sample
was weighed and heated from 25 to 900 ◦C.

2.4. Performance of Regenerated Cellulose Membranes

(1)Pure Water Flux of the Membrane.
The permeation performance of the membranes was tested as shown in Figure 2. The

membrane was pretreated in the system under testing conditions for 30 min at a pressure
of 0.1 MPa until the pressure and water output were stable. After that, the volume of water
passing through the membrane was recorded every three minutes. The water flux was
calculated by Equation (1):

Qw =
V

A·t (1)

where Qw is the permeate flux (L/m2·h), V is the volume of permeate (L), A is the effective
area of the membrane (m2), and t is the permeate collection time (h).
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(2) Separation performance of membrane.
Ultrafiltration of membranes was carried out with bovine serum albumin (BSA) as

contaminant with an initial concentration of 1000 mg/L. The concentration of BSA solution
in the filtrate was measured at the 278.5 nm wavelength by a UV spectrophotometer. The
rejection rate of the membrane was defined by Equation (2):

R =

(
1 − C2

C1

)
× 100% (2)

where R is the membrane rejection rate (%), C1 is initial concentration (mg/L), C2 is filtrate
concentration (mg/L).

(3) Acid and alkali resistance of regenerated cellulose membrane.
The solutions with pH of 2, 4, 8, and 10 were prepared by dilution of 1 mol/L HCl or

1 mol/L NaOH. The membrane was immersed in acid and alkali solution for five days, and
the change of membrane water flux was measured to analyze the acid and alkali resistance
of the regenerated cellulose membrane.

(4) Anti-fouling of regenerated cellulose membrane.
The used regenerated cellulose membrane was placed in the membrane filtration

system (Figure 2) and treated with deionized water, 0.01 mol/L HCl, or 0.01 mol/L NaOH
for 0.5 h, respectively. Then, the membrane was taken out and cleaned with deionized
water on both sides several times. The membrane flux recovery rate (r) was obtained by
comparing the water flux before and after the cleaning procedure, which was used to
evaluate the anti-fouling performance of the regenerated cellulose membrane. Where r is
the membrane flux recovery rate (%), J1 is the initial water flux of the membrane (L/m2·h),
J2 is the water flux after membrane cleaning (L/m2·h).

r =
J2

J1
× 100% (3)

2.5. Characterization of Porosity and Average Pore Size

(1) The porosity of regenerated cellulose membrane was calculated by Equation (3):

ε =
w1 − w2

ρwSd
× 100% (4)

where ε is membrane porosity (%), w1 is wet membrane weight (g), w2 is dry membrane
weight (g), ρw is the density of pure water (0.998 g/cm3) at 25 ◦C, S- is membrane area
(cm2), d is membrane thickness (cm).

(2) The average pore size was calculated by Caout-erfurt Ferry equation [36], Equa-
tion (4):

rm =

√
(2.9 − 1.75ε)× 8ηdQ

ε·∆P
(5)

where rm is average membrane pore size (nm), ε is membrane porosity (%), η is deionized
water viscosity at 25 ◦C (8.9 × 10−4 Pa·s), d is membrane thickness (cm), Q is deionized
water flux (L/m2·h), ∆P is membrane pressure at operation (MPa).

3. Results and Discussion
3.1. The Influence of ZrO2 Content on the Physical Properties of the Membrane

Membrane filtration performance is a key index to judge the function of a membrane.
In this study, the effect of the addition of nano-ZrO2 particles on the filtration perfor-
mance of the regenerated cellulose membrane was investigated under a test pressure of
0.1 MPa. Ultrafiltration of the membranes was carried out with bovine serum albumin
(BSA) as contamination.

The influence of ZrO2 dosage on the properties of regenerated cellulose membrane
is shown in Figure 3. It can be observed that the addition of ZrO2 particles increases the
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porosity of the regenerated cellulose membrane. The greater the porosity ensures a high
membrane flux. The mass fraction of ZrO2 particles increases to 1 wt.%, the water flux
of the regenerated cellulose membrane continuously increases and reaches the maximum
value. Its water flux is 321.49 (L/m2·h), indicating that the addition of ZrO2 particles
improved the hydrophilicity of the regenerated cellulose membrane to a certain extent.
However, with the excessive content of ZrO2 in the casting membrane liquid system, this
resulted in a decrease in the pore size of the membrane, which will lead to a sharp drop in
the water flux of the cellulose hybrid membrane [32,37].
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Figure 3. (a) Filtration performance of cellulose membrane with nanoparticles; (b) Porosity of
cellulose membranes with nanoparticles.

The addition of excessive nanoparticles leads to the reduction of membrane pore
size and porosity. Similar experimental results were obtained previously by Shen and
coworkers for the PVDF/ZrO2-g-PACMO hybrid membrane fabricated with the phase
inversion method [31]. The decrease in pore size makes the membrane compact, resulting
in a decreasing trend in the average pore size of the regenerated cellulose membrane. As
shown in Figure 3, the decrease in pore size leads to an increase in the resistance of water
to pass through the membrane, and the rejection rate of BSA continues to increase.

3.2. The Influence of ZrO2 Content on the Antifouling Performance of Membrane

Through the rejection experiment of BSA under continuous operation time, the an-
tifouling performance of ZrO2/BCM was evaluated. The fouling of the membrane could
be originated from the effects of adsorption fouling, membrane pore blockage, steric hin-
drance, and/or concentration polarization [24]. The inorganic nanoparticles were dispersed
uniformly in the polymer, so that the interaction between the nanoparticles and the mem-
brane matrix made the membrane have a stable antifouling performance [38]. As shown
in Figure 4, ZrO2 modifies the surface of the regenerated cellulose membrane, effectively
resisting the deposition of contaminants on the surface and reducing the interaction force
between the contaminants and the surface [32].

It can be seen intuitively from Figure 5 that before operation, the separation efficiency
of BSA by the membrane is improved as ZrO2 particles are embedded into the membrane
structure. It can be obtained from Table 1 that the rejection rate of BSA for the regenerated
cellulose membrane with 1 wt.% of ZrO2 is 91.3%, which was decreased over time. When
operating for 180 min, the BSA rejection rate of the BCM decreased by 40% to 45.3%. In
the same period, the rejection rate of 1 wt.% ZrO2/BCM to BSA was 60% higher than that
of BCM. ZrO2/BCM shows excellent antifouling performance. The ZrO2 ultrafiltration
membrane prepared by Wen et al. also showed excellent resistance to BSA [32].
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Table 1. Changes of BSA separation efficiency under different ZrO2 content.

Operation
Time/min

BSA Rejection
Rate

The Content of ZrO2 Particles/wt%

0 0.5 1.0 1.5 2.0

0
15
30
45
60
75
90

105
120
135
150
165
180

0.756
0.578
0.539
0.530
0.526
0.513
0.510
0.505
0.491
0.483
0.472
0.466
0.453

0.816
0.673
0.613
0.589
0.573
0.543
0.536
0.541
0.534
0.533
0.531
0.519
0.507

0.913
0.791
0.771
0.763
0.753
0.759
0.751
0.743
0.741
0.737
0.739
0.732
0.725

0.936
0.761
0.749
0.739
0.724
0.726
0.725
0.723
0.699
0.687
0.675
0.653
0.641

0.961
0.850
0.795
0.776
0.751
0.762
0.759
0.741
0.735
0.736
0.723
0.700
0.673

The change of membrane flux of BSA solution during continuous operation time is
shown in Figure 6. At the beginning of the operation, BSA rapidly accumulates on the
membrane surface and in the pores, resulting in a significant decrease in membrane flux.
When the contaminants on the surface and inside of the membrane accumulate to a certain
extent, the shear force generated by the cross-flow of the filtrate on the membrane surface
will gradually reach equilibrium. The interaction between pollutants becomes the dominant
factor in changing the membrane flux, and the resistance on the membrane surface tends to
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be flat. Therefore, the membrane flux changes smoothly in the later stage of the experiment,
and the membrane flux change of ZrO2/BCM was below 4%. In summary, when the mass
fraction of ZrO2 particles is 1 wt.%, ZrO2/BCM has good stability and rejection of BSA.
Table 2 shows BCM and 1 wt.% ZrO2/BCM membrane performance parameters.
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Hydrophilicity is an important attribute of the membrane, which directly affects the
permeability of the membrane. As shown in Figure 7. The contact angle of the BCM is 43.9◦

± 2.2◦. Cellulose itself is highly hydrophilic. The contact angle of the 1 wt.% ZrO2/BCM
is 33.6◦ ± 3.7◦. It indicates that during the membrane formation process, nano-ZrO2 is
distributed on the surface and throughout the bulk of the membrane, and the hydroxyl
groups carried by them enrich the hydrophilicity of the membrane [30].
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Membrane Water Flux
(L/ m2·h)

Porosity
(%)

Average Pore
Diameter

(nm)

Contact
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Rate (%)
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3.3. Characterization of Regenerated Cellulose Membrane
3.3.1. SEM Observations

The microstructures of the regenerated cellulose membrane were observed by SEM
scanning electron microscope. As shown in Figure 8a, the surface of the BCM membrane
presents a large number of pore structures. Regenerated cellulose membranes are extremely
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hydrophilic, and will quickly undergo liquid-liquid stratification with water in the water
coagulation bath, thereby forming larger pores [39]. Nanoparticles will spontaneously
form agglomerates [25,40]. As shown in Figure 8c, after adding 1 wt.% of ZrO2 particles,
the surface of the membrane became dense without agglomeration, indicating that the
nanoparticles were uniformly dispersed in the regenerated cellulose membrane. However,
with the addition of excessive ZrO2 particles (2 wt.%), agglomeration of nanoparticles
appears on the surface of the membrane. It indicates a decrease in the average pore size of
the membrane and an improvement in the structure of the membrane surface by adding
nanoparticles [41].
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It can be seen from Figure 8b that the BCM membrane structure has a clear layered
and porous structure. It will reduce the stability of the membrane. In Figure 8d there are a
large number of dispersed white spots in the regenerated cellulose membrane structure
when 1.0 wt% ZrO2 particles are added. Under high magnification, it can be seen that the
ZrO2 particles are uniformly attached to the surface of the membrane. The addition of ZrO2
reduces the macropores of the membrane structure and improves the membrane structure.
However, the excessive amount of ZrO2 caused the blockage of the membrane structure.

The elemental composition of ZrO2/BCM was investigated by EDSs detection from
two randomly selected points from ZrO2/BCM [42]. As shown in Figure 9, the C and
O elements were detected, proving the chemical composition of cellulose. Meanwhile,
the presence of Zr elements was also detected. Combined with the SEM images of the
surface and cross-section of ZrO2/BCM, it is shown that ZrO2 nanoparticles have been
uniformly dispersed in the casting membrane liquid and embedded in the regenerated
cellulose membrane to improve the structure of the membrane [27,37].

3.3.2. ATR-FTIR Analysis

Figure 10a shows the FT-IR spectra of BC, BCM, 1 wt.% ZrO2/BCM. Since intramolec-
ular and intermolecular hydrogen bonds are generated during the dissolution of cellulose,
-OH and -NH stretching vibration intensity peaks appear at 3378.03 cm−1 and 3354.17 cm−1.
In the figure, there is C-H stretching at 2900 cm−1 and 2898.64 cm−1 [12]. In addition, there
ais C=O stretching at 1630 cm−1 and C-O stretching vibration peaks at 1060 cm−1 in
all three, which prove the presence of cellulose components [15,43]. The position of the



Membranes 2022, 12, 42 9 of 14

ZrO2/BCM absorption peak is the same as that of BCM. There is no new absorption peak
in the FT-IR spectrum.
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Figure 9. EDs spectrum of 1 wt.% ZrO2/BCM.
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Figure 10. (a) FT-IR spectra of regenerated cellulose membrane; (b) XRD of BC, BCM, 1 wt.%
ZrO2/BCM; (c,d) TG and DTG patterns for BC, BCM, 1 wt.% ZrO2/BCM.

3.3.3. XRD of Regenerated Cellulose Membrane

Figure 10b shows that there are strong diffraction peaks at the 2θ of 16.26◦, 22.78◦ and
26.04◦, corresponding to the three crystal planes (101), (002), and (040) of cellulose [44]. As
the intramolecular and intermolecular hydrogen bonds of cellulose are opened during the
dissolution process, the crystalline structure of cellulose is destroyed, and the crystallinity
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of cellulose gradually decreases during the process of dissolution and regeneration [45].
The XRD spectra showed strong diffraction peaks consistent with the characteristic peak
positions of ZrO2 particles at 2θ of 24.5◦, 28.3◦, 31.5◦, and 34.5◦ [37]. Observing the XRD
spectrum of 1 wt.% ZrO2/BCM, no other new diffraction peaks were found. Combined
with the absence of new characteristic peaks in FT-IR, it can be inferred that the ZrO2
particles and cellulose are combined in a blended form. In addition, the addition of
ZrO2 particles gradually weakened the degree of crystallinity of the regenerated cellulose
membrane [32,46]. It can be inferred that there is a certain force between the ZrO2 particles
and the cellulose polymer, which changes the stress distribution of the regenerated cellulose
membrane. This shows the compatibility of ZrO2 particles and good affinity with the
membrane matrix.

3.3.4. TGA Analysis

TG shows that there is evaporation of water on the surface of all three of them below
100 ◦C as shown in Figure 10c [47]. The initial decomposition temperatures of the three
are 204.07 ◦C, 150.73 ◦C, and 201.86 ◦C, respectively. The results show that compared with
the original bamboo cellulose (BC), the thermal stability of BCM was slightly lower, which
might be caused by cellulose degradation in the dissolution and regeneration processes [48].
In addition, the residual amount of ZrO2/BCM after thermal decomposition is also higher
than that of BCM, which proves the existence of ZrO2 in the membrane matrix. The
addition of ZrO2 particles increased the initial decomposition temperature of the membrane,
ZrO2/BCM has better thermal stability.

3.4. Acid and Alkali Resistance of Regenerated Cellulose Membrane

The acid and alkali resistance of membranes was further explored to expand the
application of membranes in different conditions. As shown in Figure 11, the membrane
flux of regenerated cellulose membrane under acid/base conditions is higher than the
initial membrane flux. It may be due to the corrosion in a strong acid/base. After soaking
for five days in pH 10 solution, the membrane flux of the regenerated cellulose membrane
changed the most, in which the flux of BCM and 1wt.% ZrO2/BCM reached 447.13 L/m2 h
and 412.7 L/m2 h, respectively. Compared with the initial membrane flux, the membrane
flux of 1 wt%ZrO2/BCM has a smaller change compared with BCM. It indicates that
the addition of ZrO2 particles improves the acid and alkali resistance of the regenerated
cellulose membrane.

3.5. Anti-Fouling of Regenerated Cellulose Membrane

It is necessary to clean the contaminated membrane to improve the ultrafiltration
performance of the membrane.

Figure 12 shows the membrane flux recovery rate after cleaning the used regenerated
cellulose membrane under different conditions. As can be seen, the membrane flux recovery
rate of the regenerated cellulose membrane basically reached 90% by washing with HCl
and NaOH. The membrane flux of BCM could hardly be recovered with water as the
washing agent, and the recovery was about 65%. On the other hand, the membrane flux
of 1 wt.% ZrO2/BCM after cleaning with deionized water reaches 290.8 (L/m2h). It also
has a recovery rate of 90.6%, 24.6% higher than that of BCM. It was rationalized that the
addition of ZrO2 effectively reduces the contact of pollutants with the membrane surface,
facilitating the removal of the pollutants adsorbed on the modified regenerated cellulose
membrane by shearing force.
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Figure 11. The influence of pH on the membrane fluxes of BCM and 1 wt.% ZrO2/BCM. The test
conditions (a–d) of the membrane are respectively: pH 2, 4, 8, 10.
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4. Conclusions

Membrane fouling and membrane materials are the main challenges in membrane
applications. In this study, an ultrafiltration membrane (ZrO2/BCM) was prepared by
blending ZrO2 particles with natural bamboo cellulose by the phase inversion method.
Compared with the original regenerated cellulose membrane, ZrO2/BCM has better sta-
bility and anti-fouling properties. The water flux of the ZrO2/BCM membrane reaches
321.49 (L/m2·h). In the dynamic ultrafiltration experiment, ZrO2/BCM showed long-term
performance stability, and the membrane flux recovery rate after cleaning with deionized
water was 90.6%. In summary, the ZrO2/BCM membrane has broader application prospects
in the field of water treatment. The membrane prepared in this study can improve the



Membranes 2022, 12, 42 12 of 14

application of degradable membrane material in the green, clean membrane separation
process, and promote the sustainable development of communities of human destiny.
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