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Abstract

Variety advancement decisions for root quality and yield-related traits in cassava are com-

plex due to the variable patterns of genotype-by-environment interactions (GEI). Therefore,

studies focused on the dissection of the existing patterns of GEI using linear-bilinear models

such as Finlay-Wilkinson (FW), additive main effect and multiplicative interaction (AMMI),

and genotype and genotype-by-environment (GGE) interaction models are critical in defin-

ing the target population of environments (TPEs) for future testing, selection, and advance-

ment. This study assessed 36 elite cassava clones in 11 locations over three cropping

seasons in the cassava breeding program of IITA based in Nigeria to quantify the GEI

effects for root quality and yield-related traits. Genetic correlation coefficients and heritability

estimates among environments found mostly intermediate to high values indicating high cor-

relations with the major TPE. There was a differential clonal ranking among the environ-

ments indicating the existence of GEI as also revealed by the likelihood ratio test (LRT),

which further confirmed the statistical model with the heterogeneity of error variances across

the environments fit better. For all fitted models, we found the main effects of environment,

genotype, and interaction significant for all observed traits except for dry matter content

whose GEI sensitivity was marginally significant as found using the FW model. We identified

TMS14F1297P0019 and TMEB419 as two topmost stable clones with a sensitivity values of

0.63 and 0.66 respectively using the FW model. However, GGE and AMMI stability value in

conjunction with genotype selection index revealed that IITA-TMS-IBA000070 and

TMS14F1036P0007 were the top-ranking clones combining both stability and yield perfor-

mance measures. The AMMI-2 model clustered the testing environments into 6 mega-envi-

ronments based on winning genotypes for fresh root yield. Alternatively, we identified 3

clusters of testing environments based on genotypic BLUPs derived from the random GEI

component.
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Introduction

Cassava (Manihot esculenta Crantz) is one of the most important food crops worldwide, par-

ticularly in sub-Saharan Africa [1,2]. It is known to be a significant source of carbohydrates in

the diet of millions of people in developing countries. It is cultivated in diverse edaphic and cli-

matic conditions worldwide [3] due to its efficient carbohydrate production [4] among staple

root crops. Cassava is a food security crop grown predominantly by smallholders for subsis-

tence due to its adaptability to survive in drought-prone areas under marginal conditions

where other crops may not thrive [1,5]. In comparison to other crops, Sayre et al. [5] reported

that cassava is mainly grown under marginal conditions, producing more energy per unit area

with limited human input than other crops. Cassava is getting much attention because of its

coping mechanisms with diverse environmental conditions [6]. Cassava shows a strong geno-

type-by-environment interactions (GEI) effects [7], making selection for superior clones a dif-

ficult task for cassava breeders. Therefore, selection for a superior clone requires the cassava

breeding program to consider the GEI effect. Detailed evaluation of the magnitude and signifi-

cance of GEI is of utmost importance to ensure greater precision in the release of high yielding

and stable clones [7].

Crop phenotypes are well known to be influenced by environmental conditions [8]. This

can result in differential genotypic responses across the testing environments resulting in GEI

variability. The phenotypic panel for evaluating GEI is often called a multi-environment trial

(MET). In METs where genetic lines are often assessed over many years and locations within a

target population of environments (TPE), there is usually a critical cross-over interaction

(COI), and a GEI term needs to be explored to study the non-additivity of effects.

Among several statistical models devised for exploring the empirical genotypic mean

response across environments and for studying and interpreting GEI in agricultural field trials

are: Linear models, bilinear models, and linear-bilinear models [9]. Fixed-effect linear-bilinear

models such as the Sites Regression (SREG) [10] and the Additive Main Effect and Multiplica-

tive Interaction (AMMI) models [11,12] are used for investigating patterns of genotypic

response across environments. In these models, biplots can be used to visualize the patterns of

genotypic responses to environments [13,14] that allow the breeders to identify high or low

performing clone(s) with broad or specific adaptation for a given trait of interest. A form of

the fixed-effect linear model called a factorial regression (FR) model, and a form of the bilinear

model, called partial least squares (PLS) regression, allow integrating external environmental

and genotypic covariates into the model and can be used to identify weather conditions caus-

ing GEI or the genomic segments (e.g., molecular markers) influencing GEI [9].

AMMI is one of the commonly used fixed-effect linear-bilinear models that models the

complex structure of GEI. It is a hybrid statistical model combining analysis of variance

(ANOVA) to model main effects of genotype and environment and principal component anal-

ysis (PCA) to decompose complex GEI structure into Interactive Principal Component Axes

(IPCAs) through singular value decomposition. In this model, the percentage of GEI variation

explained by IPCAs decreases, with the first IPCA accounting for the highest percentage of

GEI variation. The AMMI biplot of first IPCA scores against the mean of genotypic perfor-

mance visualizes both genotypes and environments through which genotypes with broad or

specific adaptation can be identified. Genotypes with IPCA score in the vicinity of zero are

considered stable across environments.

However, genotypes with scores that deviate from zero for a given IPCA are unstable rela-

tive to the determinants of that IPCA but may exhibit specific adaptation if they are identified

as close to a particular environment in the AMMI biplot. AMMI is often preferable to a linear

regression approach in the sense of being parsimonious as it requires fewer degrees of freedom
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to explain GEI. The AMMI model can further delineate the testing environments with the best

genotypes into mega environment using principal component axes scores and AMMI stability

values (ASV) [15]. The AMMI stability value (ASV) for a genotype is defined to be the distance

from the coordinate point for that genotype to the origin in a two-dimensional space of the

first two Interactive principal component analysis scores (IPCA1 and IPCA2, [16]. Because

IPCA scores account for different amounts of variation in the GEI sum of squares a weighted

value must be assigned to assess stability using the AMMI model. Genotypic stability alone

does not provide a sufficient yardstick for selection as stable genotypes might not necessarily

yield the highest yield performance. Mahmodi et al. [17] and Tumuhimbise et al. [2] used a

genotype selection index (GSI) which is sum of genotypic yield rank across environments and

ASV rank to identify high yielding and stable genotypes. This index implicitly values yield and

stability equally. A low GSI value signifies a desirable genotype with high average yield perfor-

mance and high stability [17].

The Site Regression (SREG) model, also called Genotype Main Effect plus Genotype-Envi-

ronment Interaction (GGE), is a modification of the AMMI model where the bilinear term

combines the genotype main effect (G) and the GEI effect in a multiplicative term. It allows

breeders to explore total genetic rather than exclusively GEI variation. The GGE model enables

the finding of GEI in terms of crossover resulting from changes in genotypic ranking across

the environments [18]. Unlike AMMI biplots that approximate only GEI, the genotypic scores

in a GGE model describe the G and GEI jointly to approximate overall performance of (G

+ GE) in environments.

This study’s principal objectives were: (i) To identify stable and high-yielding cassava clones

adapted to broad and/or specific environments; (ii) To determine the relative importance of

sources of variation influencing key agronomic traits; and (iii) To identify mega environments

for Nigerian cassava; iv) To provide a clear road map for other researchers pursuing these

types of objectives.

Materials and methods

Clonal material and experimental field design

Thirty-six advanced cassava clonal lines were evaluated (31 experimental lines and five stan-

dard checks, Table 1) as in the uniform yield trial (UYT), an advanced evaluation stage of the

International Institute of Tropical Agriculture (IITA) cassava breeding program. The clones

were derived from diverse parentage of elite x elite crosses combination part of genomic recur-

rent breeding program. The clones were selected for further field assessment after four stages

of screening for diseases, vigor, agronomic and quality traits of interest in early stages of breed-

ing program. They were resistant to diseases and had potential for high yielding and dry matter

content. These clones were evaluated across 20 trials grown in 11 locations across different

agro-ecological zones in Nigeria (Fig 1) over three cropping seasons (2017–2018, 2018–2019,

and 2019–2020).

Weather data were collected from the database of the National Aeronautics and Space

Administration Prediction of Worldwide Energy Resource project (https://power.larc.nasa.

gov/data-access-viewer/). Average minimum and maximum temperature of the testing envi-

ronments over crop growth cycle ranged from 19˚C for Zaria20 to 24˚C for Onne19. As for

average maximum temperature, it varied from 29˚C for Onne19 to 36˚C for Kano19. Mean-

while, the total precipitation varied between 415 mm for Kano19 and 5395 mm for Onne20

with average relative humidity of approximately 41% and 89% respectively (Fig 2).

Each trial was established as a Randomized Complete Block Design (RCBD) in three repli-

cates. The experimental plot consisted of six rows of length 5.6 m with an inter-row spacing of
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1 m and intra-row spacing of 0.8 m. The locations used varied from one cropping season to

another as did the number of trials, resulting in an unbalanced data structure.

Statistical analysis

Data quality control and single trial analysis. Before formal genotype-by-environment

analysis, the empirical distribution of the observed agronomic traits was visualized by unique

environment (i.e., location by year combination) in boxplots using the ggplot2 package [19] in

R [20]. A linear mixed model was fitted to the individual trials to estimate clonal variance com-

ponents and broad-sense heritability. The Proc Mixed procedure of Statistical Analysis

Table 1. Thirty-six elite cassava clonal lines evaluated across 11 locations in Nigeria over three cropping seasons.

Clone Pedigree Cycle Clone Year

IITA-TMS-IBA000070 (Check) TMEB459 X? C0 2000

IITA-TMS-IBA30572 (Check) 58308 X BRANCA DE SANTA CATARINA C0 1973

IITA-TMS-IBA980581 (Check) NA C0 1998

IITA-TMS-IBA982101 (Check) IITA-TMS-IBA951181 X IITA-TMS-IBA71173 C0 1998

TMEB419 (Check) NA C0 NA

TMS13F1021P0008 IITA-TMS-IBA010903 X IITA-TMS-IBA030075 C1 2013

TMS13F1114P0001 IITA-TMS-IBA070126 X IITA-TMS-IBA000355 C1 2013

TMS13F1182P0002 IITA-TMS-IBA011412 X TMEB419 C1 2013

TMS13F1461P0002 IITA-TMS-MM990268 X IITA-TMS-IBA000355 C1 2013

TMS13F2061P0005 (IITA-TMS-IBA070004 X IITA-TMS-IBA070520 X SM3361-30)-11 C1 2013

TMS13F2207P0001 IITA-TMS-KAN930061 X IITA-TMS-IBA960249 C1 2013

TMS14F1001P0004 TMS13F1303P0001 X TMS13F1020P0002 C2 2014

TMS14F1016P0006 TMS13F1307P0011 X TMS13F1108P0007 C2 2014

TMS14F1022P0006 TMS13F1307P0020 X TMS13F1106P0006 C2 2014

TMS14F1035P0004 TMS13F1095P0009 X TMS13F1307P0008 C2 2014

TMS14F1035P0007 TMS13F1095P0009 X TMS13F1307P0008 C2 2014

TMS14F1036P0007 TMS13F1109P0009 X TMS13F1307P0020 C2 2014

TMS14F1049P0001 TMS13F1391P0039 X TMS13F1306P0003 C2 2014

TMS14F1120P0003 TMS13F1309P0001 X TMS13F‘1333P0003 C2 2014

TMS14F1131P0001 TMS13F1087P0002 X TMS13F1176P0003 C2 2014

TMS14F1194P0002 TMS13F1101P0007 X TMS13F1307P0020 C2 2014

TMS14F1195P0005 TMS13F1106P0006 X TMS13F1307P0020 C2 2014

TMS14F1208P0007 TMS13F1106P0006 X TMS13F1020P0002 C2 2014

TMS14F1223P0007 TMS13F1106P0006 X TMS13F1108P0007 C2 2014

TMS14F1224P0004 TMS13F1106P0006 X TMS13F1212P0055 C2 2014

TMS14F1262P0002 TMS13F1063P0009 X TMS13F1307P0008 C2 2014

TMS14F1285P0017 IITA-TMS-IBA961632 X IITA-TMS-IBA000070 C2 2014

TMS14F1291P0011 IITA-TMS-IBA030055A X IITA-TMS-IBA961632 C2 2014

TMS14F1297P0019 IITA-TMS-IBA020431 X IITA-TMS-MM970806 C2 2014

TMS14F1300P0008 IITA-TMS-ZAR930151 X IITA-TMS-MM970043 C2 2014

TMS14F1303P0012 I IITA-TMS-ZAR930151 X ITA-TMS-IBA930134 C2 2014

TMS14F1306P0015 IITA-TMS-IBA030060 X IITA-TMS-MM970043 C2 2014

TMS14F1306P0020 IITA-TMS-IBA030060 X IITA-TMS-MM970043 C2 2014

TMS14F1310P0004 IITA-TMS-IBA030060 X IITA-TMS-IBA930265 C2 2014

TMS14F1311P0020. IITA-TMS-IBA030060 X IITA-TMS-ZAR930151 C2 2014

TMS14F1312P0003 IITA-TMS-IBA930134 X IITA-TMS-ZAR930151 C2 2014

https://doi.org/10.1371/journal.pone.0268189.t001
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Software (SAS) software version 9.4 [21] was used to fit the following model:

y ¼ mþ X1r þ pbþ Z1g þ � ð1Þ

where y is the vector (n × 1) of observed phenotypic values, in which n is the number of obser-

vations; μ is the intercept (overall mean); r is the vector (i × 1) of fixed effects of ith replicates

with its associated incidence matrix X1; p denotes the proportion of plant stands harvested, a

covariate for all traits except dry matter content; β is a regression coefficient relating p and y; g
is the vector (j × 1) of random effects of jth genotype with its associated design matrix Z1, and

2 is a residual term assumed to follow a Gaussian distribution.

The quality of each trial was assessed by calculating the coefficient of variation (CV), broad-

sense heritability (H2), and experimental accuracy (Ac) proposed by [22] using the following

expressions: CV% ¼ ðŝe=�yÞ � 100, H2 ¼ ŝ2
g=ðŝ

2
g þ ŝ

2
eÞ, and Ac ¼

p
ð1� PEV=ŝ2

gÞ in

which ŝe is the estimated residual standard deviation, �y is the estimated overall mean for a

trait; ŝ2
g is the estimated genetic variance ŝ2

e is the estimated error variance, and PEV is the

average of prediction error variance.

Fig 1. A map of Nigeria showing the field trial locations across agro-ecological zones.

https://doi.org/10.1371/journal.pone.0268189.g001
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This analysis identified three trials with low heritability (H2< 0.1), low accuracy (Ac< 0.4)

and high CV (CV > 40.5). These trials were removed from further analysis.

Joint G×E analysis of multiple trials. We then carried out a combined linear mixed

model analysis on data consisting of g genotypes evaluated across e environment in r replicates

within each environment. The model fitted for each agronomic trait was:

yijk ¼ mþ gi þ ej þ bkðjÞ þ geij þ pbþ �ijk ð2Þ

where yijk is a phenotypic vector of the observed agronomic trait of ith genotype in kth repli-

cate within jth environment; μ is a fixed intercept, gi is the random effect of ith genotype, ej is

the random effect of jth environment, bk(j) is the random block effect within jth environment,

geij is the random interaction effect of ith genotype and jth environment, p, β, and 2ijk were as

defined in the previous equation.

The random effects in the model are postulated to follow a multivariate normal distribution

with means and variances defined as:

g � N ð0; Is2
gÞ; e � N ð0; Is2

eÞ; b � N ð0; Is2
bÞ; ge � N ð0; Is2

geÞ; and 2� N ð0; Is2
2Þ

where 0 is the expected value (mean) of zero; σ2g is the genetic variance; σ2e is the environ-

mental variance; σ2b is the block variance nested with jth environment; σ2ge is the variance of

genotype-by-environment interaction σ22 is the residual variance; and I is the identity matrix,

Fig 2. Trends of average minimum and maximum temperature (˚C), total precipitation (mm), and mean relative humidity across the testing

environments (%).

https://doi.org/10.1371/journal.pone.0268189.g002
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with order equal to the number of observations. We calculated the percentage of total pheno-

typic variance explained by each random effect to determine how significant it influenced each

trait’s variability. Broad-sense heritability on plot mean basis across all environments was

derived from variance components estimate as

H2 ¼
s2
g

s2
g þ ðs

2
ge=eÞ þ ðs2

�
=erÞ

ð3Þ

where e is the number of environments, r is the number of replicates of genotypes per environ-

ment, and other terms were described above. Out of 17 trials, 12 had three replicates and the

others had two replicates. Therefore, the harmonic mean was calculated to be approximately

2.6, which was used as the number of replicates across all the trials to compute the heritability.

We further ascertained the presence or absence of GEI by fitting both the reduced model

without the GEI term and a full model that included the GEI term. The likelihood ratio test

(LRT) was carried out on each of the agronomic traits to determine if there was a significant

improvement in fitting a full model. In the same manner, we tested for the homogeneity versus

heterogeneity of error variance across trials. Finally, we further partitioned the GEI variance

into a repeatable component as genotype by location (GL), and non-repeatable components as

genotype by year (GY) and genotype by location by year (GLY). In the presence of significant

GEI, we assessed its pattern by fitting Finlay Wilkinson (FW), Additive main effect and multi-

plicative interaction model (AMMI), and genotype and genotype by environment (GGE)

models on the two-way genotype environment adjusted means using the statgenGxE package

[23] in R [20], as described below.

Finlay-Wilkinson regression. The Finlay-Wilkinson regression approach [24] was used

to model GEI by regressing mean phenotypic performance of individual genotypes on an envi-

ronmental index and determine the heterogeneity of associated slopes. The index value of an

environment was the mean of all clones for the trait in that environment. This method requires

two steps: (i) Compute the index values, and (ii) Estimate intercept and slope for each geno-

type by regressing genotypic performance on the environmental index. Prior to fitting the Fin-

lay Wilkinson model, trait values were scaled to mean of zero and standard deviation of one

following the equation below to allow comparison of means square error (MSE) values across

traits, which are measured in different scale of units as:

yijstandardized ¼ ½yij � meanðYÞ�=sdðYÞ ð4Þ

where yij is the adjusted phenotypic mean value of ith genotype in jth environment and Y is

the overall mean of adjusted phenotypic response of all clones in all environments. This stan-

dardization of each trait necessitated that the MSE values reflected variability and not the abso-

lute scale of a given unit [25]. Then for each trait, we fitted the Finlay-Wilkinson model as

yij ¼ mþ gi þ biej þ �ij ð5Þ

in which yij is as described above but scaled, μ is overall mean, gi is the genotypic intercept, βi

is a slope representing the sensitivity of ith genotype. The average value of βi is 1; βi > 1 shows

i has higher than average sensitivity, and βi < 1 shows i has lower than average sensitivity [26],

ej is the environment sample mean, and 2ij is a random error term associated with ith geno-

type evaluated in jth environment.

The analysis provides three key parameters for each genotype: the intercept gi, which

expresses the general performance of a genotype, the slope βi, which measures the sensitivity of

a genotype, and the residual variance var(εij | i), which is a deviation from the regression line

PLOS ONE Accounting for genotype by environment interaction in cassava improvement

PLOS ONE | https://doi.org/10.1371/journal.pone.0268189 July 18, 2022 7 / 24

https://doi.org/10.1371/journal.pone.0268189


denoting the stability. To quantify and compare trait sensitivity to GEI, the variance of slope

and that of MSE resulting from Finlay-Wilkinson model were used [25].

AMMI analysis. The observed traits’ G×E interaction was analyzed using the Additive

Main effect and Multiplicative interaction (AMMI) model. AMMI is a fixed effect linear-bilin-

ear model which analyses the main effect of genotype and environment using ANOVA and

the multiplicative effect using principal component analysis (PCA) in a single model [27].

Each of the agronomic traits was subjected to AMMI analysis by fitting the model

yij ¼ mþ gi þ ej þ
XK

k¼1

ðlkaikgjkÞ þ �ij ð6Þ

where yij is the mean performance of ith genotype in jth environment; μ is the intercept; gi is

fixed effect of ith genotype; ej is the fixed effect of jth environment. The GEI component is

decomposed into K multiplicative terms (k = 1, 2, . . ., K), each multiplicative term is a product

of the kth eigenvalue (λk); genotypic score (αik); and environmental loadings (γjk); and 2ij is

the residual GEI not captured by the model and some error deviation.

We computed AMMI Stability Value (ASV) for each genotype relative to the influence of

IPCA1 and IPCA2 scores based on their interaction sum of squares according to Purchase [16]

using the formula:

ASV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSIPCA1

SSIPCA2

� �

� IPCA1

� �2

þ IPCA22

s

ð7Þ

where (SSIPCA1/SSIPCA2) was the weight assigned to the IPCA1 value by dividing the IPCA1 SS

by the IPCA2 SS; and the IPCA1 and IPCA2 scores were the genotypic score derived from the

AMMI model. A large positive ASV value indicates a genotype that is adapted to particular

environments. A small (close to zero) ASV value indicates a stable genotype across environ-

ments [16].

We also calculated a genotype selection index (GSI) for each genotype as the sum of geno-

typic rank based on mean yield across environments (RY) and rank of AMMI stability value

(RASV):

GSIi ¼ RASVi þ RYi ð8Þ

The genotype with the lowest GSI value is considered the most valuable [28].

GGE analysis. Genotype main effect and Genotype by Environment (GGE) analysis is a

modification of AMMI analysis. Unlike AMMI, only the environment is fitted as a main effect

in the GGE model. This brings about fitting principal component analysis jointly on genotype

main effect and genotype by environment interaction as a sum of multiplicative terms. The

GGE analysis does the job of fitting the principal component model with two components to

the two-way genotype by environment table of mean centered per environment with geno-

types as object and environments as variable [18]. Like AMMI, the principal component scores

can be exploited in constructing biplots. The GGE model or AMMI analysis could be used to

define mega-environments [29]. The observed traits were subjected to GGE analysis by fitting

GGE model as

yij ¼ mþ ej þ
X2

k¼1

ðlkaikgjkÞ þ �ij ð9Þ

where each term is as described for the AMMI model.
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Mega-environment delineation. In the context of GEI, a mega-environment is defined to

be a group of environments sharing a common best performing genotype. In principle, it also

follows that different genotypes are adapted to different mega-environments and GEI variation

between the mega-environments is higher than variation within the mega-environments [30].

We determined mega-environments based on the AMMI-2 model of order 2. The environ-

ments were clustered using the gxeMegaEnv() function of the statgenGxE package [23] based

on the fitted values from AMMI-2 model. Environments that share the common best genotype

belong to the same mega-environment.

The version of GGE biplot graphic called “which won where” plot is also a tool for the

delineation of a mega-environment. In the case of delineating mega-environment through

GGE biplot analysis, the resulting mean value in the graphics is related to mega-environment

mean and not grand mean, and it supports in identifying genotypes with broad or narrow

adaptation to some environments or groups of environments [31]. The “which won where”

biplot includes an irregular polygon whose vertices mark the genotypes that are furthest from

the origin in all directions such that the polygon encompasses all genotypes in the biplot. Lines

are also drawn originating from the biplot’s origin and intercepting the polygon’s sides per-

pendicularly [32]. The lines emanating from the origin split the biplot into sections and the

genotype at the vertex of every section had the optimal yield performance in environments

contained in that section. Each section in effect defines a mega-environment.

Cultivar superiority index. Further assessment of the stability of each clone was deter-

mined after testing the significance of GEI. We quantified yield stability across the testing envi-

ronments using a univariate stability estimate called cultivar-superiority measure [33]. It is a

measure of stability by superiority index, and it is defined as a function of the sum of the

squared differences between a cultivar’s mean performance and the best cultivar’s mean,

where the sum is across trials. Lin and Binns [33] proposed the calculation of superiority index

using expression:

Pi ¼
Xn

j¼1

ðXij � MjÞ
2
=2n ð10Þ

where Pi is the superiority index of ith cultivar; Xij is the yield of ith cultivar in the jth environ-

ment; Mj is the highest yield response got among the cultivars in the jth environment; and n is

the number of environments. This expression was further decomposed as

Pi ¼ ½nð�Xi: �
�MÞ2 þ

Xn

j¼1

ðXij � Mj þ
�MÞ2�=2n ð11Þ

where �Xi: = Snj = 1Xij/n, and �M = Snj = 1Mj/n, �Xi: = mean yield of ith cultivar in n environ-

ments and �M = mean of maximum response in the n environments. According to Lin and

Binns [33], the first term of Pi quantifies genetic variation and the second term quantifies GEI.

Cultivars with the lowest values of the index Pi are more stable and close to the best cultivar in

each environment.

Representative of target population of environments. We considered all environments

in the study to be the target population of environments (TPE). We identified testing environ-

ments that best represented the TPE by following these steps: i) calculate environment-specific

genotypic BLUPs by fitting genotype effect as random, ii) calculate genotypic BLUPs across all

environments which represent a TPE, iii) calculate the Pearson correlation between environ-

ment-specific genotypic BLUPs and genotypic BLUPs across all environments as a measure of

breeding value accuracy, and iv) estimate environment-specific heritability based on the Cullis

approach which involves the variance of a difference between genotypes. Cullis et al. [34]
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proposed to compute heritability as

H2

Cullis ¼ 1 �
�VBLUP
D::

2s2
g

ð12Þ

where �vD::
BLUP is the mean variance of a difference of two genotypic BLUPs and σ2g is the

genetic variance, and v) rank heritability and Pearson correlation value and take the sum of

their rank. We use both high genetic correlation and heritability estimate as indicators for

identifying a good representative for the TPE.

To determine the number of testing environments representing the entire TPE, we ran-

domly sampled subsets of 1 to 16 environments from the phenotypic data repeatedly for 50

times. For each sampling, a model was fitted to obtain genotypic best linear unbiased predic-

tion (BLUP). Then, for each sampling environment, Pearson correlation was obtained between

the BLUP and the BLUP derived from all the environments. We further calculated the average

correlation coefficient as a breeding value accuracy relative to overall environments. The point

at which the line plot showing the trends of breeding values accuracy relative to all TPE, and

sampled environments reaches a plateau was used to determine optimal number of environ-

ments to represent TPE.

To provide further insights into the relatedness or grouping of the current testing envi-

ronments based on key traits, we extracted environment-specific genotypic BLUPs from the

random G×E effect component of the joint analysis. Then, we further carried out a Pearson

correlation analysis among the environments. Thereafter, the clustering of the environ-

ments was carried out based on a distance matrix derived from correlation matrix using

ward.D2 linkage method [35]. Intuitively, we examined the resulting dendrogram from the

clustering to identify environments that joined together with the smallest distance as a clus-

ter group.

Results

Phenotypic data description and single trial analysis

The distribution of the phenotypic values of observed traits of the 36 clones revealed that all

observed traits approximated a normal distribution across the testing environments satisfying

the assumption of normality in classical statistical methods (Fig 3). We observed a range in

variation of fresh root yield (t/ha) from low performance environments (Onne19, Onne20,

Ubiaja20), to high performance environments (Ibadan19, Otobi19, Ago-owu20, Ikenne20).

The boxplots further revealed the heterogeneity of variability for the observed traits across the

environments indicating the presence of GEI.

The plots resulting from data quality control of single-trial analysis (S1 and S2 Figs) showed

that the three trials: 18UYT36setAKN, 19UYT36setAZA, and 19UYT36setAMK should be

removed based on thresholds set for CV, H2, and Ac. The mean fresh root yield across the

remaining 17 trials ranged from 6.52 t/ha (19UYT36setAON) in Onne20 to 47.49 t/ha

(18UYT36setAOT) in Otobi19 with an overall mean of 27.46 t/ha (S1 Table). The summary

statistics for other traits like dry matter content, dry yield, top yield, and harvest index from

each testing environment are also reported (S1 Table). In addition, visualization of the distri-

bution of derived parameters such as broad-sense heritability, coefficient of variation, experi-

mental accuracy, and residual variance for all traits across all trials were showed (S3 Fig). We

observed smallest variability in dry matter content and then harvest index across all trials rela-

tive to other traits.
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Combined analysis of multiple trials

The likelihood ratio test (LRT) statistics identified presence of significant GEI and error vari-

ance heterogeneity across testing environments for all observed traits (S2 and S3 Tables). The

percentage of phenotypic variance attributed to each model term for each trait was reported

(Fig 4 and S4 Table). The environment had a significant effect on all traits (P < 0.01) and cap-

tured the largest percentage of total phenotypic variance ranging from 48.6% in harvest index

to 63.9% in top yield. The genotypic effect was highly significant (P< 0.001) for each trait and

explained a percentage of phenotypic variance between 2.6% (harvest index) and 12.6% (dry

matter content). The GEI term was also highly significant (P< 0.001) and accounted for 5.3%

(top yield) to 12.5% (harvest index) of phenotypic variance. We observed relatively high GEI

variance compared to genetic variance for fresh root yield. In contrast, genetic variance for top

Fig 3. The distribution of fresh root yield (FYLD t/ha), dry matter content (DMC %), dry yield (DYLD t/ha),

harvest index (HI), and top yield (TYLD t/ha) of 36 clones evaluated across 20 environments.

https://doi.org/10.1371/journal.pone.0268189.g003
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yield was higher than GEI variance indicating environmental conditions played a lesser role in

influencing top yield (Fig 4 and S4 Table). The replication nested within environment cap-

tured between 2.3–5.6% of the phenotypic variance, which was the smallest relative to other

source of variation. It was highly significant (P< 0.01) for all traits. The residual term was the

second largest source of variation after the environment effect. It accounted between 18.8–

30.8% of the phenotypic variance (Fig 4 and S4 Table). The broad-sense heritability estimates

varied from 0.64 for harvest index to 0.92 for dry matter content (S4 Table).

Further decomposition of GEI term into repeatable component (GL) and non-repeatable

component (GY and GLY) revealed that GY component was not significant for all traits except

dry matter content (P < 0.001). It accounted for the smallest portion of phenotypic variance

ranging from approximately 0.2 to 5.6% (S5 Table). Repeatable GL component explained

between 3.7–48.6% percentage of phenotypic variance. In comparison to GL and GY compo-

nents, the GLY term was highly significant (P < 0.001) and accounted for largest portion of

phenotypic variance for all traits except for harvest index where GL explained largest portion

of phenotypic variance. The significance of GLY is an indication that for all traits, genotypic

response to conditions particular to a specific location depends on year of evaluation and vice

versa.

Finlay-Wilkinson regression

The genotypic and environmental main effects of the Finlay-Wilkinson (FW) model were

highly significant (P< = 0.001) for all observed traits (S6 Table). Significant differences in

regression slope (sensitivity) among genotypes on the environmental mean was found for all

Fig 4. The percentage of total phenotypic variance attributed to each effect for each trait across 17 trials.

https://doi.org/10.1371/journal.pone.0268189.g004
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traits except dry matter content (S6 Table). In other words, there was variation in genotypic

response for all traits except dry matter with respect to changes in environment mean.

The genotypic sensitivity values were ranked from the most stable (low sensitivity value) to

the least stable (high sensitivity value) for each trait (S7 Table). The FW model identified

TMS14F1297P0019, TMEB419, TMS14F1120P0003, TMS13F1461P0002, and

TMS14F1312P0003 as the top 5 most stable genotypes for fresh root yield with sensitivities val-

ues of 0.638, 0.663, 0.721, 0.786, and 0.813 respectively.

Trait sensitivity to GEI was quantified by the variance of the slopes and the variance of

MSEs. The top yield had the lowest median MSE of all traits (median = 0.146) and the variance

of MSE (variance = 0.007) (Fig 5 and S8 Table). Meanwhile, the slope variance ranged from

0.023 (top yield) to 0.058 (harvest index) with the corresponding slope median values of 1.001

and 1.010 respectively, (Fig 5 and S9 Table).

AMMI analysis

The AMMI analysis revealed significant variation in the main effects of genotype (G), environ-

ment (E) and their interactions (GEI) (P < 0.001) for all observed traits (S10 Table). The parti-

tion of total sum of squares (TSS) showed that the environment main effect accounted for

highest amount of variation varying from 48.2% (harvest index) to 76.1% (top yield).

The decomposition of variation in GEI for fresh root yield showed that the first and the sec-

ond interactive principal components (IPCs) captured 21.6% and 15.7% and accounted for

4.5% and 3.3% of the TSS. The first two IPCs accounted for 21.0% and 15.9% of GEI SS and

4.3% and 3.3% of TSS for dry matter content. Finally, the partition of variation in GEI for top

Fig 5. The distribution of MSE and slope resulting from Finlay Wilkinson model for the evaluation of 36 elites’ cassava clones across 17

environments for five traits.

https://doi.org/10.1371/journal.pone.0268189.g005
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yield revealed the first and second principal components explained 26.5% and 17.6% and

accounted for 4.0% and 2.7% of TSS respectively (S10 Table).

The AMMI-2 biplot revealed how the genotypes and environment interact to affect fresh

root yield (Fig 6). The genotypes close to each other in this biplot have similar responses to

environments and conversely for genotypes that are far apart. Genotypes close to show small

GEI deviations while those distant from the origin show large GEI deviations.

The mean fresh root yield (t/ha) value of cassava clones averaged over testing environments

indicated that clone IITA-TMS-IBA000070 had the highest fresh root yield (37.9 t/ha) and clone

TMS14F1120P0003 had the lowest yield (22.5 t/ha, S11 Table). The IPC1 and IPC2 scores signify

the adaptability of a genotype over environments and the relationship between genotype and envi-

ronment (S11 Table). Clones with large scores in absolute value (e.g., TMS14F1297P0019 and

TMEB419) have high interactions and are unstable, whereas clones with scores close to zero

(IITA-TMS-IBA000070, TMS14F1036P0007) have low interactions and are stable.

The AMMI stability value (ASV) ranged from 2.60 to 40.34, averaging 15.39 across the 36

clones. The clones IITA-TMS-IBA000070 (2.60), TMS14F1306P0020 (3.28),

TMS14F1223P0007 (3.88), and TMS14F1306P0015 (5.68) had the lowest ASV values, while

TMEB419 (40.34), TMS14F1297P0019 (39.21), and TMS14F1300P0008 (30.41) had the high-

est values (S11 Table). Combining both stability and yield performance measures into

Fig 6. The Polygon view of the AMMI2 model biplot for fresh root yield from 36 cassava clones grown in 17

environments.

https://doi.org/10.1371/journal.pone.0268189.g006
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genotype selection index showed that IITA-TMS-IBA000070 and TMS14F1036P0007 were the

two best clones (S11 Table).

Identifying mega environments

The fitted fresh root yield values from the AMMI2 model were used to cluster 17 testing envi-

ronments into six mega environments, one for each of the winning clones “IITA-TM-

S-IBA000070”, “IITA-TMS-IBA980581”, “TMS14F1016P0006”, “TMS14F1036P0007”,

“TMS14F1285P0017”, and “TMS14F1300P0008’ (S12 Table). The clones IITA-TMS-IBA000070

and TMS14F1016P0006 had broad adaptation to eight and four environments, respectively.

However, clones IITA-TMS-IBA980581, TMS14F1285P0017, and TMS14F1300P0008 had spe-

cific adaptation to environments Abuja20, Mokwa18, and Ibadan18, respectively.

TMS14F1036P0007 was the best clone in environments Ago-Owu19 and Ibadan20.

GGE analysis

The GGE model showed a significant main effect of environment and combined genotype and

genotype by environment interaction effect (P< = 0.001) for the observed traits (S13 Table).

The partition of TSS which includes sum of squares (SS) of environment and genotype and

Fig 7. The Polygon view of GGE model biplot for fresh root yield (t/ha) from 36 cassava clones grown in 17

environments.

https://doi.org/10.1371/journal.pone.0268189.g007
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genotype by environment interaction indicated that environment explained a larger percent-

age of variation for all observed traits relative to GGE component except for harvest index.

The variation explained by the GGE component ranged from 23.9% (top yield) to 51.8% (har-

vest index). For fresh root yield, the first and second IPCs accounted for 9.6% and 4.4% of TSS

and explained 33.3% and 15.3% of GGE variation, respectively. For dry matter content, the

first two IPCs captured 17.4% and 4.3% of TSS and explained 47.6% and 11.8% of GGE varia-

tion. For the top yield, the first two IPCs explained 11.3% and 3.1% of TSS and captured 47.4%

and 12.8% of GGE variation.

GGE biplots based on symmetric scaling of genotype and environment were used to esti-

mate the pattern of environments in relation to genotypes (Fig 7). Symmetric scaling is a scal-

ing method that splits the singular value symmetrically between genotype and environment

while visualizing the which-won-where pattern of the MET data. The first principal compo-

nent of environment had both negative and positive scores indicating a difference in yield per-

formance across environments resulting in cross-over GEI.

The three models revealed that the environment effect accounted for almost the same per-

centage of total phenotypic variation for the observed traits (Fig 8). Likewise, the genotypic

effect of FW and AMMI models explained nearly the same percentage of total phenotypic vari-

ation for each measurable trait. The interaction factor of GGE model includes main effect of

genotype and genotype by environment interact resulting in a larger percentage of total

Fig 8. Percentage of total variation captured by each factor from fitting additive main effect and multiplicative interaction (AMMI), Finlay Wilkinson

(FW), and genotype and genotype by environment (GGE) models to yield related traits on 36 elite cassava clones evaluated in 17 environments. Note that

the variation attributed to genotype x environment factor for GGE model includes genotypic variance.

https://doi.org/10.1371/journal.pone.0268189.g008
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phenotypic variation in comparison to other models. The GEI component of AMMI captured

larger percentage of variation than FW, which explained relatively low variation for all the

traits. For all the observed traits, the residual term of the AMMI model was the lowest while

for FW it was the highest (Fig 8).

Cultivar superiority index

Mean performance and index values of cultivar-superiority stability estimates were presented

for fresh root yield, dry matter content, and dry yield to assess genotypes’ stability across the

testing environments (S14 Table). Among the 36 clones, 19 had a mean fresh root yield above

the grand mean of 29.5 t/ha. The remaining clones had an average fresh root yield below the

grand mean. Consequently, clones with above mean performance and are stable by the out-

come of these stability measures are desirable.

Superiority index value Pi is defined as the deviation of the ith genotype relative to the genotype

with maximum performance in each environment. The top-ranked five stable clones for fresh root

yield with lowest Pi value included IITA-TMS-IBA000070, TMS14F1036P0007, TMS14F1016P0006,

TMS14F1262P0002, and TMS14F1035P0004 [33]. These clones also have relatively high fresh

root yield above grand average yield of 29.5 t/ha and their corresponding dry matter ranged from

31.3% for TMS14F1016P0006 to 37.4% for TMS14F1035P0004 (S4 Fig and S14 Table). The top-

ranked five clones for dry matter content include TMS14F1035P0004, TMS14F1306P0015,

TMS14F1291P0011, TMS14F1195P0005, and TMS14F1049P0001 (S5 Fig and S14 Table). The supe-

riority index associated to dry yield showed the best clones for both fresh root yield and dry matter

content. The top-ranked five clones were TMS14F1036P0007, IITA-TMS-IBA000070,

TMS14F1035P0004, TMS14F1262P0002, and TMS13F2207P0001 (S6 Fig and S14 Table).

Representative of target population of environments

The correlation coefficient of each environment’s BLUPs with genotypic BLUPs of all environ-

ments in the TPE for fresh root yield ranged from 0.33 (Ibadan18) to 0.73 (Ago-Owu19) with

Table 2. Correlation coefficient (r) of environment specific BLUPs with all target population of environment (TPE) and environment-specific heritability (H2)

based on the Cullis method [34] for fresh root yield (t/ha).

Environment r H2 Rank r Rank H2 Sum ranks

Ago-Owu19 0.73 0.80 1 2 3

Ikenne18 0.69 0.82 2 1 3

Ibadan19 0.68 0.73 4 5 9

Ago-Owu18 0.56 0.74 9 4 13

Ikenne20 0.67 0.68 5 8 13

Onne19 0.67 0.69 6 7 13

Ago-Owu20 0.68 0.61 3 11 14

Mokwa18 0.47 0.74 12 3 15

Ibadan20 0.61 0.51 7 15 22

Umudike19 0.61 0.56 8 14 22

Ibadan18 0.33 0.71 17 6 23

Ikenne19 0.54 0.57 10 13 23

Mokwa19 0.46 0.61 13 10 23

Ubiaja20 0.42 0.62 15 9 24

Otobi19 0.44 0.58 14 12 26

Abuja20 0.49 0.27 11 16 27

Onne20 0.40 0.26 16 17 33

https://doi.org/10.1371/journal.pone.0268189.t002
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corresponding heritability estimates of 0.71 and 0.80, respectively (Table 2). The top ranked 5

environments showing high correlation with TPE, and high heritability estimate include Ago-

Owu19 (0.73, 0.80), Ikenne18 (0.69, 0.82), Ibadan19 (0.68, 0.73), Ago-Owu18 (0.56, 0.74), and

Ikenne20 (0.67,0.68) (Table 2).

As for dry matter content, the environments revealed a higher range of correlation coeffi-

cient with TPE relative to fresh root yield varying from Onne20 (0.48) to Ikenne20 (0.85) with

corresponding heritability estimate of 0.57 and 0.88, respectively (S15 Table). The top ranked

5 environments to represent the TPE for showing high correlation and high heritability

included Ikenne20 (0.85, 0.88), Ikenne18 (0.79, 0.78), Onne19 (0.72, 0.87), Ubiaja20 (0.73,

0.82), and Umudike (0.78, 0.77). For top yield, there was higher variability in the correlation

coefficient with TPE ranging from 0.14 (Mokwa19) to 0.83 (Ubiaja20) with heritability esti-

mates of 0.32 and 0.71, respectively (S16 Table). The top ranked 5 environments to represent

the TPE were Ikenne19 (0.82, 0.81), Otobi19 (0.83, 0.78), Ikenne18 (0.79, 0.82), Ago-Owu20

(0.79, 0.76), and Ubiaja20 (0.83, 0.71).

A line graph provides further insights into the number of environment(s) that is likely to be

sampled to represent TPE and their corresponding genotypic value accuracy compared to all

the environment for fresh root yield, dry matter content, and top yield (Fig 9). Fresh root

yield’s genotypic value accuracy is the lowest as revealed in Fig 9, sampling of five (5) environ-

ments is likely to represent TPE where fresh root yield has an approximate genotypic value

accuracy of 0.84 lower than dry matter content and top yield with genotypic value accuracy of

Fig 9. Estimated genotypic value accuracy against the number of sampling environments for dry matter content (DMC), fresh root yield (FYLD), and

top yield (TYLD).

https://doi.org/10.1371/journal.pone.0268189.g009
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0.92 and 0.91 respectively. Regardless the number of environments sampled, the breeding

value accuracy of fresh root yield is lower than that of dry matter content and top yield.

The relatedness among the testing TPE for fresh root yield revealed the grouping of the test-

ing TPE into three cluster groups such that environments within a cluster are more similar

and dissimilar from environments in another cluster (S7 Fig). As for dry matter content, the

TPEs were grouped into 4 clusters (S8 Fig). However, 6 cluster groups of TPE were identified

for top yield out of which 3 clusters have one environment each (S9 Fig).

Discussion

This study demonstrated the application of classical ANOVA in a linear mixed model frame-

work and linear-bilinear models such as Finlay-Wilkinson, additive main effect and multipli-

cative interaction model, and genotype plus genotype-environment models towards

identifying stable clones, mega-environments and environments representative of the TPE.

The large sum of squares and significant effect of environment on the observed agronomic

traits as shown by FW, AMMI, and GGE models demonstrated that the field trials were con-

ducted under diverse environmental conditions causing variation in cassava clones yield and

other yield-related traits. The significant variation of the GEI effect found for the observed

agronomic traits indicated that genotype and environment main effects cannot independently

capture all the variation observed. This resulted in the diverse performance of the clones in the

testing environments. This variation therefore requires to examine GEI and assess the stability

of clones.

We found that the AMMI model attributed the most significant percentage of treatment

sum of squares to the environment for the observed traits and that the main effects of geno-

type, environment and their interaction were significant for all observed traits. This finding

was similar to Dixon et al. [36] who reported significant effects of genotype, environment and

GEI. However, this finding was contrary to Tumuhimbise et al. [2] who reported that genotype

accounted for the largest percentage of the treatment sum of squares (48.5%). The disparity in

the result may be because our study evaluated 36 clones in 17 environments compared to 12

clones in three environments in Tumuhimbise et al. [2]. Also contrary to our findings, Jiwuba

et al. [37] reported that GEI accounted for the largest percentage of the treatment sum of

squares (43.80%) in their study where 60 genotypes were evaluated over six environments.

As for top yield, the environment captured the largest percentage of total variability (76.1%)

from the AMMI model. This was contrary to findings from Jiwuba et al. [37] who reported

that the environment accounted for the lowest percentage of total variation (11.9%) for the

biomass. The disparity in the result may be because they evaluated six environments in their

study compared to 17 environments in our study. Unlike fresh root yield and top yield, for dry

matter content, the percentage of total sum of squares attributed to G (16.1%) was relatively

close to GEI (20.6%). However, all the linear bilinear models explored in this study revealed

that the environment accounted for much greater DMC variation than genotypic effect. This

may be because this is a UYT study, so that clones have already been strongly selected, so that

genetic variability is reduced. In contrast, Benesi et al. [38] reported that genotypic influence

on dry matter content is much higher than that of the environment.

Like the FW model, AMMI revealed a significant genotypic effect for the observed agro-

nomic traits, signifying the presence of genetic variation in IITA cassava germplasm. This is

similar to what Nduwumuremyi et al. [39] who reported about the existence of significant

genetic variation in Rwandan germplasm.

The limitation of classical ANOVA is that it does not provide insight into the complex pat-

tern of GEI, which necessitates further use of linear bilinear models. The strength of AMMI
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and GGE models is that they concurrently visualize genotypes and environments using biplots

that expedite the interpretation of GEI. In biplots, a genotype in the vicinity of an environment

with a large IPC score is expected to display a higher performance in that environment than its

mean performance, and conversely for genotypes located far from that environment on the

biplot.

Conclusion

The classical statistical methods used in this study found highly significant genotype-by-envi-

ronment interaction, a major challenge confronting cassava breeders in the course of breeding

for high yielding and stable varieties. We were able to identify high yielding clones with broad

or specific adaptation across the testing environments. There were six mega-environments

identified from 17 testing environments as a function of winning genotypes. The outcomes

from this study provide further insight for other breeders that intend to embark on similar

tasks. The research objectives outlined in this study have been achieved based on the results

obtained.

The Finlay-Wilkinson, AMMI, and GGE are fixed effect models, and they may not be an

appropriate approach to use when estimating quantitative genetic parameters in the presence

of unbalanced data and/or when jointly analyzing heterogeneous trial designs. Such circum-

stances require a mixed model approach where different variance covariance structures can be

explored. In addition, these models assumed homogeneity of error variances across the testing

environments which may be incorrect as error variances were heterogeneous as revealed

through likelihood ratio tests. None of these linear bilinear models can account for relatedness

among the genotypes, e.g., using relatedness matrices from pedigree and/or molecular data.

Though the same clones were evaluated across the testing environments (trials or location

by year combinations), there were locations (Abuja, Otobi, Umudike, and Ubiaja) where this

study was carried out in just one out of three cropping seasons resulting in an unbalanced data

structure. Therefore, the outcome of delineating the testing environments into mega-environ-

ments may be misleading. To ensure having well-defined mega-environments, it would be

advisable to have more than one cropping season of data from all locations. To get a clearer

picture of locations that are representative of the TPE, studies should also require several years

of historical data. Finally, to get better understand the factors influencing the GEI, soil and

weather data are needed explicitly.
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