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Metastatic breast cancer (BrCa) is currently incurable despite great improvements in treatment of primary BrCa. The incidence of
skeletal metastases in advanced BrCa occurs up to 70%. Recent findings have established that the distribution of BrCa metastases to
the skeleton is not a random process but due to the favorable microenvironment for tumor invasion and growth. The complex
interplay among BrCa cells, stromal/osteoblastic cells, and osteoclasts in the osseous microenvironment creates a bone-tumor
vicious cycle (a feed-forward loop) that results in excessive bone destruction and progressive tumor growth. Both the type 1
PTH receptor (PTH1R) and extracellular calcium-sensing receptor (CaSR) participate in the vicious cycle and influence the
skeletal metastatic niche. Thus, this review focuses on how the PTH1R and CaSR signaling pathways interact and contribute to
the pathogenesis of BrCa bone metastases. The effects of intermittent PTH and allosteric modulators of CaSR for the use of
bone-anabolic agents and prevention of BrCa bone metastases constitute a proof of principle for therapeutic consideration.
Understanding the interplay between PTH1R and CaSR signaling in the development of BrCa bone metastases could lead to a
novel therapeutic approach to control both osteolysis and tumor burden in the bone.

1. Introduction

Breast cancer (BrCa) is the most common cancer and the sec-
ond leading cause of cancer-associated death in women [1].
Because of the progress made in early detection and surgical
treatment of the primary tumor, mortality in BrCa patients is
increasingly linked to the metastatic disease. The incidence of
bone metastases in advanced BrCa occurs up to 70%, and
only 20% of those patients survive five years from the time
of diagnosis of bone metastasis [2]. Patients with BrCa bone
metastases have severe bone pain, fractures, hypercalcemia,
spinal cord compression, and muscle weakness [3], and these
skeletal-related events significantly degrade the quality of life.
Bone metastases can be treated locally with radiation therapy
or surgical therapy. Systemic treatments include hormonal
manipulations, cytotoxic chemotherapy, and/or bone-
targeted therapy. However, there is little hope of a cure for

BrCa skeletal metastases. Current management of metastatic
bone complications is limited to the use of antiresorptive
drugs such as bisphosphonates and receptor activator of
nuclear factor-κB ligand (RANKL) inhibitors, but the osteo-
lytic bone disease often progresses, and over 50% of patients
treated with these drugs will have a recurrence with skeletal-
related events [4]. These drugs only inhibit bone resorption
but do not restore bone formation and may cause side effects
such as osteonecrosis of the jaw and decrease of renal func-
tion [5–7]. It has been established that the concerted actions
of the type 1 PTH receptor (PTH1R) and extracellular
calcium-sensing receptor (CaSR) maintain systemic extracel-
lular ionized calcium (Ca2+) physical homeostasis and lacta-
tion, which was acknowledged by a number of excellent
reviews [8–10]. In this article, we summarize the progress
of interplay between the PTH1R and CaSR signaling in a
vicious cycle of BrCa bone metastases, and interference of
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these interactions could offer new treatment options of BrCa
bone metastases and their complications.

2. PTH1R and Its Ligands

PTH-related protein (PTHrP), also known as PTH-like
hormone (PTHLH), was originally identified indepen-
dently by several groups as a causal factor in the humoral
hypercalcemia of malignancy [11–14]. The 13 amino-
terminal amino acids are highly homologous to those of
PTH, and both bind a common PTH1R. PTH is produced
by the parathyroid gland and circulates as an endocrine
regulator for the maintenance of calcium homeostasis
(Table 1). In contrast to PTH, PTHrP is expressed in
almost all normal fetal and adult tissues and acts through
paracrine or autocrine mechanisms to regulate develop-
ment and cell differentiation. In addition, PTHrP has the
nuclear localization sequence and also acts via intracrine
action to promote BrCa cell proliferation.

There are some conflicting reports on PTHrP function
in primary tumors. While circulating levels of PTHrP pos-
itively correlate with the more advanced stages of cancer,
some clinical studies indicated a good prognostic value
for PTHrP in BrCa with less bone metastasis [15]. However,
the PTHrP gene has recently been identified in a genomic
locus associated with BrCa susceptibility [16]. Furthermore,
Li and colleagues examined the role of PTHrP expression
in animal models of BrCa and found PTHrP drove breast
tumor initiation, progression, and metastasis in mice [17].
Taken together, PTHrP contributes to the pathogenesis of
BrCa osteolytic bone metastases.

There are two types of the PTH receptor, PTH1R and
PTH2R. The PTH1R and PTH2R belong to class B of the
superfamily of G protein-coupled receptors (GPCRs)
(Table 2). While PTH2R is mainly expressed in the central
nervous system, PTH1R is present primarily in the kidney
and bone [18] and is also located in the cartilage and breast.

Like other GPCRs, the PTH1R activates multiple down-
stream signaling cascades by coupling to 4 major groups of
G proteins, Gαs, Gαq, Gαi, and G12/13. Interaction with cog-
nate ligands of PTH1R, PTH and PTHrP, or biologically
active peptide fragments, such as PTH(1–34), results in acti-
vation of Gαs and Gαq with consequent stimulation of ade-
nylate cyclase and phospholipase C (PLC) [19, 20]. The
action of PTH is also mediated through phospholipase D
and mitogen-activated protein kinases. A cascade of cell-
specific events of PTH mediates PTH1R function to regulate
extracellular mineral ion homeostasis and bone remodeling.

3. CaSR and Its Ligands

The extracellular calcium-sensing receptor (CaSR) belongs to
class C of GPCR that signals in response to Ca2+ and other
ligands, such as gadolinium, polypeptides, and certain antibi-
otics [21, 22]. CaSR is expressed in the parathyroid glands,
kidney, bone, normal breast epithelial cells, and BrCa cells
[23]. Importantly, BrCa cells spread to the skeleton and
express more CaSR than the cells in the primary tumor do
[24]. Activation of the CaSR on BrCa cells contributes not
only to BrCa cell proliferation and migration but also to the
skeletal bone lesions.

In physiological condition, when the circulating Ca2+

level is low, the activation of CaSR in the chief cells of the
parathyroid glands is reduced and PTH secretion is subse-
quently increased. PTH binds to the PTH1R and initiates a
cascade of events that enhances renal tubular reabsorption
of calcium, increases renal synthesis of 1,25(OH)2D3 so as
to promote Ca2+ absorption in the intestine, and facilitates
osteoclastic bone resorption, thereby maintaining Ca2+

homeostasis [9].
In normal mammary epithelial cells, activation of the

CaSR during lactation inhibits PTHrP synthesis and secre-
tion, thereby regulating maternal calcium and bone metab-
olism. In contrast, in BrCa cells, the Ca2+ released from

Table 1: Similarity and difference between PTH and PTHrP.

PTH PTHrP

Production Parathyroid glands
All cells especially tumor cells
including breast cancer cells

Protein size 84 amino acids
PTHrP is comprised of 139, 141, or

173 amino acids

Action mechanism Acts as an endocrine factor
Acts as an endocrine, paracrine,
autocrine, or intracrine factor

Binding to receptor Binding to both PTH1R and PTH2R Only binding to PTH1R

Nuclear localization sequence No Yes, increase of tumor proliferation

Promotion of bone resorption Yes Yes

Increase of renal tubular
reabsorption of calcium

Yes Yes

1-α-Hydroxylase
Activates its activity to form 1,25 dihydroxy-vitamin D and then

promotes calcium absorption in the intestine
No

Hyperparathyroidism Primary and secondary hyperparathyroidism No

Humoral hypercalcemia of
malignancy

No, except parathyroid carcinoma Yes
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bony matrix destruction binds to CaSR and stimulates
PTHrP secretion [25]. This contradictory function is possi-
ble due to the ability of the CaSR to bind and activate
different G protein subunits to switch from activation of
the pertussis toxin-sensitive Gαi and suppression of cAMP
levels in the normal mammary epithelial cells to activation
of Gαs and stimulation of cAMP levels in BrCa cells in a
cell type-specific manner [26].

4. Role of PTH1R and CaSR in the Bone-Tumor
Vicious Cycle

Tumor metastasis to the secondary site is not a random event
but is due to the favorable microenvironment [27, 28]. As
early as 1889, Stephen Paget developed the “seed and soil”
theory to describe the organ-specific metastasis, which indi-
cates the distribution of tumor cells to certain organs largely
depends on the specific feature of metastatic tumor cells
(“seed”) and particular host microenvironment (“soil”)
[29]. Primary breast tumors express CXCR4 [30], one of
the metastasis markers, and secrete PTHrP. Li et al. reported
that PTHrP ablation was accompanied by inhibition of
CXCR4 expression in primary breast tumors, suggesting
PTHrP is involved in the control of CXCR4 expression and
consequently plays an important role in metastatic spread
[17]. Osseous marrow stromal cells and osteoblasts secrete
many chemokines including CXCL12 [31], which attracts
CXCR4 positive BrCa cell homing and colonization to the
bone. In response to the bone microenvironment, BrCa cells
metastatic to the skeleton produce more PTHrP than the cells
in the primary tumor [32]. Bone marrow stromal cells and
osteoblasts, but not osteoclasts, express PTH1R. PTHrP
binds to PTH1R mostly to induce Gαs/cAMP signaling,
which begets RANKL secretion (Figure 1). RANKL binds to
its receptor RANK on osteoclast precursor cells and induces
the differentiation and maturation of osteoclasts. The acti-
vated osteoclasts stimulate bone resorption and subsequent
bony matrix destruction. Elevated extracellular Ca2+ released
from the resorbed bone binds to CaSR on metastatic BrCa

cells in the bone microenvironment (Figure 1). Unlike nor-
mal breast cells, CaSR activation induces Gαs/cAMP path-
way in BrCa cells and elicits further PTHrP production
[26]. Furthermore, growth factors such as transforming
growth factor β and insulin-like growth factor 1 that are
stored during bone formation are released at sites of bone
resorption and synergize with the effects of Ca2+ on CaSR
to facilitate PTHrP secretion and worsen osteolysis [33, 34].
Because of its nuclear localization sequence, PTHrP can
also act as an intracrine factor to promote tumor prolifer-
ation [21] that is independent of PTH1R (Figure 1) and
then augment bone turnover, thereby driving the bone-
tumor vicious cycle. Thus, the PTHrP-PTH1R interaction
initiates the vicious cycle, and the subsequent Ca2+-CaSR
signaling amplifies the manifestation of bone metastases,
which in turn upregulates PTHrP production, thus setting
up a feed-forward loop and exacerbating the osteolytic
disease. Therefore, the interplay of PTH1R and CaSR acts
in concert to evoke excessive bone destruction and pro-
gressive tumor growth.

5. Targeting the PTH1R and CaSR Signaling for
Prevention of BrCa Bone Metastases

Generally, interference with each component or individual
downstream signaling of the bone-tumor vicious cycle will
have effects on the treatment of BrCa metastatic bone lesions.
Bisphosphonates or RANKL inhibitors are antiresorptive
drugs representing the current standard supportive treat-
ment for BrCa bone metastatic complications. Due to a rapid
action on inhibition of osteoclast activity, calcitonin may be
used to lower the serum calcium levels before antiresorptive
drugs exhibit their action in hypercalcemia occurring in BrCa
patients. However, these drugs fail to enhance osteoblastic
functions, which are impaired in BrCa patients. Increasing
evidence has demonstrated that osteoblasts play a pivotal role
in the pathogenesis of BrCa cell homing and colonization to
the bone and subsequent metastatic bone lesions [35–37].
The ideal solution for treatment of BrCa bone metastases

Table 2: Comparison of PTH1R and CaSR.

PTH1R CaSR

GPCR Class B family Class C family

Receptor size Human PTH1R has 593 amino acids Human CaSR has 1078 amino acids

Expression
Mostly in osteoblast and kidney, also in cartilage,
normal breast epithelial cells, and some breast

cancer cell lines

Parathyroid glands, kidney, bone, normal breast epithelial
cells, and BrCa cells

G protein Gαs, Gαq, Gαi, and G12/13 Gαi, Gαq, Gαs, and G12/13

Agonist PTH and PTHrP

Type I: inorganic or organic polycations (Ca2+ and Gd3+),
polyamines (spermine and spermidine), and

aminoglycoside antibiotics (neomycin)
Type II: positive allosteric modulators

(calcimimetics)—cinacalcet, NPS R-467, NPS R-568, and
AMG 416

Antagonist PTH(7–34) Negative allosteric modulators (calcilytics): NPS 2143

Application in treating
BrCa bone metastases

Intermittent PTH(1–34) prevents BrCa bone
metastases in mouse models

Cinacalcet is able to treat severe hypercalcemia caused by
BrCa bone metastases
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and their associated complications are (1) to block metastatic
BrCa cell growth, (2) to generate an unfavorable bone micro-
environment for BrCa cell colonization, and (3) to target the
upstream signaling in the tumor-bone vicious cycle. Target-
ing PTHrP-PTH1R and Ca2+-CaSR signaling cascades meets
these criteria and will generate new treatment options for
prevention of BrCa metastases to the skeleton.

5.1. Intermittent Recombinant PTH(1–34) or Synthetic
PTHrP(1–34) Analog. The bone is a metabolically active
organ that undergoes continuous remodeling through the
concerted actions of osteoblastic bone formation and osteo-
clastic bone resorption [38]. The bone remodeling balance
is shifted toward bone destruction whenmetastatic BrCa cells
invade and grow within the bone microenvironment. Both
the disease of BrCa and current cancer treatment cause bone
destruction during the BrCa progression [39]. Such bone loss
occurs more rapidly to a greater degree than normal age-
related osteoporosis [40]. Gregory et al. reported that the
changes in bone formation and bone resorption activities
were different at early and late stages during development
of the bone lesion following intratibial injection of MDA-
MB-231 human BrCa cells into the tibiae of athymic nude
mice [36]. They found out that the early bone loss in the
mouse models is due to a significant reduction in new bone
formation by osteoblasts rather than increased levels of bone
resorption by osteoclasts, indicating osteoblasts play a critical
role in the early pathogenesis of BrCa bone metastasis. How-
ever, the current treatment of bone metastatic destruction is
largely dependent on bisphosphonates or RANKL inhibitors,
which only impede osteoclastic bone resorption but fail to
increase osteoblastic bone formation. Thus, an alternative
to antiresorptive drugs is anabolic therapy by targeting oste-
oblasts to promote bone formation.

Long after Bauer and colleagues discovered the anabolic
effect of PTH in 1929 [41], recombinant parathyroid
hormone (PTH)(1–34) (teriparatide, hereafter referred to as

PTH) was approved as the first anabolic agent for the treat-
ment of osteoporosis in the United States in 2002 [42].
PTH activates multiple signaling pathways, but not all of
them are anabolic. Synthetic PTHrP(1–34) analog (abalo-
paratide) was approved in 2017 for osteoporosis therapy in
an attempt to improve the anabolic effects of PTH1R signal-
ing [43]. Both PTH and PTHrP exert either an anabolic or a
catabolic effect depending on their doses and time duration
of treatment [44, 45]. Intermittent administration of low-
dose PTH or PTHrP increases bone formation, whereas con-
tinuous infusion of a high dose of PTH or PTHrP causes
bone resorption and hypercalcemia [44, 46, 47]. While ana-
bolic PTH effects on the bone are mediated through the
cAMP/PKA signaling pathway [48, 49], PLC/PKC signaling
has been shown to be inhibitory to the osteoanabolic actions
of PTH [50]. It is also known that Wnt/β-catenin signaling
[51] and other signaling pathways including phospholipase
D [52, 53], ERK1/2 [54], and PI3K/AKT [55, 56] contribute
to the anabolic PTH action in the bone.

Multiple myeloma (MM) is a hematologic malignancy of
plasma cells, and osteolytic bone disease is the most common
complication of MM [57]. Bone cells are directly involved in
survival and expansion of myeloma cells in the hematopoi-
etic bone marrow [58, 59]. Since signaling through the
PTH1R in the osteoblast lineage regulates bone marrow
hematopoietic niches, Pennisi et al. examined whether treat-
ing MM with an osteoblast-activating agent, intermittent
PTH, could simultaneously help control bone disease and
myeloma cell growth [60]. They demonstrated that PTH
was capable of increasing bone mass in myelomatous bones
in vivo and that the increased bone formation was associated
with reduced tumor burden. The strategy that stimulation of
osteoblast activity inhibits MM growth has received continu-
ing interest for the treatment of solid tumors, such as BrCa
and prostate cancer [61, 62]. Wu and colleagues demon-
strated for the first time that intermittent PTH reduced
the incidence of BrCa bone metastases in multiple mouse
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Figure 1: Interplay between PTH1R and CaSR plays critical roles in the pathogenesis of BrCa bone metastases. Numbers in parentheses
indicate the event sequence during the formation of BrCa bone metastases. Treatment targets shown in red are likely to inhibit BrCa
proliferation, increase osteoblast bone formation, and/or decrease osteoclast bone resorption.
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models. They found out that intermittent PTH decreased
skeletal metastases and improved survival in the metastatic
BrCa mouse model by injection of murine 4 T1 BrCa cells
into the mammary fat pads. They further indicated that
PTH administration retained its beneficial effect on tumor
metastasis by increasing bone formation, decreasing osteo-
clast formation, and significantly reducing tumor engraft-
ment and tumor burden of both murine and human
BrCa cells in the mouse intratibial models. Since the
CXCR4/CXCL12 axis has been established to play an
important role in the homing of cancer cells to the bone
[30, 31], the effect of PTH inhibition of CXCL12 secretion
by MC3T3-E1 cells (preosteoblasts) was confirmed. In
addition, the mRNA expression of CXCR4 and PTHrP
was markedly reduced in primary tumors dissected from
mice treated with PTH. Collectively, these experiments
clearly demonstrated that treatment of osteoblasts with
intermittent PTH reduced migration of both human and
murine BrCa cells and altered the expression of several
genes implicated in metastases, thereby rendering the bone
marrow hematopoietic niche less favorable for the homing
and colonization of cancer cells.

Patients with osteolytic bone metastases currently are not
treated with intermittent PTH because concern has been
associated with the use of this drug due to the development
of osteosarcoma in preclinical studies [63]. However, the
Osteosarcoma Surveillance Study, an over 10-year surveil-
lance study initiated in 2003, is a postmarketing commitment
to evaluate a potential relationship between teriparatide and
development of osteosarcoma and has not detected a pattern
indicative of a causal association between teriparatide treat-
ment and osteosarcoma in humans [64, 65]. Nonetheless,
the antitumor effects of PTH provide proof of principle for
the use of bone-anabolic agents against MM or BrCa osteoly-
tic bone disease. These findings warrant further investigation
for the safety and efficacy of teriparatide or abaloparatide in
MM or BrCa patients.

5.2. Allosteric Modulators of CaSR. Ligands that activate the
CaSR termed as calcimimetics include agonists (type I)
and positive allosteric modulators (type II) (Table 2).
The action of calcimimetics is to inhibit the secretion of
PTH. CaSR antagonists are calcilytics that act as negative
allosteric modulators and stimulate the secretion of PTH
[66]. Although both positive and negative allosteric modu-
lators of the CaSR are already in development, currently, only
the positive allosteric modulators are approved for use in
humans. Cinacalcet was the first US FDA-approved allosteric
GPCR modulator in 2004 and is used for the reduction of
hypercalcemia in patients with parathyroid carcinoma and
severe primary hyperparathyroidism, who are unable to
undergo parathyroidectomy. The treatment of secondary
hyperparathyroidism in patients with end-stage renal disease
on maintenance dialysis therapy by cinacalcet was also
approved [67]. In 2017, etelcalcetide (AMG 416), a second-
generation calcimimetic agent, was approved by the US
FDA for the treatment of secondary hyperparathyroidism
in patients with chronic kidney disease on hemodialysis.
It is established that excessive secretion of PTHrP by

tumors stimulates osteoclastic bone resorption and
promotes renal proximal tubular reabsorption of calcium,
leading to hypercalcemia of malignancy [68, 69]. The
applications of cinacalcet occurred subsequently in patients
with bone metastases of renal cell carcinoma [70] and
BrCa [71] that cause hypercalcemia. Asonitis and col-
leagues recently reported that a patient with metastatic
BrCa developed severe hypercalcemia in the disease pro-
gression [71]. Medical treatment with bisphosphonate
(zeledronate) and RANKL inhibitor (denosumab) failed
to lower the elevated serum calcium level. Cinacalcet was
then added to the medication and effectively reduced
tumor-mediated hypercalcemia and maintained the cal-
cium levels within the normal range in this patient.

The mechanisms of cinacalcet effect for use of treatment
of BrCa patients with hypercalcemia are not completely
understood. CaSR is expressed not only in the parathyroid
glands and kidneys but also in bone cells and metastatic BrCa
cells. Expression of CaSR promotes PTHrP secretion in
human BrCa cells [33] and increases osteolytic bone metasta-
ses associated with decreased bone formation and increased
tumor burden in the mouse intratibial model [72]. In vitro,
activation of the CaSR with Ca2+ or positive allosteric modu-
lator increased PTHrP secretion by BrCa cells [26, 33]. Frees
et al. reported that CaSR antagonist NPS 2143 was able to
reverse Ca2+-induced increase in cell adhesion, migration
and proliferation in renal carcinoma cells transfected with
the CaSR plasmid [73]. However, the effects of CaSR antago-
nist on CaSR-mediated BrCa bone metastases and osteolytic
bone lesions have not been reported yet. The findings from
Colloton and colleagues may help understand the pharmaco-
logic effect of cinacalcet on the decrease of hypercalcemia in
patients [74]. The mechanism by which cinacalcet lowered
serum calcium was investigated in parathyroidectomized rats
by injection of high-dose PTHrP to generate hypercalcemia
[74]. Cinacalcet attenuated PTHrP-mediated elevations of
ionized calcium in the blood, which were accompanied by
increased plasma calcitonin. Cinacalcet was also found to
attenuate PTHrP-mediated increase of serum calcium in
mice bearing C26-DCT colon tumors [74], which do not
express CaSR. These results suggest that the cinacalcet-
mediated decrease in blood calcium is not the result of a
direct effect on tumor cells but rather is the result of
increased calcitonin release.

Several calcilytic compounds that are antagonists of
CaSR have been evaluated as orally active anabolic therapies
for postmenopausal osteoporosis, but clinical development of
all of them has been abandoned because they lacked tissue
selectivity and clinical efficacy [67]. However, the adminis-
tration of calcilytics for inhibition of CaSR activation has
recently been aroused as promising therapies in other
diseases such as chronic obstructive pulmonary disease or
allergic asthma [75, 76] and could also be used for preventing
osteolytic bone metastases.

6. Conclusion

BrCa bone metastases are common in advanced malignancy.
Despite the developments in both anticancer and bone-
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targeted therapies in recent years, new therapeutic strategies
remain to be considered. Both PTH1R and CaSR participate
in the bone-tumor vicious cycle and influence the skeletal
metastatic niche. Teriparatide and abaloparatide have been
successfully applied in osteoporosis. CaSR agonist cinacalcet
was effectively used to lower the blood calcium level in BrCa
patients with hypercalcemia. The second-generation CaSR
agonist etelcalcetide (AMG 416) was recently approved for
the treatment of secondary hyperparathyroidism. 223Radium
dichloride is a calcimimetic that binds preferentially to a
newly formed bone in areas of bone metastases, is the first
alpha-emitting radionuclide to be developed for clinical
use, and is approved for treatment of castration-resistant
prostate cancer and symptomatic bone metastases [77].
Those PTH1R- or CasR-based agents influence PTHrP-
PTH1R and Ca2+-CaSR signaling pathways in the vicious
cycle and could be used for preventing bone metastases
and their associated bone destruction although their safety
and efficacy need to be further evaluated.
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