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Abstract: Vaccines, cytokines, and adoptive cellular therapies (ACT) represent immuno-therapeutic 
modalities with great development potential, and they are currently approved for the treatment of a limited 
number of advanced malignancies. The most up-to-date knowledge on the regulation of the anti-cancer 
immune response has recently led to the development and approval of inhibitors of immune checkpoints, 
which have produced unprecedented clinical activity in several hard to treat solid malignancies. However, 
severe adverse events (AEs) represent a limitation to the use of these drugs. Currently approved checkpoint 
inhibitors block cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein 
(PD-1) and its ligand (PD-L1), resulted in increased survival of patients with several solid and hematologic 
malignancies. The most common treatment AEs associated with these drugs are fatigue, rash, and auto-
immune/inflammatory reactions. Many of the immune-related AEs are reversible and the strategies for 
their management include supportive care either with or without treatment withdrawal; nevertheless, in 
severe cases, hospitalization and treatment with immune suppressants, and/or immunomodulators may be 
required. Steroid therapy is a critical component of the treatment algorithm; nevertheless, the associated 
immunosuppression may compromise the antitumor response. This article provides a comprehensive and 
narrative review of luminal gastrointestinal and hepatic complications, including recommendations for their 
investigation and management.
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Introduction

Cancer immunotherapy was originally initiated 100 years 
ago, through intratumoral injections of Streptococcus or 
Serratia marcescens (1). In the last twenty years, a number 
of ligand-targeting drugs have been incorporated in clinical 
practice, improving the prognosis of several malignancies. 
This oncological breakthrough presents new challenges 
in recognizing and managing treatment-mediated adverse 
events (AEs).

In the tumor microenvironment, immunosuppressive 
molecules such as cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4), programmed cell death protein (PD-1) 
and its ligand (PD-L1) are overexpressed (1). CTLA-4 is an 
inhibitory co-receptor, expressed on the surface of activated 
T CD4+ and CD8+ lymphocytes that shares significant 
homology with CD28. Furthermore, it binds the same B7.1 
and B7.2 ligands, which are costimulatory molecules on 
the antigen-presenting cell surface. Importantly, CTLA-
4 has a 100-fold higher affinity with the B7 complex than 
CD28, and this interaction counteracts CD28-mediated 
costimulatory signals, compromising the activation of T 
cells. PD-1 is expressed more broadly than CTLA-4 and 
can be detected on activated B cells, monocytes, and natural 
killer T cells (2). PD-L1, a ligand that PD-1 interacts 
with, is upregulated in solid tumors. Signaling through this 
pathway results in the inhibition of cytokine production and 
apoptosis of PD-1 expressed, tumor-infiltrating T cells (3). 
PD-L1 is expressed on leukocytes, nonhematopoietic cells, 
and some nonlymphoid tissues (4).

Generally, it seems that cytokines such as interleukin-2 
and interferon-α, induce a more diffuse non-specific T cell 
response, whilst checkpoint protein inhibitors, vaccines, and 
adoptive cellular therapies (ACT) are correlated with a more 
specific T cell activation, resulting in damage to specific 
organs. Furthermore, CTLA-4 inhibitors mediated toxicities 
are usually more severe than those related to PD-1 and PDL-
1 inhibitors. This is probably associated with the observation 
that PD-1 signaling acts more peripherally than CTLA-4 (5).  
AEs are mostly managed by counteracting lymphocyte 
activation with steroids; nevertheless, the associated 
immunosuppression may compromise the antitumor 
response (6). The successful and safe implementation of 
novel immunotherapies in daily oncological practice requires 
clinicians to be aware of their mechanisms of action and the 
associated AEs. This narrative review aims to summarize the 
gastrointestinal and hepatic AEs of the novel immunotherapy 
agents, along with the recommended management, mainly 

focusing on immune checkpoint CTLA-4 and PD-1/PD-
L1 inhibitors. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
http://dx.doi.org/10.21037/atm-20-7361).

Methods

Medline/PubMed and Google Scholar was searched until 
October 2020 for publications in the English language 
reporting on gastrointestinal and hepatic AEs of the novel 
immunotherapy agents. The search was carried out using 
mainly (“Immunotherapy”[Mesh]) AND “Gastrointestinal, 
Hepatic AEs”[Mesh]) in Medline or the following keywords 
such as “vaccines”, “cytokines”, “cellular therapy”, 
“checkpoint inhibitors”, “toxicity”, “colitis”, “hepatitis” 
in Google Scholar. The screening of the articles was 
performed manually, based on the publication titles and 
abstracts. Of the articles retrieved, the reference lists of the 
relevant papers were checked to detect other articles that 
may be of interest to our narrative review. 

Toxicities of cancer vaccines

Sipuleucel-T was the first cancer vaccine approved in April 
2010 by the United States Food and Drug Administration 
(FDA) for the treatment of castration-resistant prostate 
cancer. This is an autologous vaccine, prepared by a  
250-mL suspension containing a minimum of 50 million 
autologous CD54+ cells, activated with prostate acid 
phosphatase-granulocyte-macrophage colony-stimulating 
factor (7). When sipuleucel-T is infused into the patient, 
the activated antigen-presenting cells displaying the fusion 
protein induce anti-tumor immunity.

The efficacy of sipuleucel-T was investigated in the 
phase III IMPACT trial that enrolled asymptomatic or 
minimally symptomatic patients with metastatic castration-
resistant prostate cancer, no visceral metastases, and serum 
prostate-specific antigen (PSA) levels of ≥5.0 ng/mL (7). 
Median overall survival (OS) in the experimental group was 
extended by 4.1 months compared to the placebo group 
(25.8 compared to 21.7 months), which was statistically 
significant [hazard ratio (HR) 0.775; 95% CI (confidence 
interval): 0.614–0.979; P=0.032].

Sipuleucel-T has mild toxicity and common AEs at a rate 
≥15% include chills, fatigue, fever, back pain, joint ache, 
headache, nausea, and anemia. These toxicities occurred 
within the first few days of treatment and dissipated within 
one or two days (7). Among 601 patients randomly assigned 
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to sipuleucel-T and placebo, who underwent leukapheresis 
at least once, 95.1% reporting acute infusion reactions (8).  
However, severe or life-threatening AEs were equal 
between the experimental and placebo arm (27.6% and 
28.4%, respectively).

The disease-specific prophylactic and therapeutic 
vaccines also include peptide-based counterparts. Epitope 
specificity for T-cells is mediated by the T-cell receptor 
(TCR), which binds peptides presented in the peptide-
binding groove of major histocompatibility complexes 
class I and class II on antigen-presenting cells (APCs). As 
such, there is a lower risk of causing pathogenic or off-
target responses as compared to conventional vaccines. 
However, there are some concerns related to peptide 
vaccine treatment. Firstly, as they are human leukocyte 
antigen (HLA) restricted, it should be known patients’ HLA 
type. Furthermore, they have a weaker overall immune 
response, in comparison to vaccines that contain inactivated 
or attenuated pathogens. Regardless of these limitations, 
peptide vaccines represent an interesting treatment strategy, 
based on their ability to stimulate antigen-specific immune 
responses, along with the favorable toxicity profile.

Beyond peptide-based, there have also been investigated 
tumor vaccines, based on the use of whole cells from the 
tumor as the source of immunogenic material. In most 
models of this type of vaccination, there is a requirement for 
T-cell activation; nevertheless, cells of the innate immune 
system, including natural killer cells, macrophages, and 
eosinophils have also been implicated. These vaccines 
can be either autologous or allogeneic (9). In contrast to 
peptide-based vaccines, target antigens are not required 
to be prospectively identified in this vaccine treatment. 
Regardless of immune responses and tumor regression in 
murine tumor models (10-13), reports from several clinical 
trials in melanoma, prostate, pancreatic, and lung cancer 
were suggestive of limited efficacy despite immune responses  
(14-17). M-Vax represents an autologous tumor-cell vaccine 
and treated patients with tumor regression, achieved 
statistically significant longer median OS, as compared 
to those without tumor regression (21.4 vs. 8.7 months;  
P=0.01) (18). Treatment-induced toxicities consisted of 
pustules or papules with small ulcerations at the injection 
site, whereas less than 5% of patients experienced fever or 
malaise within 24 hours following vaccine treatment (18).

Toxicities of cytokines

Cytokines are naturally produced by numerous cell types and 

serve as mediators of cellular differentiation, inflammation, 
immune pathology, and regulation of immune response. A 
balance between pro-inflammatory and anti-inflammatory 
cytokines is essential component of host immunity against 
microbes as well as malignant cells (19). Cytokines can be 
divided into several subcategories, including among others 
the interferons, and interleukins (20).

Type I IFN family consists of IFN-α, IFN-β, IFNA-ε, 
IFN-κ and IFN-ω cytokines. Among numerous IFN-a 
subtypes, IFN-a2b is the most widely used in cancer 
immunotherapy (21). FDA approved recombinant human 
IFN-a2 for treatment of hairy cell leukemia, and advanced 
melanoma in 1986 and 1996, respectively (22,23). The 
objective response rates (ORR) of IFN-α2b in patients with 
advanced melanoma is 22% (24); nevertheless, the OS has 
been improved only by approximately 4 months (25). In 
the era of molecularly targeted therapies and checkpoint 
inhibitors, IFN-α is occasionally but not routinely used in 
clinical practice (26).

The most  common AEs of  IFN-a are  the  f lu-
like symptoms, which may be severe, but equally are 
rapidly reversible, when treatment is withheld (27). 
Moreover, IFN-a treatment may also cause thyroid 
derangement, neuropsychiatric symptoms, anorexia, 
and hepatic dysfunction (28,29). Mild elevations in liver 
aminotransferases without clinical symptoms are common. 
IFN-a should be suspended in patients with grade 3 
hepatotoxicity, until a decrease of the aminotransferases 
concentration reach 1.5 times of normal level, when 
deemed safe to restart treatment a 30% dose reduction is 
recommended. In the Eastern Cooperative Oncology Group 
(ECOG) Trial E1684, 46% of enrolled patients receiving 
IFN-a experienced nausea and vomiting, whereas 2/3 had 
early satiety, anorexia, and weight loss (30). Symptoms’ 
control required non-steroidal anti-inflammatory agents 
and IFN-a dose modifications.

Interleukin-2 (IL-2) was initially characterized in the 
1970s as a T-cell growth factor. High-dose cytokine of IL-2 
was approved by the FDA for the treatment of metastatic 
renal cell carcinoma or melanoma in 1992 and 1998, 
respectively. The mechanism of the severe toxicities of IL-2 
is related to the stimulation of proinflammatory cytokines, 
leading to vasopermeability, vascular leak, and a sepsis-
like syndrome. Capillary leak syndrome may clinically 
cause hypotension, cardiac arrhythmias, angina, myocardial 
infarction, and pleural effusion (31). Additional AEs include 
gastrointestinal bleeding, diarrhea, nausea, and liver failure 
with hypertransaminasemia and hyperbilirubinemia (32).  
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Despite the fact that the AEs of high-dose IL-2 treatment 
may be severe, they equally are rapidly reversible. 
Treatment cessation temporarily in view of patient recovery 
is recommended. Early administration of dopamine may 
maintain organ perfusion and preserve urine output. 
Glucocorticoids are considered for the management of IL-
2-induced AEs, including hyperbilirubinemia.

Toxicities of adoptive cell therapy

ACT is the transfer of patient-derived naturally occurring 
or genetically modified T cells that have been expanded and 
manipulated ex vivo back into patients to treat metastatic 
cancers or advance/refractory hematological malignancies. 
Based on the mechanism of action, it is classified into ACT 
with tumor-infiltrating lymphocytes (TILs), ACT with 
chimeric antigen receptor (CAR) modified T cells, and 
ACT using TCR gene therapy (33).

Adoptive cell  therapy of TILs has been widely 
investigated. In TILs-based protocols, patients were treated 
with non-myeloablative lymphodepleting chemotherapy 
(cyclophosphamide and fludarabine), prior to infusion of 
TILs (1010–1011 cells) followed by high-dose IL-2 therapy 
after TIL infusion (34,35). In a study that investigated two 
different lymphodepleting approaches, enrolled patients 
with metastatic melanoma were treated with chemotherapy 
and total body irradiation in combination with IL-2 therapy 
(randomized to 2 and 12 Gy) (35). The achieved ORR 
for chemotherapy only arm, +2 and +12 Gy total body 
irradiation arms were 49%, 52%, and 72%, respectively. 
Treatment-induced toxicities were generally related to 
IL-2 administration or the preparatory lymphodepleting 
regimen. The latter is recommended to highly selected 
patients with reasonable performance status and high 
chances of successful TIL harvest.

Autologous T cells can be engineered to express CAR, 
composed of antigen-specific, antibody-binding domains 
connected to T-cell-activating domains. The first generation 
of CAR T cells was developed in 1993 (36), whilst in 
1998 was introduced the co-stimulatory domain (37).  
In 2003, second-generation CAR was developed to target 
CD19, which opened the way to the first successful 
treatment of a patient with ALL in 2011. The toxicity 
profile includes on-target toxicity as B-cell aplasia, 
hypogammaglobulinemia, and plasma cell reduction (38,39). 
Peak serum cytokine levels were temporally associated with 
the peak concentration of CAR-expressing T cells that 
target CD19 and require initiation of tocilizumab (anti-IL6R 

Ab) and/or corticosteroids and close monitoring.

Toxicities of checkpoint protein inhibitors

Immune checkpoint inhibitors have been designed to 
directly target CTLA-4 and PD-1 immune checkpoints. 
There are two main policies related to the improvement 
of the response rate to immune checkpoint inhibitors. 
The first is based on the selection of patients within the 
context of specific predictive factors, such as PD-L1 
expression, tumor mutational burden, and clinical features. 
The other highlights the enhancement of the efficacy of 
immune checkpoint inhibitors through the abscopal effect 
imediated by radiotherapy. More recently, several studies 
demonstrated the potential role of specific molecules in 
the modification of the immune microenvironment of the 
tumor and consequently the improvement of the response 
rate to immune checkpoint inhibitors. In this category of 
agents are included microbiota modifiers, drugs targeting 
co-inhibitory receptors, anti-angiogenic agents, small 
molecules, and oncolytic viruses. The incidence of most 
immune checkpoint inhibitors-mediated AEs appears to be 
broadly similar across tumor types (40). 

CTLA-4

CTLA-4 is an inhibitory molecule that attenuates the 
activation of the T cells by delivering inhibitory signals 
and competing with the molecule CD28 for binding to 
CD80 (B7.1) and CD86 (B7.2) (41). As CTLA-4 has 
higher affinity for these ligands, the co-stimulatory signal 
is eliminated and the lymphocytes are arrested in G1 of 
the cell cycle. Ipilimumab and tremelimumab are anti-
CTLA-4 blocking antibodies with demonstrated antitumor 
activity in patients with melanoma. Some studies support 
that ipilimumab-induced AEs predict antitumor efficacy in 
certain patients (42).

In a three-arms phase III trial, ipilimumab, with or 
without a glycoprotein 100 (gp100) peptide vaccine, was 
compared with gp100 alone in previously treated patients 
with metastatic melanoma (43). The median OS was 10.0 
in the combination treatment arm, as compared with 6.4 
months in those treated with gp100 alone (HR for death, 
0.68; P<0.001), and 10.1 months in the ipilimumab cohort 
(HR for death in the comparison with gp100 alone, 0.66; 
P=0.003). The major immune-related AEs occurred in 
60% of patients in the ipilimumab arm, versus 32% in 
those treated with the gp100 vaccine. Grade 3/4 immune-
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related AEs were detected in 10–15% of ipilimumab-treated 
patients versus 3% in the gp100 cohort. The most frequent 
ipilimumab-induced AE was diarrhea, which was seen in 
27–31% of patients. Furthermore, patients experienced 
injection-site reactions, vitiligo, endocrine-related AEs, 
and colitis. Ipilimumab may be suspended but patients 
should be followed-up for several months, as both responses 
and toxicities can be delayed. However, there is a lack of 
biomarkers that may predict either the efficacy or the risk of 
severe immune-mediated AEs of ipilimumab (44).

A randomized phase III study comparing treatment 
with tremelimumab (15 mg/kg once every 90 days) versus 
chemotherapy in treatment naïve patients with unresectable 
or metastatic melanoma, did not demonstrate survival 
benefit with tremelimumab (45). The estimated OS was 
12.6 months (95% CI: 10.8–14.3) for tremelimumab and 
10.7 months (95% CI: 9.36–11.96) for chemotherapy (HR, 
0.88; P=0.127). Tremelimumab-induced diarrhea or colitis 
was reported in 51% of patients, whilst 18% developed ≥ 
grade 3 diarrhea.

Anti-PD-1

PD-1 is a second immune checkpoint receptor, homologous 
to the CD28 family of protein receptors that is composed 
of an immunoglobulin V-like extracellular domain, a 
transmembrane domain, and an intracellular cytoplasmic 
domain (46,47). PD-1 is expressed by T lymphocytes 
and upon interaction with PD-L1 or PD-L2 ligands, it 
functions as a co-inhibitory receptor that decreases T 
cell proliferation, apoptosis, and cytokine production. 
Additionally, PD-L1 contributes to the conversion of naive 
CD4+ T cells to regulatory T (Treg) cells and inhibits T-cell 
responses by promoting the induction and maintenance 
of Tregs (48,49). Nivolumab and pembrolizumab are 
monoclonal antibodies against the PD-1 receptor.

The efficacy and tolerance of nivolumab have been 
evaluated in non-small cell lung cancer (NSCLC) patients 
in the second-line setting, following platinum-based 
doublet chemotherapy. In this setting, two phase III trials 
demonstrated improved OS and safer toxicity profile with 
the nivolumab (3 mg/kg every 2 weeks) versus docetaxel 
(75 mg/m2 every 3 weeks) in patients with advanced non-
squamous (CheckMate 057) and squamous (CheckMate 
017) NSCLC. In the CheckMate 057, the OS was estimated 
12.2 versus 9.4 months in favor of nivolumab (HR for death, 
0.73; 96% CI: 0.59 to 0.89; P=0.002) (50). The median 
OS in CheckMate 017 was 9.2 months in the experimental 

versus 6.0 months in the control arm, whilst the median 
progression-free survival (PFS) was 3.5 versus 2.8 months, 
respectively (HR for death or disease progression, 0.62; 
95% CI: 0.47–0.81; P<0.001) (51). After 40.3 months’ 
minimum follow-up in CheckMate 057 and 017, nivolumab 
maintained an OS benefit versus docetaxel. The estimated 
3-year OS rates were 17% (95% CI: 14–21%) versus 
8% (95% CI: 6–11%) in the pooled population of both 
squamous and non-squamous NSCLC. As no patient 
remained on docetaxel treatment for more than 2 years, 
updated safety data are presented in nivolumab-treated 
patients only. The majority of treatment-induced select 
AEs occurred within the initial 3 months of nivolumab 
treatment (52). Moreover, in advanced renal cell carcinoma, 
the CheckMate 025 phase III trial reported a 27% risk 
reduction of death in the nivolumab arm, as compared to 
everolimus (53). Grade 3/4 treatment-related AEs occurred 
in 19% of the patients receiving nivolumab and in 37% of 
those treated with everolimus; the most common AE with 
nivolumab was fatigue (2% of the patients), whilst with 
everolimus the anemia (8%).

As far as pembrolizumab is concerned, a small phase I 
trial demonstrated early evidence of good clinical efficacy 
and favorable toxicity profile. In this trial with a classic 3+3 
escalation design, pembrolizumab was assessed at 1, 3, and 
10 mg/kg in patients with advanced solid tumors, refractory 
to standard treatment (54). The maximum tolerated dose 
(MTD) was not reached, and then, an expansion cohort 
enrolled only those diagnosed with metastatic melanoma, 
treated with pembrolizumab at 10 mg/kg every 2 or 3 
weeks or at 2 mg/kg every 3 weeks (55). All-grade drug-
related AEs were reported in 79% of participants, whereas 
only 13% experienced grade 3/4 AEs, including rush and 
pruritus, hepatic and renal failure, fatigue and anorexia, 
diarrhea, abdominal pain, and hypothyroidism. Grade 1/2 
gastrointestinal AEs such as diarrhea, nausea, and anorexia 
were reported in 30% of cases. Overall, AEs were more 
common with the higher-dose regimen.

I n  2 0 1 5  w e r e  p u b l i s h e d  t h e  r e s u l t s  o f  t h e 
KEYNOTE-002 trial, which investigated pembrolizumab 
at 2 and 10 mg/kg every 3 weeks versus chemotherapy 
in immune checkpoint inhibitors refractory melanoma 
population. The grade 3/4 treatment-related AEs were 11 
and 14%, respectively (56). Specifically in the subgroup 
of pembrolizumab 10 mg/kg, grade 3/4 treatment-related 
AEs, included hypopituitarism, colitis, anorexia, and 
hyponatremia, along with diarrhea and pneumonitis, each of 
1%. More recently, KEYNOTE-006, a multicenter phase 
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III study compared pembrolizumab with ipilimumab in 
ipilimumab-naive patients with stage III/IV melanoma (57).  
M e d i a n  O S  w a s  3 2 . 7  m o n t h s  i n  t h e  c o m b i n e d 
pembrolizumab groups, compared to 15.9 months in 
the ipilimumab group (HR 0.73; 95% CI: 0.61–0.88; 
P=0.00049). Median PFS was estimated 8.4 versus 3.4 
months, respectively (HR 0.57; 95% CI: 0.48–0.67; 
P<0.0001). The most common grade 3/4 treatment-related 
AEs were colitis (2% in the combined pembrolizumab 
groups vs. 6% in the ipilimumab group), diarrhea (2% vs. 
3%, respectively), and fatigue (<1% vs. 1%, respectively). 
Any-grade serious treatment-related AEs occurred in 14% 
of patients in the combined pembrolizumab groups and 
18% of those in the ipilimumab group. Among them, the 
most common were colitis (2% vs. 6%), diarrhea (1% vs. 
4%), autoimmune hepatitis (1% vs. <1%), and pneumonitis 
(1% vs. <1%).

The anti-tumor activity of pembrolizumab has also been 
investigated in NSCLC, initially in the second- or even 
third-line setting. Based on the outcomes of KEYNOTE 
group of studies, it has been approved in the first-line 
treatment of unresectable advanced NSCLC. Indeed, 
KEYNOTE-189 established the antitumor activity and 
safety of pembrolizumab combined with chemotherapy 
for first-line treatment of metastatic NSCLC (58). The 
median OS in the intention to treat (ITT) population was 
22 months in the pembrolizumab combination group, 
compared to 10.6 months in the placebo combination 
group, which led to the FDA approval in the first-line 
setting. A meta-analysis concluded that rates of immune-
induced AEs were increased with pembrolizumab combined 
approach, compared with standard treatment (59). 
Gastrointestinal manifestations occurred usually 5 to 10 
weeks after treatment onset, and typically included diarrhea 
and colitis (60). The incidence of diarrhea is 5–10%, 
usually mild or moderate (61), whereas the rate of colitis 
is 1.3%, which increase to 11.8% in those treated with the 
combination (62). The most often liver toxicity is hepatitis 
with an incidence of less than 5%, which most often occurs 
after 8 to 13 weeks of treatment introduction (63). It is 
reported that liver damage can be delayed until several 
years, following initiation of the treatment (64).

Anti-PD-L1

PD-L1 and PD-L2 are the two ligands for PD-1, and 
represent members of the B7 family of type I transmembrane 
protein receptors (46). The intracellular domain of PD-L1 

is comprised of 30 amino acids. The protein is expressed on 
many cell types, including APCs, T cells, B cells, monocytes, 
and epithelial cells, and it is upregulated, following the 
response to proinflammatory cytokines, such as IFN-γ and 
IL-4 (46,65). The approved by the FDA PD-L1 inhibitors 
are atezolizumab, durvalumab, and avelumab.

In vitro data suggest that atezolizumab, through the 
inhibition of PD-L1, may weaken immunosuppressive 
signals within the tumor microenvironment, enhancing 
T cell-induced immunity against tumors (66). From the 
clinical perspective, there is evidence supporting that it is 
efficacious and well-tolerated in several malignancies. In a 
phase I study, three dosing regimens for atezolizumab every 
3 weeks were assessed in patients with recurrent NSCLC, 
melanoma, renal cell, colorectal, gastric, and head and 
neck squamous cell carcinoma (67). The reported MTD 
was 20 mg/kg, whereas the achieved ORR was 21% across 
all histological types. Among AEs, the most frequently 
observed were fatigue, anorexia, nausea, pyrexia, diarrhea, 
rash, pruritus, arthralgia, and headache.

Likewise, a phase I escalation and expansion study 
evaluated the safety and efficacy of atezolizumab at a 
dose of 15 mg/kg every 3 weeks in heavily pre-treated 
patients with urothelial carcinoma, stratified by the PD-L1  
expression (68). No dose-limiting toxicities were detected, 
following a median treatment duration of 65 days. The 
patients mostly experienced grade 1/2 fatigue, nausea, 
anorexia, and pyrexia, many of which were transient. The 
reported ORR was 43% for the subset of PD-L1 ≥5%, 
versus 11% for PD-L1 <5% (68). This was followed by a 
phase II trial of atezolizumab at a fixed dose of 1,200 mg 
every 3 weeks, which demonstrated an ORR of 10% with 
prognostic association of PD-L1 expression (69). In May 
2016, FDA granted accelerated approval to atezolizumab for 
locally advanced or metastatic urothelial carcinoma, in the 
subset of pre-treated with platinum-based chemotherapy 
patients.

Moreover, atezolizumab was FDA approved in October 
2016 for metastatic NSCLC as second-line treatment, 
following platinum-based chemotherapy. The randomized 
phase II POPLAR study demonstrated a statistically 
significant survival benefit of atezolizumab versus docetaxel 
in NSCLC patients with medium and high PD-L1 
expression (HR =0.54; P=0.014) (70). Similarly, the phase III 
OAK trial investigated atezolizumab versus docetaxel in the 
same setting (71). In the ITT population, the median OS 
was statistically improved for atezolizumab versus docetaxel 
[13.8 months (95% CI: 11.8–15.7) vs. 9.6 months (95% CI: 
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8.6–11.2); HR 0.73 (95% CI: 0.62–0.87); P=0.0003]. The 
reported AEs were compatible with the POPLAR study.

Moreover, in December 2018, atezolizumab was approved 
by the FDA in combination with bevacizumab and standard 
chemotherapy for the first-line treatment of metastatic non-
squamous NSCLC, in the absence of epidermal growth 
factor receptor (EGFR) mutations or anaplastic lymphoma 
kinase (ALK) gene rearrangements (72). Finally, in March 
2019, FDA granted first-line treatment of atezolizumab in 
combination with the standard carboplatin and etoposide for 
the extensive small-cell lung cancer (73).

In vivo studies demonstrated that durvalumab significantly 
inhibits the growth of human tumors in a novel xenograft 
model with co-implanted human T cells (74). Based on 
this preclinical evidence, durvalumab entered into clinical 
development. Indeed, patients with advanced urothelial 
bladder carcinoma, tolerated well durvalumab at a dose 
of 10 mg/kg every 2 weeks for up to a year or until disease 
progression, or unacceptable toxicities (75,76). Overall, the 
demonstrated durvalumab tolerance outcome was similar to 
other PD-L1 inhibitors (75). Higher ORR was observed in 
patients with expression, as compared to lack of expression 
of PD-L1 (27.6% versus 5.1%, respectively) (76). In 2017, 
the FDA granted accelerated approval to durvalumab for 
the treatment of locally advanced or metastatic urothelial 
carcinoma. Furthermore, phase III PACIFIC trial compared 
consolidation treatment with durvalumab versus placebo in 
patients pre-treated with two or more cycles of platinum-
based chemotherapy, concurrently with definitive radiation 
therapy. The 2-year OS rate in the durvalumab group was 
66.3%, compared with 55.6% in the placebo arm (77).

Avelumab induces tumor-directed antibody-dependent 
cell-mediated cytotoxicity in vitro (78). The dose-escalation 
phase I JAVELIN Solid Tumor study demonstrated that 
avelumab was generally well tolerated in patients with 
metastatic or locally advanced pre-treated solid tumors (79).  
Treatment-associated AEs are fatigue, influenza-like 
symptoms, fever, and chills. The MTD was 10 mg/kg 
every 2 weeks. However, atezolizumab did not induce a 
statistically significant prolongation of either OS or PFS in 
ovarian, gastric, and NSCLC versus chemotherapy (80-82).

Toxicities in the checkpoint protein inhibitors-
based combined treatment

There is a growing interest in the incorporation of 
combination therapies in clinical practice, to be enhanced 
the antitumor effect. CTLA-4 and PD-1 receptors have 

distinct mechanisms of T-cell inhibition, which provide 
the rationale of the additive and/or synergistic activity of 
the dual checkpoint blockade (83). The development of 
resistance to immune checkpoint inhibitors may involve 
mechanisms of immune escape or tolerance (84). Based 
on that, targeting dual or multiple pathways may be an 
effective approach in treatment-resistant cancers.

Toxicities in combined strategies are more severe than 
those in single agents and depended on the combination 
patterns of different agents. The combination of ipilimumab 
and nivolumab has been approved for the treatment of 
metastatic melanoma (85). In an update of the CheckMate 
067 trial, the rate of grade 3/4 toxicities was 59% in the 
combination arm, versus 22% and 28% in the cohorts 
of single agents nivolumab and ipilimumab, respectively. 
Grade 3 diarrhea in the combination and nivolumab group 
was 9 and 3% respectively, whereas colitis was the most 
frequent AE in the ipilimumab arm (7%). Grade 4 lipasemia 
occurred in 5% of the combination group, and in 3% and 
1% of nivolumab and ipilimumab cohorts, respectively (86). 
The increased incidence of AEs with combination therapy 
may also be related to dose and schedule. According to the 
CheckMate 511 trial, the regimen of nivolumab 3 mg/kg 
plus ipilimumab 1 mg/kg (NIVO3 + IPI1) is better tolerated 
as compared to the approved treatment (NIVO1 + IPI3). 
Indeed, the incidence of treatment-mediated grade 3–5 AEs 
was 34 versus 48%, in favor of NIVO3 + IPI1 (P=0.006). In 
terms of treatment efficacy, response rates and PFS did not 
differ whereas, OS was not reached in either group (87).

The combination of ipilimumab and pembrolizumab 
seems to be well tolerated. Preliminary results of the phase 
Ib Keynote 029 study demonstrated 42% general incidence 
of grade 3/4 AEs. The reported lipasemia and diarrhea of 
grade 3/4 were 14 and <1%, respectively (88).

The eff icacy and safety of  the combination of 
immunotherapy and targeted therapy are currently 
under investigation. In a phase I study, the tolerance of 
ipilimumab/vemurafenib doublet was problematic (89). 
Liver biochemistry was impaired in four out of six patients 
treated with a full dose of either agent and in two out 
of four of those treated with dose modification. In the 
sequential phase II study (NCT01673854), patients were 
treated with vemurafenib for 6 weeks and then switched to 
ipilimumab at the dose of 10 mg/kg. The incidence of grade 
3/4 skin, GI, and hepatobiliary AEs was 32.6%, 21.7%, and 
4.3%, respectively (90).

The combination of an anti-PD-1 or anti-PD-L1 
antibody with targeted therapy seems to be better tolerated 
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than with CTLA-4 inhibitor (91-93). NCT02027961 is 
evaluating durvalumab in combination with dabrafenib plus 
trametinib, or trametinib alone in metastatic melanoma. 
Patients were randomized by BRAF status to one of 
three dose-escalation cohorts (durvalumab + dabrafenib 
+ trametinib, versus durvalumab + trametinib, versus 
sequential trametinib followed by durvalumab). No MTD 
was identified, whereas the most common gastrointestinal 
AEs were diarrhea in cohort B (30%), and vomiting 
in cohort C (67%). Based on that, the combination of 
durvalumab and trametinib with or without dabrafenib at 
full doses can be considered in patients with either BRAF-
mutated or wild type melanoma (91).

KEYNOTE-022 (NCT02130466) is a phase I/II 
study that investigated pembrolizumab in combination 
with dabrafenib and trametinib in the first-line setting, in 
patients with melanoma harboring BRAF-V600 mutation. 
Ten out of 15 patients (67%) experienced grade 3/4 
treatment-induced AEs, including 2 cases with a reversible 
increase of aminotransferases. The recommended phase II 
MTD is pembrolizumab 2 mg/kg every 3 weeks, combined 
with dabrafenib at 150 mg twice daily and trametinib 2 mg 
once daily (92).

Preliminary data of atezolizumab combined with 
cobimetinib and vemurafenib demonstrated manageable 
toxicities in patients with metastatic melanoma bearing 
BRAF-V600 mutations (93). More than 20% of patients 
experienced all-grade AEs, including nausea, elevated 

aminotransferases and bilirubin, and mucositis. Among the 
patients treated with the combination, 40% experienced 
grade 3/4 AEs, which were atezolizumab-associated in 
27% out of them. Among 14 enrolled patients, only one 
discontinued due to elevated alanine aminotransferase 
(ALT)/aspartate aminotransferase (AST) ratio. The ongoing 
phase III TRILOGY study (NCT02908672) evaluates 
cobimetinib and vemurafenib, combined or not with 
atezolizumab for treatment-naïve patients with BRAF-V600 
mutated metastatic melanoma (94).

The combination of checkpoint blockade immunotherapy 
and radiation could also be toxic. Within this context are 
included increased incidence of pneumonitis, colitis, and 
hypophysitis with lung, bowel, and central nervous system 
irradiation, respectively (95).

The increased incidence of AEs with combination 
immunotherapies is depicted in Table 1.

Organ-special toxicities of checkpoint protein 
inhibitors

Approximately, over 30% of the patients treated with 
immunotherapy, mainly monoclonal anti-CTLA-4 IgG1 and 
anti-PD1 IgG4 antibodies, experienced AEs related to the 
digestive system (96). The incidence of grade 3/4 immune-
mediated diarrhea and colitis is approximately 5% with 
ipilimumab and 1–3% with anti-PD-1/PD-L1 antibodies. 
Colitis is usually occurred within the first 6 weeks, following 

Table 1 Incidence of adverse events in combination studies with anti-PD-1/anti-PD-L1 agents

Ref. Trial Treatment
Number  

of patients
AEs (%) Grade 3/4 AEs (%)

Treatment 
discontinuation 
due to AEs (%)

(86) Phase III nivo + ipi 945 96%. Diarrhea: 44; Fatigue: 35; Pruritus: 33 58.5% 39.6%

(88) Phase II pembro + ipi 153 58%. Diarrhea: 46; Pruritus: 39; Rash: 39 42% 20%

(91) Phase I M + T ± D 50 Cohort A (M + T + D):  
Pyrexia: 63%; Fatigue: 54%

4% 4%

Cohort B (M + T): Diarrhea: 30%; Rash: 25%

Cohort C (T→M): Vomiting: 67%

(92) Phase I/II pembro + D + T 15 NR 67% 33%

(93) Phase Ib A + V + cobi 11 20% (hypertransaminasaemia) 40% elevation of CPK; 
sepsis; diarrhea and 

hypertransaminasaemia

9%

anti-PD-1, anti-programmed death antigen-1; anti-PD-L1, anti-programmed death antigen-ligand-1; nivo, nivolumab; ipi, ipilimumab; 
pembro, pembrolizumab; M, durvalumab; T, trametinib; D, dabrafenib; pts, patients; DLT, dose-limiting toxicity; NR, not reported; A, 
atezolizumab; V, vemurafenib; cobi, cobimetinib; CPK, creatine-phosphokinase.
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commencement of immune checkpoint inhibitor, somewhat 
later than dermatological AEs; nevertheless, it can also be 
presented anytime through the treatment course (97). Bowel 
perforation associated with colitis has been reported in the 
initial studies with ipilimumab, rather than with anti-PD-1/
PD-L1 therapy (98-100).

Immune cell infiltration of bowel mucosa is correlated 
with gastrointestinal toxicity and T-cell diversity predicts 
AEs. There is not mature evidence to correlate potential 
risk factors with the development of gastrointestinal AEs; 
nevertheless, personal and family history of autoimmune 
diseases, tumoral infiltration, opportunistic pathogens, co-
medications, and professional exposures are considered 
as risk factors. Leptin stimulates the production of  
IL-1, IL-6, IL-12, and tumor necrosis factor-α (TNF-α), 
promotes T-cell proliferation, and inhibits regulatory T-cell 
proliferation. The successful management of some AEs with 
anti-TNF treatment supports that inflammatory cytokines, 
related to the adipose tissue inflammation are involved in 
the development of gastrointestinal AEs.

The gold standard to diagnose patients with lower and 
upper gastrointestinal symptoms is the colonoscopy and 
gastroscopy, respectively (101). Histological specimens 
should be taken throughout the colon, even if the mucosa is 
normal, whilst immunohistochemical staining is required as 
the infection by cytomegalovirus should be a consideration 
in the differential diagnosis of colitis. Endoscopic 
appearance is compatible either with chronic idiopathic 
inflammatory bowel disease and acute, infectious, or drug-
related colitis (102). Typical findings include inflammatory 
changes, such as neutrophils, lymphocytes, plasma cells, and 
eosinophils, loss of vascularity, and ulcerations (103). They 
can also be detected in foci of neutrophilic cryptitis, and 
crypt abscess (104). Beyond the colon, histopathological 
abnormalities may also be detected in the duodenum, 
stomach, and/or small bowel (105). In a case series of  
39 patients treated with anti-CTLA-4, the most frequently 
described endoscopic lesions were ulcer (79%), erosion 
(13%), and erythema (8%) (106). The rectum and/or 
sigmoid colon were affected in 97% of cases, whilst 66% 
of patients developed extensive colitis. In another series, 
among 20 patients with anti-PD1-induced diarrhea, 12 had 
abnormal colonoscopies. The descending colon was mostly 
affected (83%) with a patchy, rather than a continuous 
pattern in approximately 73% of cases (107).

Radiological appearance is wildly fluctuated, according 
to the severity of AEs. The most common diffuse colitis 
is characterized by mesenteric vessel engorgement, 

and a segmental counterpart with moderate bowel wall 
thickening, fluid-filled colonic distention, and pericolonic 
fat stranding in a background of diverticulosis (108).

The differential diagnosis of diarrhea and colitis includes 
tumor progression, the development of inflammatory bowel 
disease and infectious causes, based on the identification of 
clostridium difficile, cytomegalovirus, and parasites (97,109). 
The correlation with the clinical history is essential for the 
differential diagnosis. Inflammatory markers such as fecal 
leukocytes/lactoferrin and fecal calprotectin may clarify the 
inflammatory process underlying the diarrhea. Overall, the 
main laboratory abnormalities are nonspecific and include 
anemia, increased C-reactive protein, and hypoalbuminemia. 
The screening strategy should incorporate assessment for 
tuberculosis, human immunodeficiency virus and hepatitis A, 
B, and C.

Patients treated with ipilimumab (43,110-112), and anti-
PD-1/PD-L1 agents (98-100), experience hepatic toxicity 
in approximately 10% and 5%, respectively. Patients with 
solid tumors from nine randomized trials were included in 
a meta-analysis, which showed that treatment with PD-1 
inhibitors increased the risk of all but high-grade hepatic 
AEs, versus either chemotherapy or everolimus. The 
median time to the occurrence of hepatitis depends on the 
malignant disease and the immune checkpoint inhibitor 
(113-116). The peak toxicity occurs within 8 to 12 weeks 
after initiation of ipilimumab (99,100,117), whilst anti-PD1/
PD-L1 induced hepatitis may be correlated with later-onset 
symptoms, even 34 weeks since treatment’s initiation (118).  
Overall, it is a heterogeneous clinical entity that often 
manifests as an asymptomatic increase of aminotransferases 
and/or bilirubin. However, fatigue, fever, and jaundice 
have also been reported (113), whilst fulminant hepatic 
failure is rare (119). Immune checkpoint inhibitors are 
not metabolized by the liver and as such, baseline liver 
impairment is not a contraindication for treatment  
initiation (120). There is a lack of predictive and/or 
prognostic biomarkers for immune-related hepatitis (121).

From the histopathological point of view have been 
described findings of panlobular hepatitis, biliary ducts 
or perivenular infiltrates (117), whilst rarely have been 
reported fibrin ring granulomas (122). In anti-PD1 induced 
hepatitis, the appearance is more heterogeneous with 
lobular and periportal activity (114). Imaging features 
of immune-related hepatitis are not pathognomonic; 
nevertheless, more severe appearance could be characterized 
by hepatomegaly, periportal edema, and lymphadenopathy, 
as well as attenuated liver parenchyma. Moreover, 
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radiological features compatible with cholangitis have been 
described in patients treated with nivolumab (123,124).

The d i f ferent ia l  d iagnos i s  o f  immune-re la ted 
hepatotoxicity requires a thorough history and physical 
exam, accompanied by laboratory and histological 
assessment (125). It includes recurrent liver disease, viral 
hepatitis, another drug-induced toxic reaction, alcoholic 
liver disease, cholangitis, and portal vein thrombosis 
(64,126). Patients with autoimmune and drug-induced 
hepatitis may have features of elevated aminotransferases, 
eosinophilia, and hypergammaglobulinemia. However, the 
presence of plasma cells is more typical in autoimmune 
hepatitis, whilst neutrophils prevail in drug-mediated 
hepatitis. Furthermore, cirrhosis or rosette formation 
mostly characterize autoimmune, rather than drug-induced 
hepatitis (127). Hepatic AEs can also induce rapid fibrosis. 
Finally, they are primarily characterized by lobular hepatitis 
with CD3+ or CD8+ lymphocyte infiltration, rather than 
with CD20+ lymphocytes. There have not been found 
histological differences between anti-PD-1/PD-L1 and 
anti-CTLA-4 agents so far. 

Acute pancreatitis has been rarely reported (128). 
However, the asymptomatic increase of lipase and amylase 
are more frequent, in the absence of clinical or radiological 
features of pancreatitis (129). This biochemical derange 
does not have any clinical impact and immune checkpoint 
inhibitor could be continued. In contrast, if there is clinical 
or radiological evidence of pancreatitis, treatment should be 
withheld until resolution.

The autoimmune reactions mediated by immune 
checkpoint inhibitors seem to be related to the targeted 
pathways. Indeed, due to the presence of CTLA-4 in 
the hypophysis, patients treated with anti-CTLA-4 are 
susceptible to hypophysitis, which is not the case in those 
treated with anti-PD1. Similarly, the predominant AEs 
of anti-CTLA-4 are colitis and hypophysitis, whilst anti-
PD1/PD-L1 can induce type I diabetes, hypothyroidism, 
pneumonitis, and myocarditis. Finally, autoimmune 
syndromes could be a consequence of revealing pre-
existing conditions. However, analysis of pre-existing 
autoantibodies and single-nucleotide polymorphisms 
associated with autoimmune disease has not proved useful 
in the identification of patients at risk for AEs. 

Management of toxicities

The education of patients is crucial for the optimal 
management of AEs. The early recognition of symptoms 

leads to prompt diagnosis and early commencement 
of specific treatment. Algorithms with well-described 
supportive measures are mostly, empiric and data are 
extrapolated from inflammatory bowel disorders. Diagnosis 
of an immune-mediated AEs may be challenging, mainly 
on the absence of specific antibodies in the serum. In 
this scenario, a biopsy is extremely important for the 
establishment of the diagnosis. Gold standard treatment 
is considered the initiation of immunosuppressants, 
usually with corticosteroids. For those, to whom the 
initial immune-modulators are ineffective, secondary 
immunosuppressive agents,  such as infl iximab or 
mycophenolate, may be recommended. Table 2 includes the 
indicated for each significant toxicity treatment.

Among commonly used corticosteroids, oral prednisone 1 
mg/kg daily is recommended for moderate toxicities, whilst 
intravenous methylprednisolone 2–4 mg/kg daily for severe 
events. They should be weaned slowly, over a minimum of 
4 weeks (130). For prolonged exposure to corticosteroids 
or other immunosuppressive drugs, prophylactic antifungal 
and antibiotic agents should be considered, due to the risk 
of opportunistic infections. Trimethoprim/sulfamethoxazole 
once daily or three times weekly (160/800 mg combination 
strength) is widely recommended (131). Blood glucose 
levels should be monitored during the treatment course. 
Corticosteroid management should be individualized based 
on patients’ medical history, co-morbidities, oncological 
background, previous AEs, and administered agent.

Infliximab represents a monoclonal antibody against 
the inflammatory cytokine TNF-α. It has shown apparent 
early efficacy in the treatment of gastrointestinal AEs at the 
dose of 5 mg/kg (132); nevertheless, the effect of infliximab 
on tumor progression is uncertain (133). Some data are 
suggestive of increased risk of developing new cancers with 
TNF inhibitors treatment (134).

Grade 1 diarrhea can be managed symptomatically with 
orally given loperamide, rehydration, and electrolytes 
replacement. In case that symptoms last longer than 2 
weeks (grade 2 diarrhea), an endoscopy is indicated, whereas 
colonic biopsies are suggested for bacteriological and 
pathological analyses. Treatment should be commenced 
with oral prednisone 0.5–1 mg/kg or equivalent, after 
eliminating an infectious etiology. When symptoms are 
resolved, the immunotherapy treatment can be restarted 
with dose modification (135). In grade 3/4 diarrhea, an 
endoscopic assessment is mandatory, preferably with a 
total colonoscopy and an upper endoscopy (106,136). 
In the presence of fever or severe abdominal pain, an 
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Table 2 Management of toxicities of immune checkpoint inhibitors

Adverse 
event

Grade Clinical status Management of AEs Immunotherapy management

Diarrhea 1 Increase of <4 stools 
daily over baseline

Stool MCS; Rehydration; Electrolyte replacements; 
Loperamide

No delay of ICI

2 Increase of 4–6 stools 
daily over baseline

Stool MCS; Oral corticosteroids (0.5–1 mg/kg daily); 
Restarting ICI upon resolution of symptoms

Delay of ICI

3 Increase of ≥7 stools 
daily over baseline; 
Incontinence; 
Hospital admission

Stool MCS; High-dose intravenous corticosteroids (starting 
dose of 2 mg/kg daily); If symptoms persist, a single dose 
of infliximab (5 mg/kg), unless there is a contraindication; 
If symptoms further persist, infliximab after 2 weeks; 
Consideration of mycophenolate mofetil in severe and 
refractory cases; Colonoscopy in either colitis suspected 
or persistent diarrhea despite corticosteroids

Permanent discontinuation of 
ICI

4 Life-threatening 
consequences

Colitis 1–2 Asymptomatic; Mild Loperamide; If symptoms persist >3 days: Oral 
prednisolone or equivalent (0.5–1 mg/kg daily), Routine 
stool and blood tests; Consideration of CRP, ESR, fecal 
calprotectin, lactoferrin, imaging, and endoscopy; Tapering 
off corticosteroid over 4-6 weeks

Continuation of ICI; If 
persistent grade 2 symptoms: 
Withhold ICI; In case of 
combination anti-CTLA-4/
anti-PD-1 immunotherapy: 
Continuation of single anti-
PD-1 agent

3 Severe abdominal 
pain; Change in 
bowel habits; 
Peritoneal signs

Intravenous methylprednisone (1–2 mg/kg daily) for 3 days, 
followed by oral prednisolone (1–2 mg/kg daily); Tapering 
off corticosteroids over 4 weeks; If symptoms persist, 
a single dose of infliximab (5 mg/kg), unless there is a 
contraindication; Gastroenterology referral; Consideration 
of colonoscopy with biopsies

Withholding of ICI; Restarting 
ICI upon improvement to 
grade 0–1 within 12 weeks

4 Life-threatening Intravenous methylprednisone (2 mg/kg daily) for  
3 days, followed by oral prednisolone (1–2 mg/kg daily) 
or equivalent; If symptoms persist, a single dose of 
infliximab (5 mg/kg), unless there is a contraindication; 
Gastroenterology referral

Permanently discontinuation 
of ICI

Hepatitis 1 AST/ALT 1–3× ULN 
or total bilirubin 
1–1.5× ULN

Close monitoring of LFTs; Viral serology Continuation of ICI; 
Monitoring of LFTs weekly 
and before each infusion

2 AST/ALT >3–5× ULN 
or total bilirubin >1.5–
3× ULN

Conditions that should be ruled out: viral hepatitis, 
autoimmune disease, biliary obstruction, new metastasis, 
or thrombosis; LFTs every 3 days; Consideration of liver 
biopsy; Oral prednisolone or equivalent (1 mg/kg daily); 
Wean steroids when hepatitis resolves to grade 0

Withholding of ICI; Restarting 
ICI upon improvement to 
grade 0–1 within 12 weeks

3 AST/ALT >5× ULN 
or total bilirubin >3× 
ULN

Conditions that should be ruled out: viral hepatitis, 
autoimmune disease, biliary obstruction, new metastasis, 
or thrombosis; LFTs daily; Intravenous methylprednisone 
(1–2 mg/kg daily) for 3 days, followed by oral prednisolone 
(1–2 mg/kg daily) or equivalent; Tapering off corticosteroids 
over 4 weeks; If symptoms persist, consideration of 
oral mycophenolate mofetil (500–1,000 mg twice daily); 
Gastroenterology referral; Consideration of liver biopsy

Permanently discontinuation 
of ICI

AEs, adverse events; MCS, microscopy; ICI, immune checkpoint inhibitor; CRP, C-reactive protein; ESR, erythrocyte sedimentation 
rate; CTLA-4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death 1; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; ULN, upper limit of normal; LFTs, liver function tests.
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abdominal computed tomography is necessary to rule 
out bowel perforation or toxic megacolon. Intravenous 
methylprednisolone 1–2 mg/kg daily represent the initial 
treatment, followed by corticosteroids orally (135). Patients 
who do not respond after 3 days of treatment should 
commence infliximab. In cases of persisting symptoms, it 
is recommended to be repeated the dose of infliximab after 
2 weeks (98,99). In a study, infliximab was administered to 
13% of patients treated with the combination of anti-PD1 
and anti-CTLA-4, compared with 9% of those who were 
on single-agent anti-CTLA-4 (137). Mycophenolate mofetil 
can also be considered in severe and refractory cases (97).

In persistent grade 2–4 immune-mediated colitis is 
recommended treatment with methylprednisolone at 
the dose of 1–2 mg/kg daily (138). Cases of microscopic 
colitis have also been described in patients treated with 
anti-PD-1, and effective therapy with budesonide 9 mg 
daily has been reported (136). However, this agent is no 
longer prophylactically recommended (139). Rechallenging 
immune checkpoint inhibitor after severe colitis can be 
considered in selected patients. Single-agent anti-PD-1 
may be a reasonable therapeutic maneuver when combined 
therapy is withheld due to severe colitis (140).

Severe or life-threatening colitis, along with signs and 
symptoms of perforation, ileus, toxic megacolon, bleeding 
or even fever are serious AEs. Although perforation of the 
colon occurs in less than <1% of cases, surgery could be 
required with a subtotal and not segmental colectomy, as 
anti-CTLA-4-mediated enterocolitis potentially affects the 
entire colon (141,142).

Treatment-mediated hepatic toxicity is classified 
in accordance to the pattern of liver transaminases 
increasement. This pattern is defined by either the elevation 
of ALT or alkaline phosphatase (ALP) alone above a 
specific threshold, or by the ratio of ALT to ALP levels {R 
value = [ALT/upper limit of normal (ULN)]/[ALP/ULN]}. 
The recognized patterns are the hepatocellular (ALT ≥5-
fold above ULN or R >5), the mixed (R >2 to <5), and the 
cholestatic (ALP ≥2-fold above ULN or R <2), respectively. 
It seems that immune checkpoint inhibitors-induced hepatic 
toxicity is heterogeneous (cytolytic, mixed or cholestatic). 
Nevertheless, the frequency of cholestasis is overall lower. 
Beyond the exact type of immunotherapy, liver toxicity 
depends on dose and baseline liver function. The Common 
Terminology Criteria for Adverse Events developed by the 
National Cancer Institute are used to grade toxicity. Within 
this context, acute hepatitis is considered severe, when 
INR is ≥1.5, and fulminant in case of concurrent impaired 

coagulation and hepatic encephalopathy. Technically, 
patients with grade 1 hepatotoxicity may continue treatment 
with immune checkpoint inhibitors, monitoring the liver 
biochemistry. For grade 2 AEs are recommended systemic 
treatment delays, identification of other causes of hepatitis, 
and oral prednisone (1 mg/kg daily) in persistent cases 
(143,144). In cases of severe hepatotoxicity, it is clearly 
indicated discontinuation of immunotherapy permanently, 
accompanied by high-dose intravenous glucocorticosteroids 
[1–2 mg/kg (143), or even 2–4 mg/kg daily (145)], followed 
by an oral steroid tapered over not less than a month. In 
refractory cases, the use of other suppressive agents such 
as mycophenolate mofetil (500–1,000 mg twice daily), 
tacrolimus or cyclophosphamide has been suggested, 
without strong evidence. Furthermore, budesonide may 
have a role in view of avoiding any kind of systemic toxicities 
induced by corticosteroids and immunosuppressive drugs 
(141,146). Finally, infliximab may impaire liver function and 
as such should be avoided in that clinical scenario.

The effectiveness of combining radiotherapy with 
immune checkpoint inhibitors has been shown in many 
models, but the question of the optimal timing of these 
treatment combinations remains unanswered. Interactions 
between myeloid cells and antitumor cytotoxic T cells 
within tumors are complex. The data available to date seem 
to justify either simultaneous or delayed administration 
of checkpoint inhibitors after radiotherapy so that newly 
recruited T cells can destroy tumor cells, both at the 
primary site and systemically after being presented with 
novel tumor antigens. The immune checkpoint inhibitors 
maintenance strategy paradigm increases exposure to 
effective therapies especially through a switching approach 
in patients who achieve disease control after front-line 
chemotherapy. The available biological and clinical data 
support this hypothesis and required further validation 
in phase III trials. The IMpower133 trial in the first-line 
treatment of extensive small-cell lung cancer demonstrated 
that the incorporation of atezolizumab to carboplatin and 
etoposide led to statistically significant prolongation of OS 
and PFS (73). 

Conclusions and future directions 

Immune-related AEs are fairly common but rarely severe. 
Beyond other toxicities, these drugs may cause inflammation 
of the luminal gastrointestinal tract and liver. The frequency 
and severity of the AEs are more profound in the combined 
strategies than in either single immune checkpoint inhibitor. 
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The toxicities may last for several months, which necessitate 
constant vigilance and prompt treatment. Until prospective 
clinical data will be available, evidence for the diagnosis and 
management of the immune checkpoint inhibitors mediated 
AEs is extrapolated from other inflammatory disorders. 
Τhe question of the long term consequences of the AEs will 
surely be debated in the near future, as immune checkpoint 
inhibitors can induce some durable remissions, and have 
now been incorporated in the adjuvant setting. A better 
understanding of the role of genetics and the microbiome 
in the development of AEs is of major importance, as 
there is a lack of predictive biomarkers of immunotherapy 
toxicity across multiple tumor types. Advanced computing 
technologies and bioinformatics-based models can also 
be innovated to identify drug interactions. The optimal 
selection of cancer patients more likely to benefit from 
immunotherapy represents an additional challenge. Timely 
initiation of steroids and other immunosuppressive agents 
has benefits that are several-fold.
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