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Abstract: Currently, the metabolomic research on water-holding capacity (WHC) of beef during
postmortem aging is still insufficient. In this paper, the kit method was adopted for energy metabolites
testing, the ultra-high-performance liquid chromatography (UHPLC) system was used for sample
separation, and the mass spectrometer was applied to collect the primary and secondary spectra
of the samples. The results showed that lactic acid reached saturation at day 2 postmortem, while
energy metabolites changed significantly within day 2 postmortem (p < 0.05). Based on these findings,
it was suggested that the energy metabolism qualities of the beef had already achieved a largely
stable state at around day 2 postmortem. Then, through metabolomic analysis, 25 compounds were
differentially abundant at days 0, 0.5, 1, and 2 during postmortem aging. Within the period of day
0–2 postmortem, the purine metabolism in beef was relatively active until 0.5 d postmortem, while
glycolysis metabolism remained active until day 2 postmortem. The functions of the identified
metabolites contribute to a more detailed molecular view of the processes behind WHC and are a
valuable resource for future investigations into the flavor of postmortem beef.

Keywords: beef; aging; metabolome; water-holding capacity; flavor

1. Introduction

Water-holding capacity (WHC) is the ability of meat to hold its native and added
moisture during fabrication, processing, and storage [1,2]. WHC can largely determine the
yield and rate of production. Among all metabolic pathways, glycolysis and its related
pathways are the ones with the greatest impact on the WHC of beef during postmortem
aging [3,4]. Mohammed et al. [5] conducted a proteomic investigation on beef quality
and concluded that the down-regulated expression of glycolysis-reactive protein led to a
decrease in anaerobic metabolism and lactic acid production, which in turn affected the pH
decline rate, final pH value, and meat color. Surinder et al. [6] further demonstrated that
in the absence of sufficient glycogen before slaughter, glycogen had a significant role in
the rise and fall of ultimate pH (pHu). Since the postmortem pH changes are inextricably
related to the lactic acid produced through the glycolysis metabolic pathway, while pH has
a strong effect on the WHC of the meat, an investigation into glycogenolysis and glycolysis
metabolic pathway is of great importance for understanding the water-holding mechanism
of postmortem beef [7,8]. Therefore, the metabolomic analysis of postmortem beef can help
realize a proper prediction of the WHC [9].

In addition to metabolic pathways producing metabolites that can directly determine
the WHC of postmortem beef, there are also metabolic pathways that can indirectly affect
the quality of postmortem beef. According to Poul et al.’s research [10] on the content
of muscle glycogen, to prevent the occurrence of dark, firm, and dry (DFD) meat, the
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minimum glycogen content required for the normal postmortem pH decline from 7.2 to 5.6
was about 53 mmol/kg muscle. Therefore, metabolic pathways that can lead to changes
in glycogen contents can also indirectly affect postmortem beef quality. As pointed out
by Frank et al. [8], the contents of glycogenolytic enzymes and ionsine monophosphate
(IMP)/adenosine monophosphate (AMP) enzymes in DFD beef were lower than those in
normal beef. In addition, glutamate and IMP have been identified as flavor-enhancing
agents for beef [11], which serve as precursors to the development of beef flavor substances.
Therefore, the IMP metabolic pathway has an equally important effect on the flavor varia-
tions of postmortem beef. The research findings of Jia et al. [12] demonstrated the key effect
of aerobic metabolism on the production of DFD beef. The up-regulated expression of many
aerobic metabolism proteins and their related pathways were attributed to the increased
adenosine triphosphate (ATP) production in the postmortem muscle [13]. The metabolic
pathway of amino acids can create an effect on other metabolic pathways by affecting the
synthesis of various enzymes including glycogenolysis and glycolysis pathways, and thus
indirectly affecting the WHC of postmortem meat [6,14,15].

Some of the metabolic pathways in postmortem beef would generate metabolites
that serve as the flavor precursors of the cooked meat, and purine metabolism is a major
pathway through which these metabolites are produced. In addition to indicators of purine
metabolites, the metabolism of amino acids also produces a variety of amino acids that are
related to the ultimate flavor of beef [16]. Among them, leucine, isoleucine, valine, tyrosine,
phenylalanine, hypoxanthine, and inosine are presumably associated with the bitterness of
meat, while phenylalanine, alanine, tyrosine, and lactic acid can lead to the development of
a sour taste in postmortem beef [11,17,18]. Apart from these, methionine, glutamate, and
IMP were also found to have associations with the tenderness of postmortem beef, while the
contents of creatine and carnosine can affect the flavor and juiciness of the beef [11,19–22].
Therefore, indicators acquired from the metabolomic analysis of postmortem beef through
the measurement of purine and amino acid metabolic pathways can be used to determine
the flavor of beef with postmortem aging.

In recent years, researchers have introduced metabolomics to the field of modern
meat science [23]. Metabolomics, another important branch of systems biology, is a new
science exploring metabolic processes [24]. Metabolomics explores the metabolic mecha-
nisms of a cell or biological system by analyzing all small molecule metabolites (molecular
weight < 1500 Da) before and after a specific interference with the use of high-throughput
detection technologies and multivariate data processing [25]. Located at the very end
of the biological information flow, metabolome can directly reflect the ultimate physio-
logical status of biological systems, and therefore is widely applied in various fields of
studies. Through the analysis of differential metabolites, researchers can understand the
specific metabolic mechanism of a certain substance in the biological system. The use
of metabolomics can help reveal some light on the nutrition metabolism mechanism of
beef and how the meat quality changes over time during postmortem aging [26]. This
research intends to apply untargeted metabolomics analysis to detect the metabolites in the
samples with the use of the ultra-high-performance liquid chromatography-quadrupole
time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique. This research reveals the
metabolic changes in beef during the postmortem aging process. The research results are of
great significance for the establishment and improvement of the theory of WHC and its
application in the meat production industry.

2. Results
2.1. Changes in the Quality Characteristics of Beef during Postmortem Aging

As shown in Table 1, the pH value of the Longissimus lumborum (LL) muscle fell to
5.45 at day 2 postmortem and then rose significantly to 5.55 at day 7 (p < 0.05), showing
a general pattern of falling first and then rising. The time of postmortem aging had a
significant effect on drip loss, which increased significantly from 2.19% to 4.1% in the LL
muscle within the period of 0–3 d postmortem (p < 0.05) and decreased significantly to



Metabolites 2022, 12, 242 3 of 14

3.42% at 7 d (p < 0.05). The result of cooking loss showed a similar trend during postmortem
aging. According to the analysis results, a significant decrease in the pH value of the meat
was observed due to the production of lactic acid through glycolysis. At 3 d postmortem,
along with the accumulation of lactic acid, the H+ concentration in the meat increased to
reach the isoelectric point of myosin, causing the pH value of the beef to rise again in the
later stage of aging. As a result, the drip and cooking loss in the LL muscle showed a
general trend of falling first and then rising (p < 0.05).

Table 1. Changes in quality characteristics of beef LL muscle during postmortem aging at 4 ◦C (d 0,
0.5, 1, 2, 3, 5, and 7).

Traits 0 d 0.5 d 1 d 2 d 3 d 5 d 7 d

pH 5.75 ± 0.01 a 5.71 ± 0.02 b 5.65 ± 0.03 c 5.45 ± 0.03 e 5.46 ± 0.03 e 5.49 ± 0.01 e 5.55 ± 0.02 d

Drip loss (%) 2.19 ± 0.06 f 2.31 ± 0.04 g 2.49 ± 0.08 e 2.86 ± 0.03 d 4.1 ± 0.03 a 3.91 ± 0.02 b 3.42 ± 0.03 c

Cooking loss (%) 19.15 ± 0.63 d 19.29 ± 0.37 d 19.45 ± 0.82 d 22.21 ± 0.93 bc 25.37 ± 1.18 a 23.02 ± 0.84 b 21.27 ± 0.55 c

a–g Means without common superscripts in a row within are different (p < 0.05).

2.2. Changes in Energy Metabolism of Beef during Postmortem Aging

Table 2 shows the changes in the content of muscle glycogen, free glucose, and lactic
acid of beef LL muscle during postmortem aging. From Table 2, during the aging process,
the content of glycogen in beef dropped rapidly, while the content of lactic acid increased
drastically until 2 d postmortem, then the rate of increase started to slow down at day 2 post-
mortem and gradually stabilized. During the process of postmortem aging, the content of
glycogen has a direct effect on the content of free glucose by breaking down the free glucose
into lactic acid through glycolysis. Because of this, the content of free glucose was tracked
and recorded to better understand the differences in glycolysis. Meanwhile, the content
of free glucose in the muscle declined significantly within day 2 (p < 0.05). According to
the results, changes in the energy metabolism were indeed observed during the process
of postmortem aging: the glycogen was broken down into lactic acid through glycolysis,
which in turn affected the pH value of the beef. Postmortem energy metabolism might
influence meat quality by affecting the glycolysis process, which was mainly concentrated
at the early stage of postmortem aging (within days 0–2).

Table 2. Changes in energy metabolism of beef LL muscle during postmortem aging at 4 ◦C (d 0, 0.5,
1, 2, 3, 5, and 7).

Traits 0 d 0.5 d 1 d 2 d 3 d 5 d 7 d

Glycogen
(mg·g−1) 5.58 ± 0.09 a 4.63 ± 0.07 b 3.72 ± 0.07 c 2.19 ± 0.1 d 2.03 ± 0.08 de 1.91 ± 0.09 e 1.89 ± 0.12 e

Lactic acid
(ng·mL−1) 100.67 ± 11.68 c 118.33 ± 12.50 c 172 ± 11.00 b 231.67 ± 12.10 a 231 ± 12.77 a 225 ± 10.54 a 217 ± 15.39 a

Free glucose
(mmol·L−1) 9.39 ± 0.07 a 8.33 ± 0.07 b 7.90 ± 0.14 c 6.48 ± 0.1 e 6.39 ± 0.15 e 6.31 ± 0.13 e 6.26 ± 0.11 e

ATP (µmol·g−1) 3.53 ± 0.08 a 2.72 ± 0.09 b 1.98 ± 0.11 c 0.77 ± 0.12 d 0.66 ± 0.12 d 0.57 ± 0.11 d 0.51 ± 0.14 d

ADP (µmol·g−1) 4.52 ± 0.1 a 2.60 ± 0.09 b 1.36 ± 0.08 c 0.49 ± 0.12 d 0.36 ± 0.11 d 0.30 ± 0.10 d 0.29 ± 0.10 d

AMP (µmol·g−1) 0.3 ± 0.03 a 0.20 ± 0.04 b 0.21 ± 0.03 b 0.19 ± 0.03 b 0.15 ± 0.04 b 0.14 ± 0.04 b 0.14 ± 0.01 b

a–e Means without common superscripts in a row within are different (p < 0.05).

Table 2 shows the changes in the energy levels of ATP, adenosine diphosphate (ADP),
and AMP in the LL muscle of beef during postmortem aging. According to Table 2, with the
passage of time and as the ATP gradually decreased, the muscle tissues began to fall apart
due to the lack of energy control. At this point, the biological system was in a stress status
with strengthened metabolism and increased consumption of ATP. The ATP and ADP levels
dropped rapidly, while the AMP level declined slowly. As shown in Table 2, the changes in
the ATP, ADP, and AMP levels were mainly concentrated in the early stage of postmortem
aging (within days 0–2). It was observed that the process of energy metabolism was mainly
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concentrated in the early stage of postmortem aging (within days 0–2). Thus, these 4 time
points were selected, namely days 0, 0.5, 1, and 2, for a follow-up metabolome analysis.

2.3. Principal Component Analysis (PCA)

As shown in Figure S1A,B, a visual inspection was performed on the total ion current
chromatograms of all samples. According to the results, the response intensity and retention
time of the chromatographic peaks had largely overlapped, indicating relatively small
variations caused by instrument errors during the experiment process. In Figure S1, the
horizontal coordinate represents the retention time of each chromatographic peak, and
the vertical coordinate represents the peak’s intensity value. The instrumental analysis
of all samples was with strong signals, large peak capacity, and high repeatability of
retention time, which indicated that all the samples collected were reliable and valid. In
fact, we used different methods to evaluate the stability of the instrument. The results
all showed that the system is stable, which is the premise of this study. Among these
methods, the most intuitive is quality control (QC) testing (Figure S1). In addition, we
also measure the correlation of QC samples and the relative standard deviation (RSD) of
QC samples. Pearson correlation analysis was performed on QC samples, as shown in
Figure S2. A general correlation coefficient greater than 0.9 indicates a good correlation.
The experimental results showed that the correlation coefficients between QC samples were
all above 0.9, indicating good repeatability of the experiment. In Figure S3, the smaller the
RSD of the ion peak abundance of QC samples, the better the stability of the instrument.
RSD is an important indicator of data quality. In this experiment, the Peak number with an
RSD ≤ 30% in QC samples accounted for more than 80% of the total Peak number in QC
samples, as shown in Figure S3. This indicates that the instrumental analysis system has
good stability and that the data can be used for subsequent analysis.

Figure 1 shows the result of PCA performed on all the experimental samples. Almost
all QC samples were clustered closely, indicating high repeatability of the experiment [27].
Since the dispersion degree of several samples, namely 0 d-8, 0.5 d-6, 1 d-7, 2 d-9, these four
samples were deleted. A total of 32 samples (8 samples from day 0, 0.5, 1, and 2, respectively)
were conducted for subsequent identification. The degree of dispersion between these
sample groups reflects the metabolic differences between the sample groups. It can be
observed from the plot that the degree of dispersion between the sample groups was
relatively high and the samples were adjacent within the group, which indicates relatively
large metabolic differences between the sample groups. Figure 2 shows orthogonal partial
least squares discriminant analysis (OPLS-DA) analysis. OPLS-DA can filter out noise
irrelevant to classification information and improve the analytical ability and validity of the
model. In the OPLS-DA model, the values of R2 and Q2 were used to assess the goodness
of fit and predictive capacity. The closer to 1 they are, the more stable and reliable the
model is. R2Y represents the rate of model interpretation, and Q2Y represents the model
predictive ability. We also performed a permutation test to evaluate the goodness of fit of
the OPLS-DA model. The model is deemed valid when all Q2 and R2 values to the left are
lower than the original points to the right.

2.4. Identification of Differential Metabolites during Postmortem Aging
2.4.1. Identification of Differential Metabolites

The differential metabolites in the LL muscle during postmortem aging at days 0,
0.5, 1, and 2 were identified and screened out. Ions from both positive and negative
modes were combined for further analyses. 378 metabolites were identified, with 242 and
202 metabolites identified in positive and negative ion modes, respectively. Generally,
metabolites with variable importance in projection (VIP) > 1 were considered to have a
significant contribution to model interpretation. In this analysis, “orthogonal partial least
squares discriminant analysis (OPLS-DA) VIP > 1” and “p < 0.05” were also used as the
screening criteria for significantly differential metabolites. Thus, the differential metabolites
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in the LL muscle during postmortem aging at days 0, 0.5, 1, and 2 were obtained and the
significantly differential metabolites are listed in Table 3.
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Table 3. Identification of differential metabolites in LL muscle during postmortem aging.

Name Accession Number Adduct m/z
Fold Change

0.5/0 d 1/0 d 2/0 d

Positive ion mode
S-Methyl-5’-thioadenosine M298T94 (M + H)+ 298.0968 3.77 4.70 3.69

L-Palmitoylcarnitine M400T164 (M + H)+ 400.3411 0.29 0.10 0.08
1-Palmitoyl-sn-glycero-

3-phosphocholine M496T162 (M + H)+ 496.3374 1.50 2.31 1.43

2-Keto-D-gluconic acid M159T220 (M + H − 2H2O)+ 159.0265 2.71 2.60 2.18
Hypoxanthine M137T185 (M + H)+ 137.0456 3.97 3.96 3.26
Larixinic acid M127T467 (M + H)+ 127.0382 1.40 1.63 1.94

Allopurinol riboside M269T211 (M + H) + 269.0875 3.66 4.24 3.25
1-Oleoyl-sn-glycero-
3-phosphocholine M522T148 (M + H)+ 522.3536 1.43 2.65 1.52

D-Mannose-6-phosphate M261T494 (M + H)+ 261.0360 1.50 1.48 2.12
Adenosine M250T91 (M + H − H2O)+ 250.0923 4.65 3.33 2.23

Negative ion mode
Xanthine M151T213_2 (M − H)− 151.0262 4.19 4.41 3.63

Guanosine 5’-monophosphate M362T455 (M − H)− 362.0479 0.70 0.79 0.72
S-Methyl-5’-thioadenosine M296T91 (M − H)− 296.0794 3.78 3.88 4.58

Uric acid M167T193 (M − H)− 167.0198 4.95 4.69 4.27
Hypoxanthine M135T191_2 (M − H)− 135.0309 3.03 3.06 2.84

D-Sorbitol M181T285 (M − H)− 181.0710 2.59 3.08 3.77
Glyceric acid M105T296 (M − H)− 105.0188 2.43 12.85 6.99
L-Arabinose M149T150 (M − H)− 149.0445 1.95 2.68 2.37

Hydroxyisocaproic acid M131T133 (M − H)− 131.0703 2.46 2.13 2.23
Arachidonic acid M303T38 (M − H)− 303.2318 1.92 2.70 2.29

Urocanic acid M154T266 (M + NH4 − 2H)− 154.0611 0.66 0.58 0.54
Fructose 1-phosphate M519T448 (2M − H)− 519.0505 1.73 1.95 2.74

11(Z),14(Z)-Eicosadienoic acid M307T38 (M − H)− 307.2615 1.73 1.90 2.21
7Z, 10Z, 13Z, 16Z,

19Z-Docosapentaenoic acid M329T38 (M − H)− 329.2466 1.58 2.29 1.61

D-Mannose 1-phosphate M259T467 (M − H)− 259.0219 1.41 0.70 1.74

Fold change means the ratio of changes in metabolite abundance between 0.5 and 0 d, 1 and 0 d, and 2 and
0 d, respectively.

In this research, at days 0.5, 1, and 2 during postmortem aging, 15, 27, and 25 differen-
tial metabolites were obtained in the positive ion mode compared with 0 d, while 27, 36,
and 34 differential metabolites were obtained in the negative ion mode. The intersection
of differential metabolites between groups day 0.5/0, day 1/0, and day 2/0 was taken in
positive and negative ion modes, respectively. By comparing the differential metabolites
at 0.5 and 0 d, 1 and 0 d, and 2 and 0 d, 10 and 15 intersecting metabolites were obtained
in positive and negative ion modes, respectively (Table 3). Thus, a total of 25 differential
metabolites were obtained. These metabolites maintained large fold changes throughout
the early stage of postmortem aging (day 0–2). The subsequent analysis was centered on
these 25 differential metabolites.

2.4.2. Hierarchical Clustering Analysis

Figure 3 shows the result of hierarchical clustering analysis for significantly differential
metabolites (VIP > 1, p < 0.05). Metabolites within the same cluster have similar expression
patterns. These metabolites are likely to have similar functions, participate in the same
metabolic processes, or share the same cellular pathways. In Figure 3, each row repre-
sents a differential metabolite (i.e., the vertical coordinate represents the metabolites with
significantly differential expression), and each column represents an individual sample
group (i.e., the horizontal coordinate represents the sample information). In Figure 2, −2 to
2 represented the color cards, which were automatically generated according to the amount
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of expression. If the expression level of metabolite is greater, it will be red. Otherwise, it is
blue. The shades of the color visually indicate the degree of increase/decrease.
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As shown in Table 3 and Figure 3, among the differential metabolites, the expression
of L-palmitoylcarnitine, guanosine-5’-monophosphate, and urocanic acid decreased at days
0.5, 1, and 2 compared to day 0 during postmortem aging (p < 0.05). All the other differential
metabolites saw an increase of varying degrees during postmortem aging. Among them,
the expression of S-methyl-5’-thioadenosine, hypoxanthine, allopurinol riboside, xanthine,
and uric acid increased by about 4 times.

2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis

According to the KEGG enrichment analysis, the 25 differential metabolites were signif-
icantly enriched in 18 pathways. The differential metabolites were involved in a wide range
of biological processes, including lysosome (bta04142), fructose and mannose metabolism
(bta00051), pentose phosphate pathway (bta00030), purine metabolism (bta00230) and
amino sugar, and nucleotide sugar metabolism (bta00520) (Figure 4). These processes may
have affected the biological processes in which muscle proteins were involved and in turn
affected the WHC of the muscle.
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analysis. The darker the color, the smaller the p-value, and the more statistically significant.

3. Discussion

Due to the termination of the tricarboxylic acid cycle in postmortem muscles and the
depletion of the muscular store of creatine phosphate, the supply of ATP, which relies
solely on the glycolysis system, would become insufficient [10]. At this point, actin and
myosin combine to form actomyosin. As actomyosin starts to accumulate, the muscle
gradually stiffens and the WHC of the muscle declines. When glycogen is depleted or
the accumulation of acid passivates the glycolytic enzyme system in the carbohydrate
metabolism pathways, the glycolysis process can no longer provide energy for the biological
system [28]. As a result, actomyosin will be quickly generated in large amounts, leading to
a drastic decline in the WHC of the meat [2].

The degree of glycolysis and the accumulation of lactic acid both peri-mortem and
postmortem can largely determine the ultimate pH value of the meat. As an important
indicator for assessing meat quality, pH value is related to the tenderness, WHC, and color
of the meat [12]. Along with a series of complex biochemical reactions taking place in the
postmortem muscles, the pH value would go through a series of changes with the passage
of time. The aging process of the meat would be negatively affected when the pH value is
either too high or too low. Meanwhile, the metabolic processes of certain carbohydrates,
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e.g., mannose, can affect the glycosylation process of specific proteins and change the ability
of carrier proteins in the cell membrane. The pentose phosphate pathway can generate
substantial amounts of nicotinamide adenine dinucleotide phosphate-reduced (NADPH)
and provide raw materials for other metabolic pathways, thus exerting an indirect effect on
the WHC of the muscle [29]. As shown by the experiment results, the content of lactic acid
in beef reached a near-saturation state at day 2 postmortem, while ATP, ADP, and AMP
contents in the ATP metabolic pathway decreased drastically within day 0–2 postmortem
and then stabilized after that, which largely coincided with the accumulation of lactic
acid within the same period. Provided a proper postmortem glycolysis process, the meat
product can be kept in a low-acid status with a stable pH value. Depending on the muscle
type, part, and age of the meat, the pH value of the meat can be kept within the range
of 5.4–6.2. Under such circumstances, the isoelectric focusing of muscle proteins can be
avoided, allowing some distance between the muscle proteins. As a result, higher WHC
can be achieved under the effect of the capillary phenomenon [30].

During the process of postmortem aging, amino acid metabolism also has an indirect
impact on multiple metabolic pathways through the generation of various enzymes and
histones to maintain the life activities of the muscle as peri-mortem. This would contribute
to the postmortem aging of the muscle and improve its WHC [29]. The postmortem
metabolism of amino acids can directly change the muscle structure through biochemical
activities, such as the protein degradation of muscle by lysosomes. During postmortem
aging, certain critical proteins would be degraded by cathepsin and calpain, which damages
the original muscle structure. In the meantime, the muscle structure would become loose
and more porous, which increases the WHC of the muscle [31].

Purines refer to a group of substances that exist in various animal bodies, mainly in
the form of purine nucleotides [32]. Purines are involved in the energy supply, metabolic
regulation, and composition of coenzymes in biological systems. Purine metabolism can
mainly be divided into anabolism and catabolism [33]. During postmortem aging, xanthine
is synthesized from guanine through guanine deaminase, and hypoxanthine is produced
through xanthine oxidase [34]. The measured content of xanthine can indicate the freshness
of the meat, and the end product of purine metabolism is uric acid [35]. As can be observed,
the content of uric acid in beef reached its maximum level at day 0.5 postmortem, which
then remained unchanged through the long period after the peak. In addition, the contents
of hypoxanthine, allopurinol riboside, and xanthine also reached their highest point by
almost the same time at day 0.5 postmortem. This indicated that purine metabolism was
highly active within the period of 0–0.5 d postmortem, which then tended to stabilize in
the later stage of aging. However, the development of meat flavor is closely related to the
presence of flavor precursors, which include free fatty acids, carbohydrates, nucleotides,
and free amino acids [36]. In addition to purine metabolism, which was highly active
within 0–0.5 d postmortem, the variations of free fatty acids, including arachidonic acid,
11(Z), 14(Z)-eicosatetraenoic acid, and 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid, also
stabilized within day 0–2 postmortem. Thus, it was inferred that the flavor of beef with
postmortem aging had largely stabilized in the early days of storage.

4. Materials and Methods
4.1. Animals and Sampling

Nine crossbred offspring of Luxi cattle and Simmental cattle (weight 356–390 kg) were
of the same age (18–24 months old) and fed on the same diet in the same batch. The animals
were kept off feed before slaughtering but given free access to water. Animals were stunned
by captive bolt pistols, and their blood was drained. The LL muscle (the anterior 12th rib to
the last lumbar vertebrae) was randomly extracted from a commercial abattoir (Yangxin
Yiliyuan Halal Meat Co., Ltd., Binzhou City, Shandong Province, China). Samples were
washed with phosphate-buffered saline (PBS) to remove any blood and contaminants on the
surface. The experiment was undertaken following the guidelines outlined by the Animal
Ethics Committee at Shandong Agricultural University (SDAUA-2021-095, 20210315).
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4.2. pH

pH was recorded from 45 min (0 d) up to 7 d during postmortem aging with a
portable pH meter (SenvenGo, Mettler-Toledo, Switzerland), which was adjusted for each
measurement with standard buffer before being inserted into muscles [2].

4.3. Drip Loss

A 50-g sample of meat (10 cm × 5 cm × 1 cm) cut perpendicularly to muscle fibers was
taken immediately during postmortem aging, suspended in a polyamide/polyethylene
bag (55.86 cm3/m2/24 h oxygen transmission rate, 4.40 g/m2/24 h moisture transmission
rate) at 4 ◦C and labeled as day 0. After 48 h, the sample was taken out of the bag, dried
on absorbent paper, and reweighed. The percent change in weight over the subsequent
48 h was taken as the drip loss, as described by Honikel [37]. Subsequently, samples were
taken every 24 h and marked as days 1, 2, 3, 5, and 7, respectively. Samples taken at 12 h
postmortem were labeled as day 0.5.

4.4. Cooking Loss

A 50-g sample of meat (10 cm × 5 cm × 1 cm) cut perpendicularly to muscle fibers
was taken immediately during postmortem aging, wrapped in an aluminum foil bag and
labeled as day 0. Samples were cooked in preheated water until the core temperature
reached 70 ◦C [38]. Sample internal temperature was monitored with a data logger and a
thermocouple probe inserted horizontally at the middle of the steak. Cool down to room
temperature naturally. The sample was taken out of the bag, dried on an absorbent sheet,
and reweighed. Cooking loss was the difference in weight between the precooked weight
and blotted dry post-cooked weight, and it was expressed as a percentage of the precooked
weight [39]. The sampling time of cooking loss at days 0.5, 1, 2, 3, 5, and 7 was the same as
that of drip loss.

4.5. Energy Metabolism Indexes

The contents of muscle glycogen, lactic acid, free glucose, ATP, ADP, and AMP were
determined by the corresponding reagent kits produced by Nanjing Jiancheng Reagent Co.,
Ltd. (Nanjing, China). The specific operation and calculation of test results were performed
according to the instructions of the reagent kits.

4.6. Extraction of Metabolites

A quantitative analysis of metabolites in the Longissimus lumborum was conducted
at day 0, 0.5 (12 h), 1, and 2 during postmortem aging under a temperature of 0–4 ◦C.
The samples were taken out and treated with liquid nitrogen grinding. Then, 100 mg
of each sample were weighed and placed into 200 µL of pre-cooled water with 800 µL
of methanol/acetonitrile (1:1) [40]. The solution was mixed well and sonicated in an ice
bath for 60 min, precipitated at −20 ◦C for 1 h, and then centrifuged at 16,000× g for
20 min at 4 ◦C. The supernatant was extracted and evaporated in a high-speed vacuum
centrifuge. During the mass spectrometry, 100 µL of acetonitrile-water solution (1:1) was
added and centrifuged at 14,000× g for 15 min at 4 ◦C, and the supernatant was extracted
for analysis [41].

4.7. UHPLC-QTOF-MS Analysis

The samples were separated on a HILIC column by the Agilent 1290 Infinity LC UH-
PLC system, as previously reported [42]. The temperature of the column was kept at 25 ◦C,
the flow rate was 0.5 mL/min, and the injection volume was 2 µL. The mobile phase con-
sisted of (A) water + 25 mM ammonium acetate + 25 mM ammonia; and (B) acetonitrile. The
gradient elution program was set as follows: 0–0.5 min, 95% (B); 0.5–0.7 min, (B) changed
linearly from 95% to 65%; 7–8 min, (B) changed linearly from 65% to 40%; 8–9 min, (B) was
maintained at 40%; 9–9.1 min, (B) changed linearly from 40% to 95%; 9.1–12 min, (B) was
maintained at 95%. Throughout the analysis process, the samples were placed in a 4 ◦C
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auto-sampler. The AB Triple TOF 6600 mass spectrometer was used to collect the primary
and secondary spectra of the samples [40]. After this, the differential metabolites were
identified and screened out with the help of the database. The result was used to exam-
ine the changes in the types and abundance of metabolites in the Longissimus lumborum
during postmortem aging under the storage condition of 0–4 ◦C. Then, the metabolites
were mapped to the KEGG pathway database to obtain the enrichment results of their
metabolic pathways. The change patterns of the metabolites were examined at day 0,
0.5, 1, and 2 during postmortem aging, and the metabolic pathways related to the WHC
were analyzed.

4.8. Statistical Analysis

Statistical significance was assessed with analysis of variance (ANOVA) using the
general linear model (GLM) of SPSS 20.0 (SPSS Inc., Chicago, IL, USA). Experiments
adopted a randomized block design. The differences between means were detected using
the Student-Newman-Keuls (SNK) test at the 5% significance (p < 0.05) level. All the results
were represented as the mean value ± standard error. The raw data of mass spectra were
converted into the mzML format using ProteoWizard (Version 3.0, Palo Alto, CA, USA).
For retention time shift correction and peak analysis (including identification, extraction,
integration, and alignment), the XCMS online software (https://xcmsonline.scripps.edu/
landing_page.php?pgcontent=mainPage, accessed on 23 January 2022) was used. OSI-
SMMS (version 1.0) was used for substance identification with the self-built database.
Chroma TOF4.3X (LECO Corporation, St. Joseph, MI, USA) and LECO-Fiehn Rtx5 database
(LECO Corporation, St. Joseph, MI, USA) were used for data processing. To further explore
the impact of differentially expressed metabolites, enrichment analysis was performed.
The KEGG database was used for functional annotation for differential metabolites. The
biological pathways of differential metabolites and their interrelations were analyzed using
the KEGG database and KEGG orthology (KO) classification system. The KEGG pathway
enrichment analyses were applied based on Fisher’s exact test, considering the whole
metabolites of each pathway as a background data set.

5. Conclusions

This research probed into the activity differences of various energy traits within the
period of 0–7 d postmortem, and applied metabolomic analyses to explain the variations
in the WHC of beef. Based on the changes of metabolites in beef within the period of day
0–2 postmortem aging, the variations of metabolites in the LL muscle were examined in
detail. At days 0.5, 1, and 2 compared with days 0, 15, 27, and 25 differential metabolites
were obtained in the positive ion mode, while 27, 36, and 34 differential metabolites were
obtained in the negative ion mode, respectively. The content of lactic acid in beef reached
a near-saturation state at day 2 postmortem, while at the same time the decrease of ATP
content started to slow down, indicating an almost complete stop of glycolysis metabolism
at day 2 postmortem. On the other hand, purine metabolism peaked at 0.5 d postmortem,
while no obvious changes were observed in the intermediate metabolites, such as xanthine
and hypoxanthine, or the final metabolite uric acid after 0.5 d postmortem. According to
the changes in the differential metabolites above, we can use them to predict the flavor
and WHC of beef. We can also explain the improvement of flavor and other meat quality
in beef during postmortem aging. Within day 2 postmortem, intermediate metabolites
produced by purine metabolism can provide good flavor for postmortem beef. Meanwhile,
with the glycolysis metabolism, the quality of postmortem beef is changing. Since this
paper is only concerned with glycolytic metabolism, amino acid metabolism and purine
metabolism in postmortem beef, further research can be performed on the role of more
metabolic pathways in postmortem beef quality.

https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
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