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Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and
purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent
stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the
ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this
precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding
the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and
cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription
factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in
vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

1. The Central Role of Ventral Midbrain
Dopamine Neurons in Parkinson Disease

Parkinson disease is characterized by the progressive degen-
eration of dopamine (DA) neurons in the pars compacta of
the substantia nigra (SNc) of the ventral midbrain (vm).
Neuronal loss takes place also in other brainstem nuclei,
such as the locus coeruleus and the dorsal motor nucleus of
the vagus nerve [1]. In the adult human brain, these nuclei
display a dark pigmentation due to the accumulation of
neuromelanin that is lost in Parkinson disease. In addition,
Lewy bodies, which are proteinaceous aggregates containing
hyperphosphorylated alpha-synuclein [2], ubiquitin, and
p62, among other proteins, are typically found in the brain-
stem of these patients. These aggregates appear also in other
brain regions and outside the brain, for example, in the
enteric plexus [3]. Although Lewy bodies are regarded as
a pathological hallmark of Parkinson disease, there is no
direct correlation between the presence of Lewy bodies
and neuronal dysfunction [4]. Indeed, inherited forms of
Parkinson disease display diverse brain pathology and often

lack Lewy bodies [5–7] whilst, on the other hand, Lewy
bodies can be found in asymptomatic individuals. Common
to inherited and sporadic forms of the disease is the loss of
DA neurons in the SNc. Neuronal loss is more pronounced
in the ventrolateral subpopulation of vmDA neurons that
project to the sensorimotor regions of the striatum [8], the
mesostriatal group, and is accompanied by a corresponding
somatotopic decrease of DA in these regions.

In order to generate in vitro an adequate cell type for
replacement therapy, it is important to characterize the
identity and properties of vmDA neurons. All DA neurons
express tyrosine hydroxylase (TH), the enzyme that catalyzes
the initial, rate-limiting step in the biosynthesis of catechola-
mines (including DA, noradrenaline, and adrenaline). The
most vulnerable neurons, located in the ventrolateral SNc,
are often large and heavily melanized and express high levels
of the DA receptor D2 (DRD2) and the DA transporter
protein (DAT, SLC6A3). In addition, these neurons have
relatively low levels of TH and the vesicular monoamine
transporter-2 (VMAT2, SLC18) [9], and the majority do not
express calbindin-D28k [10]. Some of these features have
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been correlated with an enhanced susceptibility to oxidative
stress and aging [11]. For instance, their high DA turnover
combined with a lower intracellular storage capacity than the
less vulnerable DA neurons located in the dorsal tier of the
SNc, retrorubral field and ventral tegmental area (VTA) can
contribute to an earlier and more severe loss of mesostriatal
neurons. A greater dependency on calcium channels than the
more resilient VTA neurons has also been implicated in the
differential vulnerability of these vmDA subpopulations [12].

The mesostriatal vmDA subpopulation is often referred
to as the A9 group, following the nomenclature of aldehyde
fluorescent cell populations (i.e., containing monoamines)
identified using the Falck-Hillarp technique, in the rodent
brain [13]. However, the delineation of the equivalent human
DA subpopulation is frequently inexact, because some
subpopulations of the VTA (A10), mainly the parabrachial
pigmented nucleus (PBP), are displaced dorsally and laterally
[14]. The accuracy of the markers used to define specific
vmDA subpopulations is especially relevant for neurons
derived and grown in vitro, whose identification relies solely
on the expression of those markers and electrophysiological
features.

Expression of the G-protein inward rectifying potassium
channel subunit 2 (Girk2, Kir3.2) is high in vmDA neurons,
in which Girk channels are formed by homotetramers (i.e.,
four type-2 subunits), and has been considered a specific
marker of vulnerable mesostriatal neurons [9, 15–17].
However, a detailed study has recently reported a similar
expression level of Girk2 in the ventral and dorsal tiers of the
human SNc [14], with 77% of SNc and 55% of VTA (62% in
the PBP) neurons showing a strong Girk2 immunoreactivity.
The proportion of TH neurons showing colocalization with
Girk2 was similar in the mouse brain [18], where the
majority of SNc and VTA neurons showed Girk2 expression
[14]. At the ultrastructural level, the presence of this potas-
sium channel had been previously described in all vmDA
cells except in the interfascicular nucleus of the VTA [19].
Therefore, the most reliable criterion to separate mesostriatal
(A9) and mesocorticolimbic (A10) neurons in vitro is not the
presence of Girk2 but the absence of calbindin-D28k in the
mesostriatal neurons [10, 14, 20, 21]. Notwithstanding, it
should be noted that around 12% (20% in the mouse) of DA
neurons in the pars medialis of SNc also coexpress calbindin-
D28k [14].

Transplantation of fetal vm cells can restore function in
Parkinson patients [22–24]. Because the symptoms appear
late in the course of the disease, when a vast majority of the
vmDA neurons are already lost, cell replacement approaches
constitute an attractive alternative to drug replacement.
However, clinical trials have shown a rather modest clinical
success and, in some cases, worrying adverse effects [23, 25].
Both the limited benefit and the presence of graft-induced
dyskinesias have been attributed to a suboptimal cellular
composition of the fetal grafts, although other biological
and technical factors are also important. The cells obtained
from the fetal vm are heterogeneous; only ∼5% are DA
neurons [26, 27]. Serotonin neurons from the pontine raphe
are usually included in the dissection area [28]. Thus, a
substantial number of serotonin neurons as well as GABA

neurons and glial cells are present in the fetal vmDA grafts
[29]. At present, it is not known whether the presence of
different neuronal and glial cell populations in the fetal
grafts is detrimental, in terms of functional integration,
or beneficial, for example, by providing trophic support
to vmDA neurons (see Section 3.3). The presence of sero-
tonin neurons in fetal grafts has been correlated with the
development of graft-induced dyskinesias both in patients
[30] and in experimental models [28, 31, 32]. Serotonin
neurons have the capacity to decarboxylate L-dopa and store
DA but cannot regulate DA release and reuptake, because
they lack DRD2 autoreceptors and DAT. This imbalance has
been proposed to underlie the appearance of graft-induced
dyskinesia, based on PET studies and on the pharmacological
improvement with buspirone (a 5HT1A partial agonist) [30].
However, the evidence supporting this mechanism in the
transplanted patients has been questioned, as dyskinesias
should then worsen with L-DOPA, which is not the case [33].
In addition, there is no direct correlation between serotonin
hyperinnervation and the severity of the dyskinesias [33].
Finally, buspirone can also function as a partial antagonist on
the DRD2 receptors in a model of graft-induced dyskinesia
[34] and improve L-DOPA-induced dyskinesia very effi-
ciently in nongrafted animal models [35, 36]. The proportion
of mesoprefrontal and mesocorticolimbic DA subpopula-
tions in the grafts has not been examined in detail but
the presence of calbindin-D28k positive neurons does not
appear to cause adverse effects (even if the mesoprefrontal
DA neurons do not express DRD2 or DAT). However, these
neurons would not contribute to the synaptic reconstruction
of the dorsal striatum [37]. Synapses are highly specialized
contacts between specific partners and require bidirectional
recognition and communication [38]. Thus, only those cells
that display a specific vmDA mesostriatal phenotype will be
able to restore the physiological synaptic connections with
the medium-size striatal spiny neurons and reestablish a
regulated DA transmission leading to functional recovery.
The limited availability of fetal tissue and ethical concerns
regarding its use has led to an active search for alternative cell
sources [39], and hopes are set on pluripotent stem cells to
obtain human vmDA neurons in sufficient amounts and
purity. Both for pluripotent stem cells and for reprogrammed
cells, acquiring and maintaining the right identity will be a
key determinant in the success of future clinical applications.

2. Dopamine Neurons: Lineage Specification
and Cell Identity

For lineage specification, developmentally regulated mor-
phogens activate transcriptional networks. Transcription fac-
tors control, in turn, the expression of receptors and down-
stream intracellular cascades that are necessary to transduce
the extrinsic cues. Coordinated temporal and spatial integra-
tion of extrinsic signals and intrinsic determinants is thus
required for proper specification of cell identity (Figure 1).

2.1. Extrinsic Signals. VmDA neurons are generated from
ventral midline floor plate (FP) neuroepithelial cells of a
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Figure 1: Cell identity is represented as the resultant of the
integration of signals that the receptive, undifferentiated cell is
exposed to, in a temporal and spatial coordinated fashion.

nonneurogenic character [40, 41]. The FP is a specialized
glial structure located in the most ventral midline of the
neural tube from the midbrain to the tail region [42]. It
controls neuronal subtype specification along the dorso-
ventral (D-V) axis through secretion of the morphogen sonic
hedgehog (Shh) [43]. The function of the FP as a ventral
organizer of neuronal development is conserved from fish
to mammals [44, 45]. The capacity of FP cells to generate
neurons is spatially restricted along the rostrocaudal axis
of the brain. FP cells in the midbrain acquire neuronal
properties characteristic of mDA neurons, while FP cells
located caudally to the mesencephalon normally do not give
rise to neurons [41].

The isthmic organizer, which forms a boundary between
the midbrain and the hindbrain, controls patterning of the
midbrain and the anterior hindbrain. It is essential for the
specification and normal development of DA neurons and
serotonin neurons in the ventral midbrain and hindbrain,
respectively [46]. Several signaling factors, including Shh,
fibroblast growth factor (Fgf) 8, Fgf17, Fgf18, and Wnt1,
are expressed by and around the isthmic organizer and are
involved in this process (Figure 2). The combination of Shh
and Fgf8 is necessary for the induction of DA neurons in the
rostral forebrain and the lateral midbrain [47, 48]. However,
Shh is no longer required after E10.5 in the mouse. At this
developmental stage, Foxa2, a forkhead transcription factor,
induced by Shh, is essential for the generation of vmDA
neurons [49–51].

During early development (starting at E9), Fgf8 is
expressed by the isthmic organizer [52, 53] and can mimic
the isthmic activity [54, 55]. Fgfs participate in the patterning
of the midbrain and the induction of the cerebellum in
rhombomere 1. Cerebellar development is induced by strong
Fgf signaling mediated by Fgf8b through binding to its tyro-
sine kinase coupled receptor Fgfr1 and activation of the Ras-
extracellular signal-regulated kinase (ERK) pathway. On the

other hand, the induction of midbrain is mediated by a lower
intensity of signaling, transduced by Fgf8a, Fgf17, and Fgf18
[56–58]. Inactivation of Fgf8 results in loss of midbrain and
cerebellar tissues [59, 60]. The deletion of these anatomical
structures appears to be due mainly to ectopic cell death,
presumably caused by the dysregulation of a transcriptional
network including Wnt1, Fgf17, Fgf18, Fgf8, and Gbx2 [61].
Furthermore, Fgf8 appears to maintain normal development
of the midbrain and hindbrain by regulating transcription
factors such as engrailed-1 (En1), engrailed-2 (En2), and
Pax5 [62]. In addition to its function in vmDA neuron
specification, Fgf8 directs the rostral growth of axons from
vmDA neurons by inducing the repulsion factor semaphorin
3F [63].

Wnt signaling is required for early midbrain devel-
opment. Wnt1 expression precedes Fgf8, starting at E8.0.
During early somite stages, Wnt1 is broadly expressed in the
presumptive mesencephalon (1-somite), but following neu-
ral tube closure, the expression gradually becomes refined
to a narrow band of cells located immediately rostral to the
isthmus, and the dorsal midline of the CNS (16 somites)
[64] (Figure 2). Wnt1 does not have isthmic-like activity as
Fgf8 does. However, Wnt1 is essential as its deletion results
in loss of midbrain and cerebellar structures by E10 and in a
substantial reduction in the number of vmDA neurons [65–
68]. Moreover, Fgf8 and Shh fail to induce TH and Pitx3
expression in the Wnt1 knockout mouse, indicating that
Wnt1 is necessary for the development of vmDA neurons
[69]. Ectopic expression of Wnt1 in the rostral hindbrain
can induce vmDA neurons through the activation of Otx2
expression and the subsequent repression of Gbx2 and
Nkx2.2 and induction of mDA markers, including TH and
Nurr1 [69]. If ectopic Wnt signaling is combined with restor-
ed Lmx1b levels, vmDA neurons appear to be generated also
at more caudal levels of the hindbrain, although not in the
spinal cord [70]. Interestingly, Otx2 appears to determine
the anterior identity that confers neurogenic potential of FP
cells. Consequently, ectopic expression of Otx2 in the ventral
hindbrain induces vmDA neurons from FP cells, which
normally do not give rise to neurons, partly by inducing
Lmx1a [41].

Importantly, while Wnt1 expression is largely unaffected
by Lmx1a loss-of-function, Lmx1b is a crucial regulator of
Wnt1 expression in mDA progenitors at later developmental
stages [71].

In addition to the role of canonical Wnt signaling in early
specification, Wnt1 and Wnt3a increase neurogenesis and
regulate the proliferation of Nurr1-positive vmDA precursor
cells [72]. Likewise, disruption of canonical Wnt signaling
leads to neurogenesis defects and perturbs the migration and
segregation of vmDA neurons [73]. Wnt2 is also involved
in vmDA neurogenesis through activation of the canonical
pathway [74]. Wnt5a increases the number of vmDA neurons
by promoting the acquisition of a fully mature vmDA pheno-
type through upregulation of Pitx3 expression [72]. Wnt5a
is also thought to control morphogenesis, vmDA progenitor
cell division, and cell cycle exit [75].

Retinoic acid (RA) also appears to play a role in vmDA
neuronal differentiation. Retinal dehydrogenase 1 (Raldh1),
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Figure 2: During embryogenesis ventral midbrain dopamine neurons are born at the intersection of three signaling molecules, Shh, Wnt1
and Fgf8, that pattern the neural tube along rostrocaudal, dorsoventral and mediolateral axes. Sagittal and coronal views at the midbrain and
spinal cord levels of the mouse embryo showing the expression patterns of these morphogens at E9.5. FP: floor plate; IsO: isthmic organizer;
MB: midbrain; NC: notochord; OV: otic vesicle; RP: roof plate; SC: spinal cord; ZLI: zona limitans intermedia.

which converts retinaldehyde into RA [76], is expressed in
the vm already at E9.5 [77]. Pitx3 regulates RA levels in the
midbrain by direct transcriptional activation of Raldh1 [78,
79]. Deficiency in Pitx3 results in the selective loss of SNc
vmDA neurons [80]. Maternal supplementation of RA can
partially rescue SNc degeneration in the Pitx3 knockout mice
[79].

Other morphogens and growth factors are important for
survival and maturation of vmDA neurons. Members of the
transforming growth factors beta (TGFβ) superfamily, bone
morphogenetic proteins (BMPs) 2, 6, and 7 are expressed
in the developing vm and promote the survival of vmDA
neurons in the rat [81–83]. Furthermore, TGFβ2-3, activin
and glial cell line-derived neurotrophic factor (GDNF), are
neurotrophic factors for vmDA neurons [84–89]. GDNF
appears to act as a target-derived neurotrophic factor
through its high expression in striatal neurons that are
innervated by nigral vmDA neurons [81, 90]. In addition,
GDNF is transiently expressed in the midbrain during
vmDA neuron specification. Here, GDNF induces Pitx3 via
NF-κB-mediated signaling [91]. Pitx3 is in turn required
for activating the expression of brain-derived neurotrophic
factor (BDNF) in a subpopulation of SNc DA neurons during
embryogenesis. The loss of BDNF expression correlates with
the increased apoptotic cell death of this vmDA subpopula-
tion in the Pitx3 knockout mouse [91].

2.2. Intrinsic Determinants. Multiple cell-intrinsic factors are
involved in the proliferation, specification, maturation, and

maintenance of vmDA neurons. The homeobox transcrip-
tion factor Otx2 controls the positioning of the isthmic
organizer, which, in turn, defines the vmDA domain [46,
69, 92–96]. Furthermore, Otx2 participates in patterning the
midbrain, regulating proneural gene expression and acti-
vating downstream factors of vmDA cell fate determinants,
for example, Lmx1a and Msx1/2 [46, 69, 92–96]. Otx2 is
thought to be a master regulator in the vmDA neuron devel-
opmental program by establishing the most ventral domains.
Otx2 expression is maintained mostly in the VTA in the
adult midbrain. Consequently, loss of Otx2 in adult shows
reduced mesocortical and limbic innervation, but normal
mesostriatal connectivity [46, 69, 92–96]. Otx2 appears to
specify vmDA neuron subtype identity in the VTA by regulat-
ing the levels of Girk2 and DAT. Importantly, when Otx2
was ectopically expressed in SNc vmDA neurons, these
vulnerable neurons were protected against MPTP-induced
toxicity, presumably by limiting the number of SNc cells with
efficient DA uptake and consequently also the uptake of the
neurotoxic cation MPP+ [97].

Foxa1/2 expression is induced by Shh in the FP in the
ventral midbrain. Specification of FP identity requires a
Foxa2-dependent repression of determinants of ventrolateral
midbrain fates, including Tle4, Otx1, Sox1, and Tal2, and
reduction of Shh signaling [98]. Foxa1/2 is maintained in
postmitotic vmDA neurons acting in a gene-dosage depen-
dent manner to regulate the differentiation and phenotypic
maturation of vmDA neurons by controlling the expression
of Nurr1, En1, TH, and AADC [49, 99–101]. Foxa1/2 is
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also required for the maintenance of Lmx1a and Lmx1b
expression and functions cooperatively with these transcrip-
tion factors to regulate differentiation of vmDA neurons
[96, 100, 101]. Moreover, a recent study has shown that Foxa2
positively regulates the transcription of most determinants
of vmDA neuron fate in vm progenitors, including Lmx1a,
Lmx1b, Msx1, and Ferd3l, while repressing components of
Shh signaling pathway including the Shh receptor Patched-1,
the transducers Gli1-3 and the transcription factors Nkx2.2
and Nkx2.9 [98]. Interestingly, maintaining appropriate
gene dose levels of Foxa2 appears crucial for long-term
survival of vmDA neurons in the adult, since aging Foxa2+/−

heterozygous mice develop parkinsonian-like symptoms,
correlated with a selective loss of SNc vmDA neurons [99].

Engrailed 1 and 2 (En1 and En2) are initially broadly
expressed in the midbrain while at later stages their expres-
sion becomes restricted to postmitotic vmDA neurons [102–
104]. En1/2 are required, in a gene-dose dependent manner,
for the survival and maturation of vmDA neurons, but not
for their specification [105, 106]. The vmDA neurons in
the En1/2 knockout mice undergo apoptosis due to a cell-
autonomous requirement for En1/2 and not due to the
loss of mid/hindbrain structures [105, 107]. Furthermore,
exogenous En1/2 can protect vmDA neurons from MPTP, 6-
OHDA, and α-synuclein toxicity, presumably by increasing
mitochondrial complex I activity [108].

The homeodomain proteins Lmx1a and Lmx1b are
important for the specification of vmDA neurons and appear
to have both specific and redundant functions [40, 41,
71, 109, 110]. VmDA progenitors can be subdivided into
medial and lateral domains that are molecularly distinct
in their expression of Wnt1, DRD2, and Corin expression.
These subgroups show different sensitivity to the loss of
Lmx1a and Lmx1b, with Lmx1a affecting the neurogenesis
of medial progenitors and Lmx1b being necessary for the
establishment of the lateral DA progenitor domain [71].
Lmx1a can induce a vmDA neuron phenotype in ventralized
ES cells [40, 111, 112], but it is not absolutely required
for the specification of these neurons [71]. Importantly,
Lmx1a converts nonneuronal floor plate cells in the ventral
midline into neuronal vmDA progenitors [40, 41]. This
process includes a Lmx1a-triggered cell cycle exit, neuronal
differentiation by activation of Ngn2 signaling, and the
establishment of Notch signaling in ventral midlines cells,
thereby providing neuronal potential to FP cells [40, 71]. The
requirement for Lmx1a in midline cells is limited to early
developmental stages and the deficient vmDA neurogenesis,
(most evident along the midline), in the Lmx1a mutant mice
recovers over time [41, 71]. Lmx1b controls the onset of Pitx3
expression relative to TH and is required for survival, as all
vmDA neurons are lost after E16 in Lmx1b null mutants
[109]. In addition, Lmx1b is required for the specification
of lateral vmDA progenitors that do not appear to originate
from the floor plate [71]. Furthermore, Lmx1b, and not
Lmx1a, appears to be a crucial regulator of Wnt1 expression
in vmDA progenitors at later developmental stages. While
the function of Lmx1a appears devoted to the vmDA neuron
lineage, Lmx1b has a broader function and influences the
sequential specification of ocular motor neurons and red

nucleus neurons from progenitors lateral to vmDA neurons
in the midbrain [71].

Neurogenin 2 (Ngn2) is a key factor downstream of
Lmx1a, Msx1/2, and Otx2 in the conversion of the glial-
like FP into a neurogenic region in the vm [40, 41, 71].
Furthermore, Ngn2 is a regulator of mDA specification and
neurogenesis, but its proneural function can be partially
replaced by Mash1 (Ascl1) [40, 113].

The transcription factor Nurr1 (Nr4A2) is expressed in
many neuronal populations in the brain, including all post-
mitotic vmDA neurons. Nurr1 is required for the induction
of TH and other proteins required for DA synthesis, storage
and release, including VMAT2, DAT, aromatic L-amino acid
decarboxylase (AADC), and also c-Ret [77, 114–116]. Fur-
thermore, it appears that Nurr1 can physically interact with
the cyclin-dependent kinase (CDK) p57 to promote mat-
uration of vmDA neurons [117]. In Nurr1 knockout mice,
vmDA neurons are born, but fail to acquire and/or maintain
a proper phenotype [114, 118, 119].

The homeobox transcription factor Pitx3 shows a re-
stricted expression in SNc and VTA DA neurons in the brain.
Interestingly, loss of Pitx3 leads to a selective degeneration
of SNc DA neurons, while VTA DA neurons remain intact
[80, 120, 121]. The reasons for this selective dependence
of SNc DA neurons on Pitx3 are not fully understood. As
mentioned above, Raldh1 is a transcriptional target of Pitx3
[78, 79] and maternal supplementation of RA can partially
rescue the SNc degeneration in the Pitx3 knockout mice [79].
Furthermore, Pitx3 is required to activate BDNF expression
in a rostrocaudal population of SNc mDA neurons and loss
of BDNF expression correlates with the increased apoptotic
cell death of these mDA neurons in the Pitx3 knockout
mouse [91]. In addition, Pitx3 regulates the level of TH in
SNc mDA neurons [122].

In conclusion, a comprehensive understanding of the
developmental pathways involved in vmDA specification and
maturation facilitates their in vitro generation from different
cell sources.

3. Dopamine Neurons from
Pluripotent Stem Cells

Human pluripotent stem cells represent a good source of in
vitro generated cells because they allow unlimited expansion
(at least in theory) and derivation of any kind of cell type.
However, their broad potential is also their main drawback,
as it is difficult to restrict their differentiation into only
one specific cellular phenotype. For cell-based therapies,
cellular heterogeneity is problematic because of decreased
safety, efficiency, and efficacy (which are the requisites for
a biological agent to be approved as a therapy). Indeed, the
presence of multiple cell phenotypes that are also at differ-
ent developmental stages can cause several complications.
Immature and proliferating cells pose a risk of teratoma
formation [123, 124] and graft overgrowth [125–127]. The
presence of contaminating cell phenotypes can interfere with
the graft function in several ways, for example, by favoring
graft self-innervation and decreasing graft-host integration
[128] or through a direct interaction with host neurons,
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Figure 3: Customized rendering of the epigenetic landscape for ventral midbrain dopamine neurons representing the developmental
program (downhill, black lines) and the reprogramming pathways back to pluripotency (red lines) and across mature fates (blue lines).

compromising function. In particular, while debatable (see
Section 1), the presence of serotonin neurons in fetal vm
grafts has been proposed to account for the development
of graft-induced dyskinesia [30]. Finally, the presence of
contaminating cells necessarily decreases the percentage of
therapeutically relevant cells, leading to an increase in cell
dose and injection volumes which is associated with higher
surgical risks and adverse effects. Therefore, the challenge is
to maximize the production of one (or several) therapeu-
tically relevant cell type(s) and minimize the presence of
other cell populations, in particular those which can cause
direct damage or decrease the functional effect of the graft.
With this goal, differentiation and selection protocols have
been developed and optimized using the extrinsic signals and
intrinsic markers discussed in Section 2, to guide pluripotent
cells into the appropriate developmental program (Figure 3).

3.1. Inductive Cell Culture Protocols. Based on the informa-
tion gathered from developmental studies, inductive culture
protocols have been developed, using a sequential exposure
to morphogens, in an effort to reproduce in vitro the
convergence of signaling factors (described in Section 2.1)
that takes place during vmDA neurogenesis in the embryo
(Figure 2). Combinations of Shh and Fgf8 have been success-
ful to induce DA neurons from pluripotent embryonic stem
cells from mouse [129], primate [130–132] and human
origins [133, 134]. For neural induction, coculture sys-
tems take advantage of the inductive properties of murine
stromal cell lines like MS5 [135] or PA6 [130, 136]. The
stromal-derived inductive activity has been related to the
secretion of cytokines, growth factors, and axonal guidance
molecules like CXCL12, pleiotrophin, insulin growth factor-
2 (IGF2), and ephrinB1 [137]. Subsequent modifications of
the basic protocols have sought to enhance the proportion
of pluripotent cells committed to neural fates by blocking

mesendodermal fates, using BMP inhibitors, such as noggin,
and the activin and TGFβ inhibitor, SB431542 [124, 133, 138,
139]. Inhibitors of glycogen synthase kinase (GSK)3-β also
favor neural induction and vmDA neuron differentiation,
through enhancement of canonical Wnt signaling activity
[140]. Other strategies include a transient inhibition of Fgf/
Erk signaling at early stages of neural induction to ventralize
neural progenitors and maintain Otx2 expression while re-
pressing forebrain and hindbrain fates [141].

Differential expression of miRNAs has been correlated
with the propensity of pluripotent cell lines to generate
vmDA neurons using these inductive protocols [142]. Thus,
the expression of miRNAs could be manipulated in order
to enhance the differentiation process and, importantly, it
can be used to choose the most efficient cell lines for dif-
ferentiation, for example from patient derived iPS cell lines
if several clones are available.

Long in vitro culture periods in the presence of BDNF,
GDNF, Wnt5a and other factors, discussed in Section 2,
stabilize the transcriptional network and enhance neuronal
maturation [143], leading to a progressive enrichment by
positive selection. However, in contrast to other cellular pop-
ulations like the oligodendrocytes derived form human
embryonic stem cells [144, 145], long culture periods may
not be optimal for purification of vmDA neurons for trans-
plantation due to their dense neuritic arborization, which
increases their vulnerability during harvesting. To further
increase the proportion of vmDA neurons from pluripotent
stem cell-derived populations, over-expression of transcrip-
tion factors and selection strategies have been evaluated.

3.2. Over-Expression. Several transcription factors, such as
Nurr1, Lmx1a and Pitx3, have been used to enhance
vmDA differentiation from pluripotent and neural stem cells
(Table 1).
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Table 1: Summary of the studies that have used transcription factors and other markers to obtain and enhance the production of vmDA
neurons in vitro, through overexpression and selection strategies.

TF and lineage
markers

Overexpression Selection Direct reprogramming Comments

Pitx3

� mRNA levels of
phenotypic markers of
vmDA neurons after in vitro
differentiation and the
percentage of Pitx3/TH
neurons after grafting [78]

� Enrichment for vmDA
neurons [27], which restored
motor function in PD models
[159, 179]

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
iDA from Pitx3-eGFP ki
mouse cells sorted for Pitx3
showed some motor
improvement after
transplantation in 6-OHDA
mice [142, 149, 151, 180]

Specific marker for all
postmitotic vmDA
neurons

Nurr1

� mRNA levels of
phenotypic markers of
vmDA neurons after in vitro
differentiation and the
percentage of TH+ neurons
after transplantation leading
to behavioural recovery with
no signs of teratoma
[78, 146, 147, 153, 181–183]

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
[142, 148–151, 180]

Regulates terminal
acquisition of the DA
phenotype but is
expressed in many cell
populations. Strong
context dependency.

Lmx1a/b

Lmx1a/b proteins can
increase the percentage of
vmDA neurons with typical
electrophysiological
properties [40, 111, 157, 184]

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
[142, 148–150, 180]

Induce specification and
maintenance of vmDA
neurons.

Foxa2

� mRNA levels of
phenotypic markers and TF
of vmDA neurons after in
vitro differentiation.
Enhanced the resistance to
neurotoxins and improved
motor asymmetry after
transplantation [183, 184]

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
[142, 149, 150, 180]

Required for
specification,
differentiation, and
survival of vmDA
neurons

Otx2

� mRNA levels of
phenotypic markers and TF
of mDA neurons after in
vitro differentiation in
combination with FoxA2
and Lmx1a [184]

� Enriched the DA progenitor
pool (in combination with
Corin) and induced
behavioural recovery after
transplantation into PD
models [185]

iDA neurons from mouse
astrocytes (in combination)
[180]

Important in midbrain
regionalization, persists
only in most medial
vmDA (less vulnerable)
populations

Ngn1/2
� Number of TH+ cells in
combination with Nurr1
[153]

Ngn2+ progenitors isolated at
E12.5 from VM led to
behavioural recovery in
6-OHDA lesioned rats
[179, 186]

iDA neurons from human
fibroblasts and mouse
astrocytes (in combination)
[151, 180]

Can be substituted by
other proneural genes
like Mash1

Mash1 (Ascl1)

� In combination with
Nurr1 increased the number
of surviving TH+ cells after
grafting and improved
motor function [153]

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
[148, 151, 180]

Essential for direct
reprogramming of
fibroblast and astrocytes
into iDA cells.

Engrailed

iDA neurons from human
and mouse fibroblasts and
mouse astrocytes (in
combination)
[142, 149, 150, 180]

Required for survival of
mature vmDA neurons.
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Table 1: Continued.

TF and lineage
markers

Overexpression Selection Direct reprogramming Comments

Sox1

� Sox1+ neural progenitors
avoid tumor formation after
transplantation but few DA
neurons [125, 158, 187]

� Efficiency of direct
reprogramming [142, 149]

Fail to produce vmDA
neurons from human
ESC [188].

Sox2
� Broadly expressed in all VM
domains [179]

iDA neurons from human
fibroblasts (in combination)
[151]

TH

� TH promoter: highly
enriches for DA neurons,
which improved motor
behavior in animal models of
PD upon transplantation
[127, 165, 166, 168]

Regulatory sequences are
valuable for vmDA
neuron enrichment
mostly from primary
cells.

DAT

� DAT promoter: highly
enriches for DA neurons,
which survived in vitro when
cocultured with glia [189]

Restricted expression to
more mature
populations.

Nestin
� Expressed in all VM
domains [179]

Allows selection of
neural progenitors but
dynamic expression may
exclude target cells at
different developmental
stages.

Corin

� Selection from primary cells
resulted in low numbers of TH
neurons and no behavioral
recovery of grafted animals.
� When combined with Otx2,
the DA progenitor pool was
enriched and cells induced
behavioural recovery after
transplantation [41, 179, 185]

Broad expression in the
midline. Selection for
this surface molecule is
insufficient for DA
enrichment.

SSEA-1 (CD15)

� To exclude stem cells (pro-
liferating/undifferentiated)
preventing tumor formation
in grafts from mouse ES cells
[127, 159, 160]

Negative selection of
populations derived
from mouse ES cells
reduces the risk of
teratoma formation.

NCAM (CD56)

� To isolate and/or evaluate
percentage of post-mitotic
neurons and prevent tumor
formation in grafts [159, 171]

Positive selection of
populations derived
from mouse and human
ES cells reduces the risk
of teratoma formation.

PSA-NCAM

� To isolate and/or analyze
percentage of progenitors or
post- mitotic neurons
[111, 159]

Positive selection of
neural populations may
result in exclusion of
target neurons at
different developmental
stages.

The role of Nurr1 as a terminal selector has been high-
lighted by over-expression studies that have demonstrated its
capacity to upregulate the DA neurotransmitter phenotype
by increasing expression of TH, DAT, AADC and c-ret in

neurons derived from ES cells [146, 147]. In vivo, Nurr1-
overexpressing neurons induced a faster and more complete
behavioral recovery in hemi-parkinsonian rats, including
spontaneous motor behaviors [147]. More recently, Nurr1
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has been used in direct reprogramming experiments [148–
151] (see below, Section 4). The effect of Nurr1 is highly
context-dependent, failing to induce a vmDA neuronal
phenotype in forebrain neural stem cells [152, 153] without
the addition of other patterning factors. Likewise, Nurr1
can upregulate DA markers without inducing a neuronal
phenotype in mouse ES cells [154].

Lmx1a can induce a vmDA neuron phenotype in pre-
viously ventralized mouse ES cells [40, 111, 112], but it is
not absolutely required for the specification of these neurons
[71]. Indeed, although over-expression in mouse ES cells
improved the differentiation into vmDA neurons, the results
in human ES cells did not meet the expectations [111,
155]. In another study, using vm progenitors from rodents,
just a few Lmx1a-transduced cells matured into neurons
but a more robust increase was found in human neural
progenitors [156]. More recently, lentiviral vectors were used
to stably transduce hES cells that expressed Lmx1a upon
differentiation (driven by a nestin enhancer) and resulted in
an increase of 40% in the TH positive neurons, with 75% of
these coexpressing Girk2 [157].

3.3. Selection Approaches. Induction of the vmDA neuron
fate is restricted temporally and spatially in the developing
midbrain. Such restrictions are difficult to accomplish in
vitro in stem cell derived cultures. While the addition of a
specific set of morphogens (e.g., Fg8, Shh, and Wnt) to a
stem cell culture can restrict the fates of the cells generated,
multiple neuronal populations will still be formed, including
serotonin neurons and motor neurons [112, 129, 134, 135].
This is not surprising since these neuronal populations are
generated in a close temporal window within very proximal
domains during embryonic development [71, 112], and in
vitro culture systems cannot achieve the level of definition
required to separate these domains (in time and space).
However, exclusion of these neighboring populations may be
desirable or even necessary, as discussed above. Furthermore,
stem cells and actively dividing cells [125, 127, 158–160]
could result in the generation of tumors or teratomas [123,
125, 126] and be detrimental to the host.

Target populations, such as vmDA neurons and/or their
progenitors, can be enriched for during or after in vitro
differentiation using fluorescent activated cell sorting (FACS)
or magnetic activated cell sorting (MACS). Cells of interest
can be positively selected for by using labeled antibodies
that stain for specific cell surface markers with a restricted
presence on the desired cellular population. Positive selection
can also entail using a genetic internal selection marker (from
transgenic cell lines, animal strains, or using viral vectors).
In addition, the enrichment strategies can be combined with
negative selection procedures to remove unwanted cellular
populations, for example, proliferating cells that express
markers, such as the stage specific embryonic antigens,
SSEAs [161, 162] (e.g., SSEA-1 on mouse ESCs and SSEA-
3 on human ESCs). Several strategies have been utilized so
far, seeking to enrich for progenitors or postmitotic vmDA
neurons (Table 1). Ideally, a combination of cell-surface
markers that define a subpopulation, as for blood cells [163],
would allow us to select the vmDA neurons at different

stages. However, such a cell-surface fingerprint has yet to be
defined for vmDA neurons. In addition to the choice of
markers, the time of selection is also critical, as survival of
post-mitotic neurons is compromised after sorting.

The initial proof-of-principle studies, demonstrated that
primary, post-mitotic vmDA neurons could be enriched by
FACS, using either dye labeling or TH-based fluorescence
expression [164–166]. Furthermore, such cells survived in
the striatum of adult 6-OHDA lesioned parkinsonian rats
after transplantation and induced partial functional recovery
[165, 166]. From selection studies it has become evident that
highly enriched mDA neuronal populations need additional
trophic support, which can be accomplished by coculture
with astrocytes [159, 166]. Neuronal populations usually re-
quire target- (axonal or dendritic) derived trophic factor
support for survival. Therefore, coculturing purified mDA
neurons with their striatal target cells would likely promote
survival. Furthermore, it is also possible that purified vmDA
neuronal cultures would survive better if they were plated at a
high enough density, to ensure increased cell-to-cell contact
and exposure to trophic factors, for example, BDNF secreted
by neighboring cell populations.

Isolation of stem cell-derived vmDA neurons has proven
to be more complicated since the cells are not confined
in a temporal or spatial manner, as in the embryo, (see
above). For example, using TH as a selection marker poses
challenges since TH is expressed in multiple cell types during
development, including cells with proliferative capacity
[167]. We, and others, have previously utilized TH driven
eGFP expression in ES cells to enrich for vmDA neurons
[127, 168]. However, due to the expression of eGFP in
cells of nonneuronal morphology, the resulting grafts were
composed of a majority of non-mDA neurons and most
vmDA were generated after grafting, rather than prior to
the sorting procedure [127, 168]. Combining the positive
selection for TH-eGFP with a negative selection for imma-
ture cells using the cell surface marker SSEA-1 resulted in an
enriched neuronal population [127].

A more restricted marker for vmDA neurons is the
homeodomain transcription factor Pitx3, which is constitu-
tively and selectively expressed in mDA neurons in the brain.
Pitx3 is also transiently expressed in skeletal muscle and the
lens of the eye [27, 121], but generation of those cellular
populations can be avoided during in vitro differentiation
using inductive protocols targeted towards a mesencephalic
fate [129, 147, 159, 169]. In our study transplantation of an
ESC-derived population enriched for Pitx3-eGFP expression
could efficiently reverse amphetamine-induced rotational
behavior and significantly reduced apomorphine-induced
rotational behavior [159]. However, cellular populations that
contained ∼80% of Pitx3-eGFP cells could still occasionally
give rise to teratoma formation. While this positive selection
procedure resulted in a ten-fold decrease in the number of
SSEA-1 positive cells, some undifferentiated cells with prolif-
erative capacity remained. A second round of FACS for eGFP
expression could remove such unwanted cells and enrich-
ed for up to 98% mDA neurons, which survived in vitro.
Rather than putting the cells through a second round of
FACS, a negative selection for SSEA-1 can be performed
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simultaneously with the positive selection for Pitx3-eGFP.
Such negative selection has been previously successful in
reducing the amount of proliferating cells [127] and avoiding
tumor formation after grafting [160].

Sox1-GFP transgenic expression has been successfully
used as a positive selection marker of neuronal progenitors
from stem cells derived cultures to avoid tumor formation
[125, 158]. However, while this strategy appears to diminish
the risk of overgrowth from grafted cells, very few dopamine
neurons are generated from an enriched Sox1 positive pop-
ulation [125, 158]. This result is not entirely surprising since
the progenitor domain for vmDA neurons is devoid of Sox1
expression and a recent study found that removal of Sox1
from the reprogramming cocktail improved the generation
of Pitx3 positive neurons from mouse fibroblasts [149].

Multiple studies have used the expression of the cell-
surface membrane protein NCAM (neural cell adhesion
molecule) and its polysialylated form, PSA-NCAM, to ana-
lyze or enrich for post-mitotic neurons [111, 112, 159, 170,
171]. Selection for PSA-NCAM and subsequent transplanta-
tion has shown that tumor formation can be averted [111,
171]. However, the resulting grafts were either very small due
to poor survival [111] or lacking vmDA neurons of a proper
identity [171].

4. Direct Reprogramming to vmDA Neurons

All cells in an individual have essentially the same genes
and the distinct cellular phenotypes are determined by their
unique gene expression profiles, which are controlled by
transcription factors. Thus, manipulating the expression of
certain key transcription factors allows for the modifica-
tion of the cell transcriptional profile and, ultimately, the
reprogramming of its phenotype [172]. Using reprogram-
ming technology, it has been possible to generate induced-
pluripotent stem (iPS) cell lines and also mature phenotypes,
such as induced neurons (iNs) [173], from accessible cells,
like dermal fibroblasts. Reprogramming techniques are par-
ticularly valuable to obtain human neurons carrying muta-
tions associated with neurological diseases. An advantage
of the direct reprogramming approach is to circumvent the
pluripotent stage (Figure 3), which shortens the experimen-
tal procedures and avoids the hurdles associated with the
redifferentiation process. On the other hand, there is no
possibility to expand the resulting cell population, which
entails the need to reprogram each cell. This inconvenience
has been successfully overcome by direct reprogramming
mouse and human fibroblasts to a neural stem cell stage
by Sox2 over-expression [174]. Notwithstanding, the most
critical issue associated with this approach is to determine
whether the reprogramming process fully resets the cell
identity and whether these cells become authentic functional
neurons. In the initial report [173], a combination of Mash1,
Brn2 and Mytl1 produced iN cells that did not have a clearly
defined regional phenotype [175]. Since then, TH positive iN
have been generated through direct reprogramming [148–
151] by the addition of one or more transcription factors
that are important during midbrain development, including
Foxa2, Lmx1a/b, Nurr1, En1, and Pitx3, and in different

combinations (Table 1). The interplay between intrinsic
determinants and extrinsic signals is again underscored in a
study using mouse Pitx3-eGFP transgenic fibroblasts [149].
In this study exposure to Shh and Fgf8 of reprogrammed
cells partially overcame their lack of maturation and made
the iN more similar to vmDA neurons. However, in spite
of some evidence of in vivo function, those DA iNs were
still different from primary neurons both in molecular and
functional assays. Interestingly, overexpression of Sox1, Pax6,
and, intriguingly, Lmx1b, had either an inhibitory effect or
no effect on the reprogramming efficiency [149]. Thus, these
studies are helping to establish the hierarchy of lineage deter-
minants and the relative contribution of these transcription
factors in crafting the vmDA neuronal identity.

So far, the emerging picture from these transdifferenti-
ation studies (and previous over-expression assays) under-
scores the need to overcome context dependency, which
appears to be the dictated by chromatin modifications. In
this regard, it is rather puzzling that the exact same factors
were sufficient to reprogram cells from different germ layers,
that is, dermal fibroblasts and hepatocytes, into neurons
[176], as, in principle, different endogenous programs need
to be repressed in the starting cell population. This suggests
that perhaps some of the proneural genes, most likely Mash1,
are able to switch on and off whole transcriptional networks.
A combination of the so-called master regulators, such as
Mash1 (Ascl1) for ventral neurons and Foxa2 for the floor-
plate neural progeny, and terminal selectors, like Nurr1
(Nr4a2), and Pitx3, together with extrinsic inductive signals
[177] and chromatin modifiers [149, 178] may be required
to generate vmDA neurons that have a correct molecular and
functional identity, directly from unrelated somatic cells.

In summary, a precise temporal and spatial integration
of extrinsic and intrinsic factors is required to establish the
transcriptional network that confers cell identity. Only neu-
rons with the appropriate mesostriatal vmDA identity will
be able to replace the neurons lost in Parkinson disease and
restore synaptic connectivity and function. Understanding
the complex interplay of signals during embryonic develop-
ment will help recognize the critical factors required to refine
the production of these neurons in vitro from pluripotent
stem cells and from somatic cells. Likewise, the capacity
of individual transcription factors and extrinsic signals to
induce and stabilize the vmDA phenotype will help deter-
mine their role in lineage specification, and further our
understanding of human midbrain development.
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[60] F. Reifers, H. Böhli, E. C. Walsh, P. H. Crossley, D. Y. R.
Stainier, and M. Brand, “Fgf8 is mutated in zebrafish acer-
ebellar (ace) mutants and is required for maintenance of
midbrain-hindbrain boundary development and somitoge-
nesis,” Development, vol. 125, no. 13, pp. 2381–2395, 1998.

[61] C. L. Chi, S. Martinez, W. Wurst, and G. R. Martin, “The
isthmic organizer signal FGF8 is required for cell survival in
the prospective midbrain and cerebellum,” Development, vol.
130, no. 12, pp. 2633–2644, 2003.

[62] A. Liu, K. Losos, and A. L. Joyner, “FGF8 can activate Gbx2
and transform regions of the rostral mouse brain into a
hindbrain fate,” Development, vol. 126, no. 21, pp. 4827–
4838, 1999.

[63] K. Yamauchi, S. Mizushima, A. Tamada, N. Yamamoto, S.
Takashima, and F. Murakami, “FGF8 signaling regulates
growth of midbrain dopaminergic axons by inducing sema-
phorin 3F,” The Journal of Neuroscience, vol. 29, no. 13, pp.
4044–4055, 2009.

[64] B. A. Parr, M. J. Shea, G. Vassileva, and A. P. McMahon,
“Mouse Wnt genes exhibit discrete domains of expression in



Stem Cells International 13

the early embryonic CNS and limb buds,” Development, vol.
119, no. 1, pp. 247–261, 1993.

[65] A. P. McMahon and A. Bradley, “The Wnt-1 (int-1) proto-
oncogene is required for development of a large region of the
mouse brain,” Cell, vol. 62, no. 6, pp. 1073–1085, 1990.

[66] K. R. Thomas and M. R. Capecchi, “Targeted disruption of
the murine int-1 proto-oncogene resulting in severe abnor-
malities in midbrain and cerebellar development,” Nature,
vol. 346, no. 6287, pp. 847–850, 1990.

[67] A. P. McMahon, A. L. Joyner, A. Bradley, and J. A. McMahon,
“The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1-
mice results from stepwise deletion of engrailed-expressing
cells by 9.5 days postcoitum,” Cell, vol. 69, no. 4, pp. 581–595,
1992.

[68] M. Panhuysen, D. M. Vogt Weisenhorn, V. Blanquet et al.,
“Effects of Wnt1 signaling on proliferation in the developing
mid-/hindbrain region,” Molecular and Cellular Neuroscience,
vol. 26, no. 1, pp. 101–111, 2004.

[69] N. Prakash, C. Brodski, T. Naserke et al., “A Wnt1-regulated
genetic network controls the identity and fate of midbrain-
dopaminergic progenitors in vivo,” Development, vol. 133, no.
1, pp. 89–98, 2006.

[70] M. Joksimovic, M. Patel, M. M. Taketo, R. Johnson, and R.
Awatramani, “Ectopic Wnt/β-catenin signaling induces neu-
rogenesis in the spinal cord and hindbrain floor plate,” PloS
ONE, vol. 7, no. 1, Article ID e30266, 2012.

[71] Q. Deng, E. Andersson, E. Hedlund et al., “Specific and
integrated roles of Lmx1a, Lmx1b and Phox2a in ventral
midbrain development,” Development, vol. 138, no. 16, pp.
3399–3408, 2011.

[72] G. Castelo-Branco, J. Wagner, F. J. Rodriguez et al., “Differ-
ential regulation of midbrain dopaminergic neuron develop-
ment by Wnt-1, Wnt-3a, and Wnt-5a,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 22, pp. 12747–12752, 2003.

[73] M. Tang, Y. Miyamoto, and E. J. Huang, “Multiple roles of
β-catenin in controlling the neurogenic niche for midbrain
dopamine neurons,” Development, vol. 136, no. 12, pp. 2027–
2038, 2009.

[74] K. M. Sousa, J. Carlos Villaescusa, L. Cajanek et al., “Wnt2
regulates progenitor proliferation in the developing ventral
midbrain,” The Journal of Biological Chemistry, vol. 285, no.
10, pp. 7246–7253, 2010.

[75] E. R. Andersson, N. Prakash, L. Cajanek et al., “Wnt5a regu-
lates ventral midbrain morphogenesis and the development
of A9-A10 dopaminergic cells in vivo,” PLoS ONE, vol. 3, no.
10, Article ID e3517, 2008.

[76] R. Lindahl and S. Evces, “Rat liver aldehyde dehydrogenase.
II. Isolation and characterization of four inducible isozymes,”
The Journal of Biological Chemistry, vol. 259, no. 19, pp.
11991–11996, 1984.

[77] A. Wallén, R. H. Zetterström, L. Solomin, M. Arvidsson,
L. Olson, and T. Perlmann, “Fate of mesencephalic AHD2-
expressing dopamine progenitor cells in Nurr1 mutant mice,”
Experimental Cell Research, vol. 253, no. 2, pp. 737–746, 1999.

[78] S. Chung, E. Hedlund, M. Hwang et al., “The homeodomain
transcription factor Pitx3 facilitates differentiation of mouse
embryonic stem cells into AHD2-expressing dopaminergic
neurons,” Molecular and Cellular Neuroscience, vol. 28, no. 2,
pp. 241–252, 2005.

[79] F. M. J. Jacobs, S. M. Smits, C. W. Noorlander et al., “Retinoic
acid counteracts developmental defects in the substantia
nigra caused by Pitx3 deficiency,” Development, vol. 134, no.
14, pp. 2673–2684, 2007.

[80] D. Y. Hwang, P. Ardayfio, U. J. Kang, E. V. Semina, and
K. S. Kim, “Selective loss of dopaminergic neurons in the
substantia nigra of Pitx3-deficient aphakia mice,” Molecular
Brain Research, vol. 114, no. 2, pp. 123–131, 2003.
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